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ABSTRACT 
Recent literature demonstrates data-driven improvements to 
content used in adaptive instructional systems like intelligent 
tutoring systems, following a multi-method approach to “design 
loop adaptivity.” Examples from the literature are often relatively 
bespoke, focusing on a particular piece of content within a system 
and applying several, often time-consuming, methods to redesign 
important elements of content and deliver improved learning 
experiences. We draw attention to the problem of targeting and 
focusing design-loop adaptivity to make such data-driven 
improvement more scalable for large content portfolios. Targeting 
involves choosing the goal to be achieved by this improvement 
and the content that requires improvement. We build on our recent 
work on targeting by also considering what we call focusing 
design-loop adaptivity, which involves determining what aspects 
of the learning experience require (the most) improvement and the 
method(s) by which to achieve improvement. We present 
examples of how targeting may proceed and raise important 
questions about how to focus data-driven learning engineering 
improvement processes.     
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1. INTRODUCTION 
Extensive literature in educational data science considers data-
driven methods for improving existing instructional content in 
adaptive instructional systems like intelligent tutoring systems 
(ITSs). Nearly fifteen years ago, Cen et al. [6], for example, 
proposed Learning Factors Analysis (LFA), a semi-automated 
search technique to discover better cognitive skill, or knowledge 
component (KC) [16], models that are often used to drive 
adaptivity in ITSs.  

ITSs like Carnegie Learning’s MATHia (formerly Cognitive 
Tutor [18]), rely on KC models as a part of their knowledge 
tracing [8] approach to mastery learning [19]. While students 

work within a particular topical “workspace” in MATHia, 
complex, multi-step problems are selected for them based on the 
KCs associated with that workspace that the system has yet to 
judge as mastered by the student. Students make progress through 
sequences of instructional content (or MATHia workspaces) by 
demonstrating mastery of the KCs associated with each 
workspace. Starting from KC models specified by ITS developers 
and content authors, empirical, “close the loop” studies have 
demonstrated that using data-driven techniques to improve KC 
models (e.g., by “splitting” one or more existing KCs in a model 
into one or more new KCs) can drive improved learning outcomes 
in ITSs, for example, by enabling students to master content more 
efficiently (e.g., [15]). Nevertheless, there are a bevy of features 
of instructional content (e.g., KC model parameters, various 
elements of user-interface and task design) that might be 
reasonably improved, beyond underlying KC models, to drive 
better learning outcomes for students. 

Going beyond KC model refinements, more recent literature 
proposes and demonstrates a data-driven, multi-method approach 
to systematically improving instructional content or “design-loop 
adaptivity” [13]. While these methods are promising to improve 
learning outcomes, examples in the literature, whether using 
methods like LFA, or more recent design-loop adaptivity efforts, 
tend to be relatively bespoke. Demonstrations start with a 
particular target piece of content (e.g., the Algebraic Expressions 
unit in a free, online ITS called Mathtutor [2, 13]), working 
through an improvement process, and demonstrating improved 
outcomes in an experimental or similar study. Since LFA and 
steps within the design-loop adaptivity process, detailed in the 
next section, can be relatively time-consuming and/or 
computationally expensive, we here seek to consider ways in 
which improvement processes might be both targeted and focused 
for developers and learning engineering working with large 
portfolios of instructional content (e.g., hundreds, or soon, 
thousands of MATHia workspaces) that might need improvement.  

After briefly describing recent work on design-loop adaptivity, we 
detail our recent efforts at Carnegie Learning to target content for 
data-driven improvement based on several different goals [11], 
picking workspaces from amongst hundreds each academic year 
(or major software release) for iterative improvement, and point to 
important open questions for how we might use data to focus 
design-loop adaptivity, or more generally content improvement 
and/or redesign efforts. Once a target workspace has been 
identified, focusing improvement efforts will involve determining 
what aspects of the learning experience require (the most) 
improvement or which goals and methods of the design-loop 
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adaptivity process laid out in recent literature ought to be 
prioritized given finite learning engineering, software 
development, content authoring, and/or instructional design 
resources. 

