
Containerizing an eTextbook Infrastructure

Alexander Hicks
Virginia Tech

Blacksburg, United States
alexhicks@vt.edu

Clifford A. Shaffer
Virginia Tech

Blacksburg, United States
shaffer@vt.edu

ABSTRACT
The CS Education community has developed many educa-
tional tools in recent years, such as interactive exercises. Of-
ten the developer makes them freely available for use, hosted
on their own server, and usually they are directly accessi-
ble within the instructor’s LMS through the LTI protocol.
As convenient as this can be, instructors using these third-
party tools for their courses can experience issues related to
data access and privacy concerns. The tools typically collect
clickstream data on student use. But they might not make
it easy for the instructor to access these data, and the insti-
tution might be concerned about privacy violations. While
the developers might allow and even support local installa-
tion of the tool, this can be a difficult process unless the tool
carefully designed for third-party installation. And integra-
tion of small tools within larger frameworks (like a type of
interactive exercise within an eTextbook framework) is also
difficult without proper design.

This paper describes an ongoing containerization effort for
the OpenDSA eTextbook project. Our goal is both to serve
our needs by creating an easier-to-manage decomposition of
the many tools and sub-servers required by this complex
system, and also to provide an easily installable production
environment that instructors can run locally. This new sys-
tem provides better access to developer-level data analysis
tools and potentially removes many FERPA-related privacy
concerns. We also describe our efforts to integrate Caliper
Analytics into OpenDSA to expand the data collection and
analysis services. We hope that our containerization archi-
tecture can help provide a roadmap for similar projects to
follow.

Keywords
Containerization, Caliper Analytics, Learning Tools Inter-
operability

Copyright ©2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0)

1. INTRODUCTION
Currently, the OpenDSA eTextbook project gives instruc-
tors and students access to a hosted version of the applica-
tion for free. But this is not sufficient for all institutional
users, or even for our own installation as demand and sub-
sequent computational load grows. In principle, OpenDSA
(being an open-source project) has supported users or uni-
versities seeking to deploy their own copy. But this could
only be done by following a complex set of instructions.

This paper describes our work to simplify the installation
process. We have many motivations for this. At first we
wanted to allow instructors to host this tool on their own,
both to reduce our server load and to avoid complications
when their University requires strong privacy restrictions.
Outsourcing in this way also lets them gain access to ad-
ditional student data that is being collected. So, this work
began as an effort to create a new development environment
for OpenDSA that would work on any platform. Once we
saw the benefits of this new development environment, and
realized the benefits of keeping our development and produc-
tion environments as similar as possible, we started creating
the production environment described below. In particular,
we have now made it easy for the many students who work
on the project to easily spin up a complete development
environment for any part of the system, a great savings in
effort for both those students and the project managers.

The OpenDSA system has two major parts that needed to
be containerized: a front-end content delivery server and a
back-end LTI and data collection server [1, 11]. In this pa-
per, the front-end server will be referred to as OpenDSA and
the back-end server is called OpenDSA-LTI or LTI. These
two parts work together to serve content using the LTI pro-
tocol [2]. These two systems work together to serve content
to students. OpenDSA compiles the book instances from
RST files into html files (using Sphinx [5]) that can be dis-
played in a user’s browser. Then OpenDSA-LTI communi-
cates with the learning management system (LMS) to serve
content files located on the server to the student.

2. BACKGROUND
Containers are lightweight and portable packages of soft-
ware than can run anywhere their runtime is supported [8].
There are several different container providers, but we se-
lected Docker as our container platform due to its familiarity
and its current status as an industry standard for container-
ization [10].

Figure 1: Previous OpenDSA System Architecture

A containerized application has several benefits over tradi-
tionally packaged applications including portability and ease
of setup. With Docker, the only program a user will need
to install on their server is Docker, and everything else will
be installed and run within Docker containers using built-in
orchestration through Docker-Compose. This makes it par-
ticularly easy for new developers to start working on copies
of the system.

3. ARCHITECTURE
In order to containerize the existing OpenDSA architecture,
we first had to investigate how the technologies that make
up the current stack could be split and containerized. The
current stack consists primarily of a Ruby on Rails appli-
cation (OpenDSA-LTI), a MySQL database, and an Nginx
web server along with several other tools and requirements.

Since OpenDSA and OpenDSA-LTI work by serving con-
tent files to the LMS, these containers, described below in
Section 3.1, need to share a filesystem. Originally, these two
processes ran on the same host natively, so there were no
issues with where files were located as long as both compo-
nents were installed in the correct location [11]. As shown in
figure 1, the previous OpenDSA system architecture had a
copy of OpenDSA (the content part) within OpenDSA-LTI
(the server), and maintained external connections on the
host machine with the database and the web server. Ad-
ditionally, a supporting visualization tool named OpenPOP
ran as a separate server on the same machine, but not in a
dedicated environment. Under the new organization shown
in figure 2, all of the systems are running in Docker on the
same host, meaning we no longer have to worry about com-
patibility between OpenDSA and OpenPOP’s dependencies.
All of the networking is handled by Docker rather than an
Nginx configuration file. In the first attempt at containeriz-
ing this system, these two processes were combined into only
one Docker container, which was functional but slow because
the container required three language runtimes and thus ran
many different processes. In order to split this container into
two, we created a REST API around the OpenDSA function-
ality that handles book compilation. This API is accessed
by the LTI container using HTTP requests and places the
compiled books in the Docker shared directory that LTI can
access.

Figure 2: Containerized OpenDSA System Architecture

The OpenDSA production environment currently consists
of five containers: OpenDSA, OpenDSA-LTI, OpenPOP, a
database, and a web server. All of these images that we cre-
ated are published and accessible on Docker Hub at https:

//hub.docker.com/orgs/opendsa/repositories and desc-
ribed in section 3.1.

