
Neuro-Symbolic Models: A Scalable, Explainable
Framework for Strategy Discovery from Big Edu-Data

Deepak Venugopal
University of Memphis

dvngopal@memphis.edu

Vasile Rus
University of Memphis

vrus@memphis.edu

Anup Shakya
University of Memphis

ashakya@memphis.edu

ABSTRACT
Predicting student problem-solving strategies is a complex
problem but one that can significantly impact automated
instruction systems since they can adapt or personalize the
system to suit the learner. While for small datasets, learning
experts may be able to manually analyze data to infer stu-
dent strategies, for large datasets, this approach is infeasible.
While Deep Neural Network (DNN) based methods such as
LSTMs can be applied for this task, they have drawbacks
such as long convergence times for big datasets, and like
DNN-based methods in general, have the inherent problem
of overfitting the data. To address these issues, we propose
a general Neuro-symbolic framework for strategy prediction,
where we combine the strengths of symbolic AI (that can
encode domain knowledge) with DNNs. We outline several
possible benefits of this framework and demonstrate its po-
tential in scalable learning from large educational datasets.

Keywords
Intelligent Tutoring Systems, Learning Strategies, Neuro-
Symbolic AI, Markov Logic Networks, LSTMs

1. INTRODUCTION
Intelligent Tutoring Systems (ITSs) [19] and more broadly
adaptive instructional systems (AISs)1 help a diverse pop-
ulation of students by adapting instruction to each learner
thus accounting for different learning abilities, learning styles
and education goals. However, in order to build effective
ITSs, it is important to understand how students learn and
what learning and instructional strategies are most effective
for whom and under what conditions. Specifically, students
can follow several different strategies to learn the same con-
tent. Depending upon the way a student thinks, one strategy

1The main difference between Intelligent Tutoring Systems
and Adaptive Instructional Systems at least in our view is
that the former offer full-adaptivity, i.e., both micro- and
macro-adaptivity, whereas the latter can offer any type, e.g.,
just macro-adaptivity.

Copyright ©2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0)

Figure 1: Schematic illustration of a general Neuro-symbolic
architecture for strategy discovery. The symbolic model (de-
fined in an appropriate language, e.g. Markov Logic) de-
fines relationships in the data which can be represented as a
graphical structure. From the symbolic model, we learn em-
beddings for nodes in the graph such that the embeddings
encode local structures in the graph. We then construct
training examples based on the embedding-space for a deep
model that predicts strategies.

could be easier or harder to grasp compared to the other.
Thus, understanding the various ways in which students ap-
proach an instructional task will not only further our un-
derstanding of how learners learn but will help in adapting
ITSs for a personalized learning experience.

A student’s choice of strategy is a complex function depen-
dent on many factors such as experience with similar prob-
lems, general expertise in the topic, other cognitive abili-
ties, etc. Big data and access to advanced reasoning and
large computing infrastructure offer new possibilities to dis-
cover personalized strategies. In particular, a paradigm that
is gaining significant attention in the AI/Machine Learning
research community is Neuro-symbolic AI [5] where we aug-
ment DNNs with symbolic models to regularize the DNN.
This helps in improving both scalability and generalization
by allowing DNNs to learn from smaller datasets with higher
accuracy. In this paper, we provide an overview of a possi-
ble framework for strategy discovery using Neuro-Symbolic
learning and outline its potential benefits.

2. STRATEGY PREDICTION
Student strategies can be defined in different ways. In par-
ticular, the definition of what constitutes a strategy also
depends upon the type of interaction the student has with
the AIS. In our case, we only consider structured interac-
tions with discrete steps. Therefore, we define the student
strategy as a function of the sequence of steps in the in-
teraction. Each step is characterized by the central concept



that is utilized to solve that specific step, i.e., the knowledge
component [14] (KC) used in that step. Therefore, we define
strategy in our case as a sequence of KCs used by a student
in a problem solving session. Note that, this formulation of
strategy as a sequence of discrete components is similar to
the definitions used in prior work [18]. Formally,

Definition 1. Given a student s and a problem p, we

define the strategy as x̄s,p = K
(1)
s,p . . . K

(n)
s,p , where K

(i)
s,p is the

knowledge-component that s uses to solve the i-th discrete
step in p.