2. DESIGN-LOOP ADAPTIVITY 
2.1 Three Timescales for Adaptivity 
Aleven et al. [1] describe design-loop adaptivity as involving 
“data-driven decisions made by course designers before and 
between iterations of system design, in which a course or system 
is updated based on data about student learning” collected via the 
course or system. They contrast the relatively long timescale of 
design-loop adaptivity with adaptivity that occurs on a much 
shorter timescale like “task-loop” and “step-loop” adaptivity, or 
“outer-loop” and “inner-loop” adaptivity, respectively, as 
described in a popular taxonomy of ITS behaviors laid out by 
VanLehn [22].  

Inner-loop or step-loop adaptivity in an ITS supports students 
within tasks or problems, providing affordances like just-in-time 
feedback to particular incorrect answers and hints that are 
sensitive to a student’s chosen problem-solving strategy. Outer-
loop or task-loop adaptivity drives learning activity or 
problem/task selection based on student performance; outer loop 
adaptivity, might, for example, involve problem selection that 
emphasizes problems associated with unmastered KCs, using a 
framework like Bayesian Knowledge Tracing (BKT; [8]) to 
monitor student progress toward KC mastery.  

In addition to describing the timescale for different forms of 
adaptivity, the “Adaptivity Grid” framework due to Aleven et al. 
[1] also details a variety of goals at which any of these three types 
of adaptivity could be directed (i.e., what characteristics of 
learners adaptation is intended to address), including students’ 
prior knowledge and knowledge growth, and the paths that 
students take through a problem (e.g., problem-solving strategies 
and the errors students make), among others. 

This inherent goal orientation of adaptivity drives methods used in 
the systematic approach to design-loop adaptivity we describe in 
the next section and will also naturally apply to our discussion of 
targeting and focusing design-loop adaptivity. 

2.2 A Systematic Approach to Design-Loop 
Adaptivity 
In introducing a systematic approach to using data to drive 
iterative improvements to instructional content, Huang et al. [13] 
note that while many studies demonstrate how data mining 
methods can be used to improve prediction accuracy, “there is no 
good general guidance for how to convert data-mining outcomes 
into better tutor design” [13]. 
Huang et al. [13] describe three broad goals that can drive data-
driven content improvement and redesign; they include two or 
more sub-goals for each broad goal and provide specific methods 
intended to achieve each sub-goal. We briefly review the three 
overall goals, sub-goals, and (necessarily, non-exhaustive) 
methods that Huang et al. [13] propose to achieve these goals 
before considering the targeting and focusing of this process. 

2.2.1 Goal #1: Refine the KC model. 
Huang et al. [13] propose two sub-goals to achieve KC model 
refinement. They first propose identifying difficulty factors to 
“split” KCs (i.e., decomposing an existing KC into one more new, 

hypothetical KCs) and then comparing hypothesized KC models. 
Difficulty factors are characteristics of learning tasks that may 
make them more difficult than similar tasks (e.g., properties of 
some problems or problem-steps in a workspace that might make 
them more difficult than other problems or problem-steps in the 
same workspace).  
The semi-automated (but more computationally intensive) LFA 
method would also achieve similar goals, typically “seeded” with 
possible ways in which to split KCs by human experts (or perhaps 
other data-driven means). The “difficulty factor effect analysis” 
regression approach (to find associations between difficulty 
factors and student performance on KCs) proposed by Huang et 
al. [13] is explicitly noted as a potential “efficient simplification 
of LFA.” They propose to use the additive factors models [6] and 
analyst inspection [21] to compare resulting, hypothesized KC 
models. 

2.2.2 Goal #2: Redesign content. 
Among a bevy of ways in which content and learning tasks can be 
redesigned (see §4.1 for two more, for example), Huang et al. [13] 
consider three redesign sub-goals. First, starting from a redesigned 
KC model achieved in Goal #1 (or possibly an existing KC model 
not subjected to Goal #1 refinements), they suggest estimating the 
number of opportunities to achieve mastery for KC in the model, 
as well as estimating the extent to which under-practice or over-
practice may be occurring for each KC. Huang et al. [13] 
introduce a method they call “probability-propagation practice 
estimation” to accomplish this sub-goal. Other methods have been 
proposed in the literature (e.g., [14]). Second, they suggest 
creating focused practice tasks for difficult KCs (that eliminate 
steps in which students must practice easier KCs) seeking to 
reduce both over-practice of easier KCs and under-practice of 
more difficult KCs. Third, they suggest an analysis of student 
errors to creating feedback messages on frequent student errors. 

