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ABSTRACT
Little research has been done on the study of computer-
supported collaborative learning (CSCL) in the context of
teacher learning, especially the temporal analysis of the knowl-
edge construction process and its impact on learning out-
comes. The purpose of our research is to explore multi-
ple temporal analysis methods to understand the knowledge
construction in K-12 teacher CSCL of ML-empowered les-
son plan design using the video transcript data. The social
network analysis yielded high and low meta-cognition across
groups and indicated the association with the design arte-
fact quality. Sankey diagram visualization demonstrated the
macro-level cognition activity flow in the process. Lag se-
quential analysis found patterns of transition of technolog-
ical, pedagogical, and content knowledge during collabora-
tive design contributing to the group learning outcome. A
discussion on the results is provided, which sheds light on an-
alyzing and facilitating teacher learning in CSCL settings.

Keywords
Computer-supported collaborative learning (CSCL), tempo-
ral analysis, teacher learning, knowledge construction

1. INTRODUCTION
Artificial intelligence (AI) plays an increasingly critical role
in K-12 education as technology advancement [19]. It im-
poses a new requirement for K-12 teachers with limited com-
puting backgrounds to develop an understanding of teaching
with AI technologies in classrooms [13, 32]. Recent research
e↵orts started initiating professional development programs
to prepare teachers with su�cient knowledge about utilizing
AI to support student learning with subject matters [47, 52,
58]. These studies, however, provide little information about
how teachers engaged in sense-making activities of AI tech-
nologies, which are essential in guiding the design of teacher
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education programs for AI integration.

Our study attempts to address this inquiry by investigat-
ing teachers’ learning process using existing data collected
from a professional development program, ML4STEM, in
April 2020 [59]. It introduced an ML-enhanced scientific dis-
covery learning environment to 18 in-service K-12 teachers
and engaged them in several learning activities to learn to
teach with a new tool. This paper specifically focuses on the
collaborative design activity in a computer-supported col-
laborative learning context (CSCL). Teachers created ML-
enhanced lesson plans (Fig. 7) facilitated by a web-based
learning environment, SmileyDiscovery (Fig. 6), enabling
novice learners to apply k-means clustering in science con-
text to discover patterns and new knowledge [59].

Collaborative design has been argued as the most e↵ective
method to support teachers’ understanding of technology
integration in classrooms [24]. However, the desired learn-
ing outcomes are not naturally guaranteed [26]. An e↵ec-
tive CSCL learning process depends on constructing new
knowledge and generating new understandings during the
collaboration process [10, 15]. Particularly, d [21]. To un-
derstand the quality of such knowledge construction process,
a key to di↵erentiating the quality of cognitive activities at
high and low levels becomes necessary, as we expected the
desired high level of knowledge construction during the col-
laboration [43]. Previous research related to CSCL lacks
such e↵orts in studying the knowledge construction process
in the teacher learning context [26] or limited to descriptive
analysis to reveal the factors within CSCL that contribute
to teacher learning [18, 34, 4, 27].

To uncover patterns of teachers’ collaborative learning and
investigate the knowledge construction process demonstrated
by the quality of cognitive processing, we explored multiple
methods to analyze the temporal data at both individual and
group levels. Social network analysis is to uncover both the
interactions between participants and with cognitive activi-
ties to identify group collaboration patterns and suggest col-
laboration strategies based on groups’ end-product of learn-
ing [21]. Lag sequential analysis (LSA) is to investigate how
knowledge is transiting between groups during collaborative
design. Sankey diagram visualizes macro-level cognitive ac-
tivity flow through the collaborative design process. The
results provide insights into how di↵erent collaboration pat-
terns across teams a↵ect learning and how knowledge con-



structs across groups. The implications of such findings are
discussed at the end of this paper.