We can now formulate a learning problem as follows. Given
training data, {xsi,pj}

n,mi
i=1,j=1, where n is the number of stu-

dents and mi is the number of problems solved by the i-th
student, we learn a model P such that for a student s′ and
problem p′, P generates a sequence of knowledge compo-

nents K
(1)

s′,p′ . . . K
(k)

s′,p′ . Note that students sometimes use
more than one KC per step, in this case, we just unroll these
multiple KCs by repeating the step with each of the KCs.
Therefore, for the rest of this paper, we treat both multiple
KCs in a step and single KC steps without distinguishing
them. Also, to keep notation simpler, instead of adding the
subscripts si, pj each time, we denote the training input and
output pairs as {xi,yi}Ni=1.

3. NEURO-SYMBOLIC FRAMEWORK
A possible Neuro-symbolic framework for predicting strate-
gies is shown in Fig. 1. This consists of three components,

1. Symbolic Model. A generic symbolic model that rep-
resents relationships in the data. There are several
languages that have been developed to encode sym-
bolic knowledge such as Markov Logic [6], Probabilis-
tic Soft Logic [2], Knowledge graphs [3], Probabilistic
graphical models [15], arithmetic circuits [4], etc. We
can typically represent the symbolic relationships in
the data encoded by these languages in some form of
a graphical structure. For example, a student can be
connected to other students in the same class, a prob-
lem can be connected to another problem from the
same topic, etc. Thus, instead of considering multiple
instances of the data, we have a single very large in-
stance where the instances are interconnected through
relationships.

2. Embeddings. To encode symbolic knowledge for neural
networks, we need to vectorize (or create embeddings
for) the nodes in the graphical structure. Generating
node embeddings from graphs is also a popular area
of research and there have been several models that
learn embeddings to preserve graph structure (at least
locally). Some example models include Graph Con-
volutional Neural Nets [13], Node2Vec [7], tensor fac-
torization methods [22], Obj2Vec [10], etc. Projecting
the nodes in the graph into an embedding space al-
lows us to define distances/similarities between nodes.
For example, we can identify similarities between stu-
dents, problems, etc. based on vector distances in the
embedding.

3. Deep Model. The deep model learns a representation
that combines one or more embeddings to predict a
strategy for a new instance in the data. A typical ar-
chitecture that can be applied here is recurrent neural
networks (RNNs). Specifically, since we are predicting
sequential outputs, RNNs and other related architec-
tures such as Long Short Term Memory (LSTMs) [8]
use a latent representation that summarizes previous
predictions to determine the next possible step in the
strategy. LSTMs in particular are well-known to en-
code long-range dependencies into the latent repre-
sentation. This means that for long strategies, there
may be dependence spread across steps that are sev-
eral steps apart and such dependencies can be encoded
using the LSTM.

3.1 Potential Benefits
While neural networks by themselves are extremely pow-
erful models, they have certain limitations. In general, a
well-recognized problem in several deep learning architec-
tures is that, due to their expressive power, they tend to
overfit the data. Further, training a deep network can be
computationally very expensive and require large amounts
of labeled data. For instance, LSTMs are known to con-
verge very slowly for large datasets [23]. In the domain
of education, labeled data is hard to obtain compared to
other domains such as image processing (where deep models
have achieved greatest gains). Collecting educational data
requires significant time investment and expertise. Neuro
symbolic learning can regularize deep learning and thus al-
low it to learn to generalize better with smaller data. More
generally, we outline some potential benefits/applications of
our proposed Neuro-symbolic framework below.

1. Big Data Training. The symbolic model specifies sym-
metries in the graph. Exchangeable nodes are those
that can be exchanged in the graph to yield an isomor-
phic graph. Though, identifying exchangeable nodes is
a hard problem, there are efficient techniques to com-
pute approximately exchangeable nodes. We can use
exchangeability to scale up to large datasets since in-
stances chosen from an exchangeable group are more
likely to have similar strategies. Thus, instead of train-
ing over big data which is computationally expensive
for deep models, we can reduce the data to contain
diverse instances in the data, where each instance ef-
fectively represents a group of exchangeable instances.