2.2.3 Goal #3: Optimize individualized learning. 
The last goal of the design-loop adaptivity methodology of Huang 
et al. [13] is to optimize individualized learning via optimizing the 
parameters of the student model (e.g., BKT parameters for each 
KC in the refined model) and task selection.1 An important facet 
of the student model (and an ITS’s implementation of such 
models) is whether it permits optimizing and/or individualizing 
parameters at a KC-level, student-level, or perhaps both. 
The BKT framework [8] provides a two-state representation of 
student knowledge of each KC; a student is either in the 
“unknown” or “known” state for each KC at any given time. In its 
original formulation, BKT posits four parameters per KC that are 
used, along with student performance data, to track student 
progress to reaching the known state, or mastery, via an evolving 
estimated probability that a student is in the known (or mastered) 
state for each KC. Parameters for each KC include the probability 
that a student has prior knowledge of the KC (i.e., begins practice 

 
1 A reviewer noted that the scope of this goal as laid out by Huang 

et al. [13] may be incomplete in at least the sense that the 
chosen student model (e.g., BKT) is taken as given rather than 
being considered as a possible target for change and 
improvement. Whether a target learning platform or ITS is 
sufficiently flexible to allow for changes to the student model 
(e.g., adopting an alternative to BKT, perhaps for particular 
pieces of content) within the context of design-loop adaptivity 
content improvements raises an important design consideration 
(or future possibility) for such systems. 



in the known or mastered state), the probability that a student 
transitions from the unknown to the known state at a particular 
practice opportunity, the probability that a student’s performance 
at an opportunity represents “guessing” correctly despite being in 
the unknown state, and the probability that a student  
“slips” and produces an incorrect response despite knowledge of a 
KC. In the BKT implementation used by MATHia, a KC is 
considered mastered when the system’s estimate of the probability 
that a student has reached the known or mastered state for the KC 
exceeds a conventional 0.95 threshold. Parameter optimization 
and individualization (e.g., within the BKT framework and 
variants thereof) are topics of extensive literature in educational 
data mining and related literature (e.g., [3, 7]).  
Huang et al. [13] finally suggest simulating task selection [9] to 
optimize this facet of an intelligent tutor’s presentation of learning 
activities to students based on the (now optimized) student model. 
Within the BKT framework, one factor to possibly consider in 
simulating task selection is varying the mastery threshold, perhaps 
considering values other than the conventional probability of 0.95, 
among other facets of variation and pedagogical rules. 

2.2.4 Targeting & Focusing 
Working through all three goals and their corresponding sub-goals 
can be a recipe for near complete redesign of particular 
instructional content, and there are cases in which near complete 
redesign is likely appropriate. However, given limited learning 
and software engineering resources, prioritizing which pieces of 
content ought to be targets for improvement or redesign as well as 
focusing improvement or redesign efforts on particular goals and 
sub-goals of design-loop adaptivity (or possibly other 
improvement) efforts would be beneficial to being able to 
improve instruction within large content portfolios. 
We propose that developing methods to target and focus design-
loop adaptivity could rely on data to determine:  

1. Targeting: What content ought to be prioritized for 
data-driven improvement? 

2. Focusing: Which of the overall goals (or sub-goals) 
of design-loop adaptivity are most important for 
delivering improved instructional content? Which 
methods should be applied to achieve this 
improvement? 

3. TARGETING 
Before getting down to the work of improving instructional 
content, learning engineers and technology developers must first 
identify which content is to be targeted for such efforts. Any of a 
variety of goals might inform what instructional content is 
targeted for data-driven improvement efforts. We briefly consider 
two goals and corresponding metrics for targeting MATHia 
workspaces for data-driven improvement.  
The first targeting metric is considered in detail in our recent work 
[11], which serves as a companion piece to the present work. 
After briefly discussing our first targeting metric, we consider a 
second metric that was omitted for brevity from our recent work 
before moving on to consider goals, metrics, and open questions, 
concerning how to focus data-driven improvement or design-loop 
adaptivity work. 