2. RELATED WORK
2.1 Artificial Intelligence in K-12 Teaching
AI technologies have become increasingly crucial in educa-
tion by playing four roles: intelligent tutor, intelligent tutee,
intelligent learning tool & partners, and the policy-making
advisor [19]. Implementing them in classrooms, however, is
a challenge for K-12 teachers. One of the primary obstacles
is that guiding students to learn with AI tools require teach-
ers to understand relevant technological knowledge [19]. It
is another challenge to prepare K-12 teachers for teaching
with AI in classrooms due to their limited computing back-
grounds [13], and the lack of teaching materials [32]. To pro-
vide insights on potential solutions to the aforementioned
challenges, we analyzed the learning process showing how
K-12 STEM teachers learned collaboratively to design ML-
empowered lesson plans.

2.2 Collaborative Design & Teacher Learning
Collaborative design is viewed as a form of professional de-
velopment [2, 54] and has been advocated as a desirable way
for sustaining teachers to implement innovative practices en-
hanced by advanced technologies [2, 16, 34]. It is an activity
in which teachers and technology designers work together to
create teaching materials that comply with the function of
technologies, and the realities of teaching contexts [54]. It
argues that active engagement, as well as the shared pro-
cess of collaborative design, o↵ers ample opportunities for
teachers to reflect on and deepen their understanding of the
usage of the new technology in classroom teaching [54].

The model of technological, pedagogical, and content knowl-
edge (TPACK) [24] is frequently applied in this research
field to describe what knowledge that teachers should de-
velop for technology integration. It consists of seven di-
mensions: technology knowledge (TK), pedagogy knowl-
edge (PK), content knowledge (CK), technology pedagogy
knowledge (TPK), technology content knowledge (TCK),
pedagogical content knowledge (PCK), and technological
pedagogical content knowledge (TPCK). Previous research
has identified two kinds of support necessary for develop-
ing teachers’ TPACK in collaborative design activities. One
is expert support, which means the design teams should in-
volve participants who are knowledgeable in the area of con-
tent, pedagogy, and technology on the materials that are be-
ing developed [18]. The other is process support, referring to
monitoring the design process for ensuring the design inten-
tion is achieved [4, 27]. These studies employ a descriptive
analysis method, while our research examines the learning
process using statistics and visualization techniques.

2.3 Learning Process Analysis in CSCL
Understanding the temporal aspect of learning is essential
as learning, by nature, is a process that occurs over time [23,
41]. In the context of CSCL, two reasons stand out to study
the temporal data of the collaboration process: 1) CSCL is a
complex social process, including characteristics of multiple
actors (e.g., learners, technology, etc.) between events over
time [26, 8]; 2) collaboration has a great potential to provide
a learning environment with the shared learning process and

shared learning activities for knowledge construction [20].
However, such a shared process does not necessarily lead to
productive knowledge outcomes. A Previous study showed
the interrelations between cognitive events under knowledge
building discourse and uncovered the sequential pattern of
events using frequent pattern mining and latent sequential
analysis [7]. In addition, another work studied how low-
performing and high-performing groups progress through a
framework of socially shared regulation of learning and ar-
gue the importance of recognizing challenges and strategies
in group collaboration [31]. These two studies provided in-
sights for uncovering the patterns of knowledge construction
in the teacher learning context.

Various methods have been used to study the process of
CSCL, mainly in inferential statistics and the coding-and-
count approach [26, 26], including social network analysis
analyzing the group interactions over time (e.g., [51, 50, 28]),
sequential analysis studying the learning event patterns (e.g,
[9, 57]), and di↵erent types of visualizations studying online
discussions (e.g., [12, 25]). Social network analysis (SNA)
served as a primary research method for studying group in-
teractions, characteristics of relations, and influence of these
relations in online teaching and learning [40, 46, 36]. For a
CSCL process, the participants’ presence, roles, and their in-
teractions with other participants in the network are critical
factors that influence the collaboration process [35] and lead
to di↵erent levels of learning performance [11] or knowledge
construction [1].

3. METHODOLOGY
3.1 Research Questions
The following three questions guide our analysis of the learn-
ing process: RQ1 What are the interaction patterns of group
participants (teacher-to-teacher)and knowledge construction
(teacher to cognitive activities) during teachers’ collabora-
tive design? RQ2 What are the sequential patterns of cogni-
tive activities during the individual learning journey? RQ3
What are the sequences of knowledge construction concern-
ing discussion contents at the group level during teachers’
collaborative design?