3.1 Component Containers
The OpenDSA container includes the OpenDSA repository
(https://github.com/OpenDSA/OpenDSA). Python scripts
support compiling books to a specific location on the shared
filesystem that OpenDSA will serve using the LTI container.
This repository also stores configurations for the books to be
compiled from. The OpenDSA-LTI container contains the
code from https://github.com/OpenDSA/OpenDSA-LTI in a
Ruby container designed by Bitnami for Rails production
deployments [6]. This container consists of the Rails server,
and delivers the compiled content as required by an LMS
such as Canvas using the LTI protocol.

OpenPOP’s (https://github.com/OpenDSA/OpenPOP) con-
tainer is structured in a way similar to the OpenDSA-LTI
container. OpenPOP is an external tool that is used by
OpenDSA through a different external tool, CodeWorkout,
and this work includes OpenPOP in the installation rather
than keeping it separate as it was done previously. OpenDSA
uses MySQL as the database and provides that in a separate
container.

In order to avoid negative impacts from using a database in
an ephemeral container, we use a Docker volume to mount
the database onto the host filesystem to preserve the data if
the container fails, and to allow the container to be restarted
separately for routine maintence. Finally, we include two op-
tions for a web server container. For users who can acquire
their own SSL certificates, this stack will have an option
to import those certificates and use them in a Traefik web
server [7]. For users that do not have their own SSL certifi-
cates, there is an option to use Let’s Encrypt to automate
their SSL encryption, as long as they provide a domain [9].
Both of these options have minimal overhead required to set
up and help keep the overall set up effort for the complete
application to a minimum.

4. DISCUSSION AND FUTURE WORK
As the CS Education community grows, there is an increas-
ing availability both for individual tools that need to be in-
tegrated into broader systems, and also integrated systems
such as OpenDSA. In both cases, containerization can ex-

https://hub.docker.com/orgs/opendsa/repositories
https://hub.docker.com/orgs/opendsa/repositories
https://github.com/OpenDSA/OpenDSA
https://github.com/OpenDSA/OpenDSA-LTI
https://github.com/OpenDSA/OpenPOP

tend their use by other parties. As the number of these sys-
tems grow, the CS Education community needs to address
how to keep all of these tools interoperable, and more avail-
able to instructors. We hope to provide a roadmap for other
tools to follow to extend their reach. As issues around data
access and privacy become more prevalent, hosting software
on premises becomes more attractive to administrators, and
the work presented here provides one method for doing so.
In addition to the privacy benefits, the roadmap explored
in this paper provides a centralized data repository that is
closer to the consumers and allows for greater access and
additional analysis by the instructors. Containerization also
provides a cloud-based install option using AWS or a more
robust container orchestration system such as Kubernetes
as a possibility.

While the efforts described in section 3 are ongoing, there
are several other future enhancements planned for the plat-
form. Currently, OpenDSA uses LTI 1.1, which is due to be
deprecated and will be upgraded into LTI 1.3. Along with
providing additional security, LTI 1.3 adds a new feature set
and an opportunity to connect OpenDSA with other learn-
ing tools and platforms such as Caliper Analytics [3, 4]. In-
tegrating Caliper will allow OpenDSA to collect additional,
standardized, data on student progress that can be shared
when appropriate across platforms that use the LTI system.

Further work would include breaking the Rails application
into a more containerizable microservice architecture. Cur-
rently, OpenDSA-LTI is a monolith that cannot take advan-
tage of some benefits of containerization, including scalabil-
ity.

5. REFERENCES
[1] 12. OpenDSA-Introduction — OpenDSA System

Documentation. https://opendsa.readthedocs.io/
en/latest/Introduction.html.

[2] Basic Overview of How LTI works | IMS Global
Learning Consortium. https://www.imsglobal.org/
basic-overview-how-lti-works.

[3] Caliper Analytics | IMS Global Learning Consortium.
https://www.imsglobal.org/activity/caliper.

[4] LTI Security Announcement and Deprecation
Schedule | IMS Global Learning Consortium.
https://www.imsglobal.org/lti-security-announcement-
and-deprecation-schedule.

[5] Overview — Sphinx documentation.
https://www.sphinx-doc.org/en/master/.

[6] Secure and Optimize a Rails Web Application with
Bitnami’s Production Containers.
https://docs.bitnami.com/tutorials/secure-optimize-
rails-application-bitnami-ruby-production/.

[7] Traefik. https://doc.traefik.io/traefik/.

[8] What is a Container? | App Containerization | Docker.
https://www.docker.com/resources/what-container.

[9] Linuxserver/docker-swag. LinuxServer.io, May 2021.

[10] Dave Bartoletti and Charlie Dai. The Forrester New
Wave™: Enterprise Container Platform Software
Suites, Q4 2018, 2020.
https://www.docker.com/resources/report/

the-forrester-wave-enterprise-container-

platform-software-suites-2018, accessed on

September 15, 2020.

[11] H. L. Shahin. Design and Implementation of
OpenDSA Interoperable Infrastructure. Thesis,
Virginia Tech, Aug. 2017.

https://opendsa.readthedocs.io/en/latest/Introduction.html
https://opendsa.readthedocs.io/en/latest/Introduction.html
https://www.imsglobal.org/basic-overview-how-lti-works
https://www.imsglobal.org/basic-overview-how-lti-works
https://www.docker.com/resources/report/the-forrester-wave-enterprise-container-
https://www.docker.com/resources/report/the-forrester-wave-enterprise-container-
platform-software-suites-2018

	Introduction
	Background
	Architecture
	Component Containers

	Discussion and Future Work
	References