3.1 Target #1: Failures to Reach KC Mastery 
Students working in MATHia make progress within an 
instructional sequence of topical workspaces by mastering all of 
the KCs associated with the workspace before reaching the 

maximum number of problems for that workspace. The maximum 
number of problems is set by instructional designers and is usually 
25. If BKT has yet to judge the student as having mastered all 
KCs in a workspace when the student reaches the maximum 
number of problems, MATHia moves students on to the next 
workspace in their assigned curriculum sequence without mastery. 
The student’s teacher is notified via MATHia’s reporting analytics 
as well as within the LiveLab classroom orchestration companion 
app to MATHia, if the teacher is using it in their classroom. 
The extent to which students fail to master KCs varies 
considerably across workspaces. Our recent work [11] considers 
data from 308 MATHia workspaces used during the 2018-19 
academic year. Data included work in math content from Grades 
6-8, Algebra I-II, and Geometry. The typical (median) workspace 
had 4.3% of students fail to reach mastery of at least one KC. 
Some workspaces have no such failures to reach mastery, and the 
workspace with the greatest proportion of failures to reach KC 
mastery had nearly 78% of student failing to reach mastery [11].  
While especially high proportions of students failing to master 
pieces of instructional content are likely to be important factors in 
determining what learning content to improve with limited 
resources, there are other facets of the user experience that can 
raise obstacles to learning and practical factors that must be 
considered when managing and improving large portfolios of 
content. We turn now to a more practically-focused, composite 
metric developed by a curriculum developer to help target their 
work. 

3.2 Target #2: A Composite (Design) 
“Attention Metric” or Index 
A cross-functional team of instructional designers, cognitive 
scientists, and subject-matter expert content creators at Carnegie 
Learning is responsible for MATHia’s content creation and 
continuous improvement. This team has collaborated with data 
scientists over nearly a decade to iteratively refine a composite 
index or “attention metric” to roughly prioritize workspaces 
requiring the most design and/or learning engineering “attention” 
for improvements to ensure satisfying, effective learning 
experiences for learners. User acceptance testing of iterative 
improvements to the attention metric has taken the form of 
identifying sets of workspaces for which the team largely agrees 
there are improvement needs through quality assurance testing, 
customer service reports, software bug reports, data analysis, and 
related means. Different ways of “weighting” particular measures 
within the index are then tested to see resulting lists of prioritized 
workspaces until rough consensus is reached that a reasonable list 
of priority workspaces has been identified.  

In larger organizations, entire teams (or particular personnel on a 
team) might be responsible for targeting improvements based on 
any of the particular components of such an index, which 
effectively mixes (at least) goals of design-loop adaptation to 
student knowledge and motivation and affect. The current 
attention metric includes measures of the following factors, 
increases in any of which increase the extent to which developer 
attention ought to be drawn to a particular workspace: 

• Usage helps to target developers to fix and improve 
content that is used broadly and is considered in two 
ways: (1) The rank over all workspaces of the total 
number of users of the workspace across MATHia’s 
user-base; this provides a measure along which to 
“weight” the other factors in this index, and (2) the 
proportion of learners who abandon a workspace 



after starting it (i.e., begin but do not complete a 
workspace). The abandonment measure captures 
issues like the extent to which teachers choose to 
move students beyond particular workspaces without 
completion and might indicate either teacher 
dissatisfaction or student frustration with the content. 
High rates of usage and/or abandonment increase the 
extent to which developers ought to seek to improve 
content. 

• Failure to Reach Mastery: The proportion of 
students who reach the maximum number of 
problems in the workspace but fail to reach mastery 
of all KCs in the workspace (see §3.1 and [11]). High 
failure rates also increase the attention metric to 
direct attention to such content. 

• Completion Time: Workspaces have “excessive” 
completion time to the extent that the average time to 
completion exceeds a target of 50 minutes.2 If the 
average time is less than 50 minutes, this factor does 
not contribute to the workspace’s attention metric 
value. 

• Problem-Level Usability Concerns: The proportion 
of users who must be “skipped” over a problem 
within a workspace or have a problem “restarted” 
within a workspace by their teacher, which may 
indicate that there is a task design issue within a 
problem (or software bug) creating ineffective 
learning experiences. These issues are relatively rare, 
but when they occur in even an exceedingly low 
proportion of cases, instructional designers and 
software engineers quickly seek to rectify these 
issues. 