2. Joint Modeling. In joint models, the idea is that the
predictions are related to each other. For example,
suppose we want to predict mastery and strategy, con-
ditioned on the mastery of the student the type of
strategy the deep model may predict may be constrained.
Similarly, conditioned on the strategy followed by a
student, we may be able to predict mastery more ac-
curately. To predict both jointly, we can develop Ex-
pectation Maximization-like algorithms that optimize
one assuming the other and alternate the optimizations
in each step.

3. Transparency. A key difficulty with DNNs is that it
is hard to understand or trace their predictions down
to explainable features. This is a huge disadvantage



in EDM since for practical use (e.g. in schools), it
is essential that strategies predicted by the model are
transparent in the sense that they are accompanied
by a trace of why a strategy is appropriate for a stu-
dent (or group of students). To do this, one possible
approach in our framework is to perturb the embed-
dings by modifying the symbolic model and observ-
ing changes to the deep model predictions. Thus, we
create a mapping between the predictions and the ex-
plainable symbolic model. This is similar to explana-
tion models such as LIME [17] and SHAP [16] that
rank features based on the effects their perturbation
has on the predictions.

4. Fairness. A major consideration in education is to en-
sure algorithmic fairness, i.e., the algorithms must not
be tuned to favor a“majority”group to achieve high ac-
curacy in terms of performance metrics [9]. The Neuro-
symbolic framework can be utilized to encode fairness
as constraints within the symbolic model. Thus, the
type of models learned by the DNN are constrained to
follow constraints set by the designers. Implementa-
tion of fairness is likely to require a human-in-the-loop
where the transparent model generates a log that can
be audited by a human to verify if the learned model
adheres to fairness principles.

5. Uncertainty Estimation. Often, it is as important for
the model to say “I am unsure of a prediction” rather
than simply present a prediction. Thus, in the case
of predicting strategies, we want the model to present
a probability of a predicted strategy. To do this, we
can place a joint distribution over the instances and
perform probabilistic inference. Importantly, since the
instances are related, we can quantify uncertainty of a
prediction by considering the predictions over related
instances.

3.2 Illustrative Example: Scalable Learning
To illustrate the potential benefits of our Neuro-symbolic
framework, we present an approach to learn strategy pre-
diction in a scalable manner. Details for this approach
are available here [20]. Specifically, we use the language
of Markov Logic to construct a symbolic representation of
the relationships in the data. However, since this graph can
be very large, using graph-based methods to identify sym-
metries is infeasible. Therefore, we use an approach called
Obj2vec [10] that is designed to construct embeddings for
symbols in a first-order knowledge base. Given the embed-
dings, we sample training instances selectively to train an
LSTM model for strategy prediction.

Specifically, let our input instances be x1 . . . xN , where each
xi consists of embeddings for a specific student s solving
problem p, and the outputs are y1 . . . yN , where yi is a
sequence of KCs used by the student s to solve the problem
p. The LSTM training objective is given by,

θ∗ = arg min
θ

1

N

N∑
i=1

L(ψ(xi, θ),yi) (1)

where θ∗ and θ represent the parameters of the LSTM, L is
a loss function and ψ(xi, θ) is the sequence of KCs output
by the LSTM parameterized by θ for input xi. In general, a

stochastic gradient descent (SGD) procedure can be used to
minimize the objective in Eq. (1). In SGD, we sample the
training instances to approximate the gradient. Typically,
SGD assumes that all training instances are equally impor-
tant, and therefore samples them uniformly. That is, the
probability of sampling a specific instance in the training
data is equal to p = 1

N
. However, this approach is expen-

sive particularly if we repeatedly choose training instances
that are similar to each other. For example, suppose all the
training instances that we sample are likely to encode similar
strategies, then our model may take a long time to under-
stand diverse strategies. Therefore, we force the model to
learn from instances with diverse relationships by imposing
an importance distribution over the training data. Specif-
ically, training instances with larger importance are more
likely to be chosen.