Workspaces are ranked by their attention metric value (which is 
placed on a 0-100 scale, roughly corresponding to percentiles over 
all workspaces) within an internal learning engineering dashboard, 
which also provides its users with entrée to the various 
components of the index to better understand where and how 
particular workspaces may be failing to deliver effective learning 
experiences. We will return to considering particular facets of the 
attention metric when we discuss focusing design-loop adaptivity 
in §4. 

The current iteration of the attention metric incorporates the 
relative frequency with which learners fail to master KCs in 
workspaces while also taking other practical aspects of the user 
experience into consideration. Over the workspaces included in 
our analysis (see [11]), the attention metric has a Pearson 
correlation of r = 0.61 (p < .001) with the relative frequency of 
failures to reach KC mastery. 

Rather than focus on details of the more practically focused 
attention metric that is currently used by the system’s developers, 
we merely seek to illustrate ways in which various goals might be 
addressed by design-loop adaptivity as well as the targeting 

 
2 MATHia workspaces that exceed approximately 50 minutes for 

the average learner to complete run the risk of disengaging and 
de-motivating students, as students are likely to work through 
an entire math class period without making progress to another 
workspace. 

metrics that learning engineers use to drive an improvement 
process for such adaptivity. 
There is variation in the extent to which particular metrics for 
targeting design-loop adaptivity suggest ways in which such 
improvement or redesign work might be focused on particular 
methods. Several components of the attention metric, for example, 
naturally suggest ways to possibly focus design-loop adaptivity 
work (i.e., to single out or prioritize particular methods for data-
driven redesign and improvement of a particular piece of content). 
Such focusing would provide new means by which to guide data-
driven improvement of adaptive instructional content. We now 
consider focusing design-loop adaptivity in more detail.  

4. FOCUSING 
Faced with large content portfolios (e.g., hundreds of deployed 
MATHia workspaces used by hundreds of thousands of learners 
every year), learning engineers and developers need data-driven 
guidance on when a wholesale redesign versus more focused 
improvements and modifications may suffice for rapid and/or 
scalable (if sometimes incremental) improvements to outcomes. 
Bespoke, systematic approaches in the literature (e.g., working 
through methods addressing each of the three goals and associated 
sub-goals described in §2.1.1-§2.1.3) to improving particular 
pieces of content have been shown to drive improved learning, but 
there is also evidence that relatively simple improvements and 
partial redesigns may also drive improved outcomes. We consider 
two examples of how such improvement and redesign might be 
focused and raise questions for future work. 

4.1 Focus #1: Problem-Step Engagement  
For example, Fancsali et al. [12] recently described relatively 
modest, iterative task redesign (a la design-loop adaptivity Goal 
#2, §2.1.2) in a MATHia workspace on Solving Quadratic 
Equations that were associated with a 10.3 percentage point 
decrease in the proportion of students who failed to reach KC 
mastery in the second iteration of improvement. The workspace 
was targeted for improvements because 32.1% of students failed 
to reach KC mastery in the workspace in the 2018-19 school year.  
In a more focused approach to improving this workspace rather 
than a wholesale redesign, learning engineers first developed 
more extensive (optional) scaffolding for the components of the 
quadratic formula to support students in using the formula to solve 
quadratic equations. The optional, enhanced scaffolding, however, 
in its initial deployment (in the 2019-20 school year release of 
MATHia), did not display to students by default. Rather, students 
had to expand the scaffolding to engage with it. A comparison of 
the proportion of students failing to reach mastery in 2019-20 to 
the previous school year did not reveal substantial improvements 
(32.1% in 2018-19 to 31.9% in 2019-20). Further, student usage 
data indicated that students weren’t engaging with the enhanced, 
optional scaffolding’s problem-solving steps. In the 2019-20 
MATHia release, scaffolding was automatically displayed to 
students, while still remaining optional, after they chose to use the 
quadratic formula to solve a quadratic equation. With “displayed 
by default” optional scaffolding, only 24.1% of students failed to 
master all KCs in the workspace through March 1, 2021 
(compared to 34.3% of students over the same period, through 
March 1, 2020, in the 2019-20 school year). This, still elevated, 
rate of failure to reach KC mastery may indicate that more 
comprehensive data-driven improvement is still appropriate, but 
substantial improvement appears likely driven by a relatively 
modest redesign that did not involve changes to the KC model or 
individualized learning parameters. 



4.2 Focus #2: KC Model Deficiencies 
Other modeling techniques might be used to determine that 
MATHia workspaces (or other instructional content) suffer from 
deficiencies in the underlying KC model that drives features like 
task-loop adaptivity or knowledge tracing. One such method 
considers patterns in KC learning curves that may suggest that an 
existing KC model omits KCs that, when included in student 
model for a particular piece of content, would better capture 
student learning. Such an omitted KC may represent a difficulty 
factor that serves as input to LFA search or difficulty factor effect 
analysis proposed by Huang et al. [13]. 
Fancsali et al. [10] considered the “segmented” learning curve 
[17] illustrated in Figure 1 as a way to emphasize how data can be 
used to inform instructional redesign to improve learning for all 
learners. The learning curve categorizes students into groups by 
the number of opportunities (≤ 5, 6-10 [≤ 10], etc.) before which 
they reached KC mastery by MATHia’s implementation of BKT. 
The majority of students (in the top two learning curves) appear to 
have a unified conception of x- and y-intercept, yielding the top 
curve, which is monotonically increasing, and the relatively 
smoothly increasing second and third curves, generally indicative 
of learning of a single skill or KC over these practice 
opportunities.  
The discussion of [10] focused on the relatively small number of 
students in the “lower” segments of the curve for which a “saw-
tooth” pattern manifests. A saw-tooth pattern emerges at 
alternating opportunities to practice a KC related to plotting a 
linear function based on its x-intercept (at odd numbered 
opportunities) and y-intercept (at even numbered opportunities). 
Students appear to be having more difficulties specifying the x-
intercept of a given function compared to the y-intercept. 
The emergence of the saw-tooth pattern, even for a relatively 
small proportion of students, represents a clear difficulty factor 
that might serve as a place in which the current KC might be 
“split” into at least two KCs by methods like LFA or difficulty 
factor effect analysis. In this way, inspection of segmented 
learning curves (and perhaps semi-automated analysis of such 
curves) might serve as entry points to the more comprehensive 
process of design-loop adaptivity detailed above. 

 
Figure 1. Segmented learning curve for a KC concerning 
plotting a given linear function by specifying its x- and y-
intercepts (see [10]). 
Nevertheless, future methodological work should consider ways 
in which guidance might be provided as to which of the design-
loop adaptivity goals and methods are most important for a 
particular piece of content. Perhaps merely specifying the 
improved KC model and optimizing its parameters, with limited 
task redesign, would produce as much learning as a carefully 
crafted task redesign? Data-driven methods might help to 
illuminate places in which task redesign ought to be prioritized 
despite a lack of obvious areas for improvement in a KC model. 
This may be the case, for example, for content targeted on the 

basis of student motivation or meta-cognition. Students may, for 
example, display behaviors like gaming the system [4] or affective 
states like confusion [5] that could be addressed by task redesign, 
but without much need for modifications to the KC model or 
individualized learning parameters.   
Empirical “close the loop” studies and A/B tests of variation of 
content improvement may illuminate insights into which facets of 
improvement and redesign deliver the best learning gains relative 
to the time-investment required to achieve such improvements. 
Such prioritization would be especially important and helpful to 
guide large-scale learning engineering efforts to efficiently 
improve large portfolios of content. 

5. DISCUSSION 
Our recent work [11] focused on ways in which content might be 
targeted for data-driven improvement processes, focusing on just 
a small subset of possible goals for such improvement. We here 
consider how to build on targeting by focusing improvement 
efforts in specific ways that may drive improved learning 
outcomes. Rather than provide definitive answers to questions 
about targeting or focusing, we seek to call attention to these 
issues. 
  
Our efforts, as well as more comprehensive, multi-method design-
loop adaptivity approaches advocated by Huang et al. [13], are 
centered on the idea that data-intensive modeling approaches 
ought to be developed in ways that provide guidance to researcher 
and developers about how adaptive instruction might be 
improved. These efforts are aligned with broader, recent calls for 
explanatory learner models (e.g., [20]), which emphasize the 
importance of going beyond mere improvements in student 
performance prediction accuracy to modeling that may lead to 
substantive improvements to instruction. We enthusiastically 
agree with such calls for explanatory learner models and 
emphasize the importance of practical and scalable data-driven 
methods to drive targeted and focused improvements in adaptive 
instruction. 
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