In general, to focus the training on more important data in-
stances, we can modify the sampling distribution such that
each instance is sampled with a non-uniform probability.
This approach has been explored in prior work, where we
scale up training by replacing the uniform distribution over
the training instances with an importance distribution that
quantifies how important a specific example is for the train-
ing process [12]. Previous work such as [12, 1, 11], have
focused mainly on approximating importance as a function
of the gradient norm which is hard to compute exactly. In
[12], therefore, the authors propose an approximation to the
gradient norm and use this to target important training ex-
amples. The focus in these approaches is to target the train-
ing examples that are likely to induce changes when updat-
ing the model parameters during backpropagation which can
be shown to translate to a reduced variance in the gradient
estimates. However, in our case, we have more information
apriori in the embeddings to identify importance of a train-
ing example in terms of their relationships. Specifically, re-
call that the embeddings are based on symmetries specified
in the knowledge base. Our model focuses on instances with
diverse relationships using embedding-similarities. Specifi-
cally, we cluster the embeddings and sample from the clus-
ters to construct a sub-sampled training dataset. However,
since the embedding is approximate, there is uncertainty
about whether clustered instances are truly similar. There-
fore, by adapting the importance distribution as training
progresses, we place more importance on clusters where it is
harder to predict strategies.

3.2.1 Experiments
We show some scalability results on the publicly available
KDD EDM challenge dataset Bridge to Algebra 2008 -

2009 [21], which consists of data collected from the Mathia
platform. Each instance consists of several discrete steps
and each step is mapped to a knowledge component which
is used to solve that step. All results shown were based on
experiments performed on a 64GB memory machine with
a Nvidia GPU and an Intel Core-I9 processor. For com-
puting accuracy, in each input instance, we compute the
percentage of total steps where the true KC matches with
the predicted KC. The overall accuracy is computed as the
average accuracy across all instances. To measure variance
of our estimates, for each of the results shown, we run the
experiments 10 times and compute the mean accuracy and
the standard deviation of the accuracy.



(a) Train (b) Test (c) Train (d) Test

Figure 2: Accuracy results for Bridge to Algebra 2008 - 2009, the shaded portions show the standard deviation and the
mean accuracy is plotted in the graphs.

For our first baseline, we randomly sampled instances to
train our model given a timeout window. We refer to the
trained models using random sampling as LSTM-NS-Random.
We further implemented a stratified-sampling/group based
training on students and problems. For sampling by stu-
dent, we selected N students from the student pool and
for each selected student, we sampled M problems solved
by that student. For sampling by problems, we selected N
problems from the problem pool and sampled M students
who have solved those problems. By increasing values of M
and N , we progressively increased the instances as we show
later in the results section. We refer to this as LSTM-NS-

NaiveGroup. LSTM-NS-clustered samples from clusters but
does not adapt the importance weights. LSTM-NS-Adaptive

denotes the adaptive importance sampling approach. Fig. 2
compares the accuracy for different approaches. Fig. 2 (a),
(b) shows the training and test accuracy respectively as we
vary the number of instances used in training the models for
the Bridge to Algebra 2008 - 2009 dataset (we have not
shown the results for Algebra 2008 - 2009 due to space
constraints). As we can see from these plots, LSTM-NS-

Adaptive obtains the highest accuracy in the shortest train-
ing time compared to the other methods. In particular LSTM-
NS-Adaptive achieves a larger or comparable accuracy in
training time that is less than 10% of the time required to
train LSTM-NS-Random and LSTM-NS-NaiveGroup. This illus-
trates that using symmetries from the symbolic model to
sample the instances can have a significant impact on scal-
ability of the Neuro-symbolic model.

4. CONCLUSION
Predicting student strategies in problem solving can make
AISs more robust since the system can adapt itself to suit
the student’s strategy. In this paper, we outlined a Neuro-
symbolic framework for this problem. We discussed poten-
tial benefits of this approach and provided an illustrative
case to demonstrate how this framework can improve scala-
bility in training the model.

In the future, we will try to work on one or more of the
challenging potential applications of this framework as men-
tioned in section 3.

5. ACKNOWLEDGEMENTS
This research was sponsored by the National Science Foun-
dation under the awards The Learner Data Institute (award
#1934745) and NSF IIS award #2008812. The opinions,

findings, and results are solely the authors’ and do not re-
flect those of the funding agencies.

References
[1] G. Alain, A. Lamb, C. Sankar, A. C. Courville, and Y. Ben-

gio. Variance reduction in SGD by distributed importance
sampling. CoRR, abs/1511.06481, 2015.

[2] S. H. Bach, M. Broecheler, B. Huang, and L. Getoor. Hinge-
loss markov random fields and probabilistic soft logic. J.
Mach. Learn. Res., 18:109:1–109:67, 2017.

[3] A. Bordes, N. Usunier, A. Garćıa-Durán, J. Weston, and
O. Yakhnenko. Translating embeddings for modeling multi-
relational data. In NIPS, pages 2787–2795, 2013.

[4] A. Darwiche. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

[5] A. S. d’Avila Garcez, M. Gori, L. C. Lamb, L. Serafini,
M. Spranger, and S. N. Tran. Neural-symbolic computing:
An effective methodology for principled integration of ma-
chine learning and reasoning. FLAP, 6(4):611–632, 2019.

[6] P. Domingos and D. Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool, San
Rafael, CA, 2009.

[7] A. Grover and J. Leskovec. Node2vec: Scalable feature learn-
ing for networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, page 855–864, 2016.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[9] A. M. Howard, C. Zhang, and E. Horvitz. Addressing bias
in machine learning algorithms: A pilot study on emotion
recognition for intelligent systems. In ARSO, pages 1–7.
IEEE, 2017.

[10] M. M. Islam, S. Sarkhel, and D. Venugopal. On lifted in-
ference using neural embeddings. In AAAI Conference on
Artificial Intelligence, pages 7916–7923, 2019.

[11] T. B. Johnson and C. Guestrin. Training deep models faster
with robust, approximate importance sampling. In Proceed-
ings of the 32nd International Conference on Neural Infor-
mation Processing Systems, page 7276–7286, 2018.

[12] A. Katharopoulos and F. Fleuret. Not all samples are created
equal: Deep learning with importance sampling. In Pro-
ceedings of the 35th International Conference on Machine
Learning, pages 2525–2534, 2018.

[13] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017, 2017.



[14] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging the
science-practice chasm to enhance robust student learning.
Cogn. Sci., 36(5):757–798, 2012.

[15] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[16] S. M. Lundberg and S. Lee. A unified approach to interpret-
ing model predictions. In NIPS, pages 4765–4774, 2017.

[17] M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should i
trust you?”: Explaining the predictions of any classifier. In
Knowledge Discovery and Data Mining (KDD), 2016.

[18] S. Ritter, R. Baker, V. Rus, and G. Biswas. Identifying
strategies in student problem solving. Design Recommenda-
tions for Intelligent Tutoring Systems, 7:59–70, 2019.

[19] V. Rus, S. K. D’Mello, X. Hu, and A. C. Graesser. Recent
advances in conversational intelligent tutoring systems. AI
Magazine, 34(3):42–54, 2013.

[20] A. Shakya, V. Rus, and D. Venugopal. Student strategy
prediction using a neuro-symbolic approach. In EDM, 2021.

[21] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and
K. Koedinger. Algebra I 2008-2009. Challenge data set from
KDD Cup 2010 Educational Data Mining Challenge. Tech-
nical report, 2010.

[22] T. Trouillon, C. R. Dance, É. Gaussier, J. Welbl, S. Riedel,
and G. Bouchard. Knowledge graph completion via complex
tensor factorization. J. Mach. Learn. Res., 18:130:1–130:38,
2017.

[23] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J.
Hsieh. Large-batch training for lstm and beyond. In Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019.