3.2 Research Context
The data was collected from a two-week teacher learning
program conducted in April 2020. The program aims to
equip teachers with su�cient knowledge about teaching with
an ML-enhanced scientific discovery learning environment,
SmileyDiscovery, designing for supporting STEM teaching
and learning in K-12 contexts [59]. In this study, we mainly
focused on the second session - teacher-as-designer in which
teachers worked collaboratively to design ML-enhanced les-
son plans by using SmileyDiscovery components (Fig. 6).
Eighteen teachers were divided into four groups (noted as
group A, group B, group C, and group D) based on their
teaching grades and subjects. Each group included a par-
ticipant (for example, a1) volunteering for a mediator and
a researcher(for example r1) playing as a facilitator (Ta-
ble 1). Due to the COVID-19 lockdown, teachers commu-
nicated with each other via ZOOM and created the lesson
plans on design canvas supported by an online collaborative
platform Lucidchart. The design canvas contains draggable
cards representing di↵erent SmileyDiscovery system compo-
nents (Fig. 6) for teachers to select for specific instructional



steps in their lesson plan. The collaborative design activ-
ity consists of four phases: Deciding topic (10min)- teachers
select a subject matter to work on; Discussing learning ob-
jectives (10min)- teachers identify the targeted grade levels
of students, questions of their interests, and other materials
required to fulfill the learning materials; Developing learning
activities (25min)- teachers determine the pedagogical steps
according to the 5E instructional model [5], then design the
related instructional activity in this step, and select the ap-
propriate SmileyDiscovery features that could support im-
plementations of each instructional activity; Reflecting the
design (20min)- teachers critically reflect on the current les-
son plan design and propose the desired improvement on a
specific aspect of SmileyDiscovery.

The end product of teachers’ collaboration design are the de-
signed lesson plans that include specific instructional steps
(e.g., Fig. 7) listed along with corresponding SmileyDiscov-
ery components (Fig. 6). We assessed the quality of lesson
plans as the group learning outcome using an empirically
validated framework [17] (see Table 5). It was created for
measuring the quality of technology-enhanced teaching ma-
terials built from the TPACK model [24]. Two researchers
independently evaluated the lesson plans, achieving a near-
perfect agreement (Cohen’s kappa = 0.92).

Table 1: Demographic information for each group.
Group Grades Subjects Researcher Mediator Scores

A Elementary (N=3), Middle school (N=1) Science (N=2), Math (N=2) r1 a1 3.50

B Middle school (N=4) Science (N=3), Math (N=1) r2 b4 3.17

C High school (N=4), Middle school (N=1) Science (N=1), Math (N=4) r3 c4 3.80

D High school (N=5) Science (N=5) r4 d3 3.78

3.3 Data and Analytical Approach
We collected recordings of four groups’ collaborative design
and transcribed the verbal data for analysis. The raw tran-
scripts contain 1869 turns. The social talk and incomplete
talk were dropped o↵ as they are less relevant with knowl-
edge construction, ended with 1765 turns in total (Group A
= 504, Group B = 328, Group C = 478, Group D = 455).

3.3.1 RQ1: Social Network Analysis
A social network analyzes the patterns of connections (repre-
sented as ties or edges with strengths and directions) among
entities (individual, groups, events, etc.), represented by
nodes with sizes, and relations between entities [40, 46].
This research question investigates participants’ positions
and their interactions in groups and their engagement in
di↵erent cognitive activities involved in the knowledge con-
struction process. Thus, we utilized SNA to visualize the
relations and participants’ roles in the network and quanti-
fied the relations using both the node-level measures and
network measures with the Igraph library in the R pro-
gramming language. Conceptually, a social network can be
structured as a one-mode network [30] and a two-mode net-
work with mode referred to the set of nodes [46]. One-mode
analysis is used to study the relations of people (e.g., in-
teractions between teachers and participant’s positions and
roles). Two-mode analysis is used to analyze networks that
involve participants and events (e.g., teacher’s participation
frequency engaged in the knowledge construction process).

Before running the analysis, we segmented the transcripts to
the turn level. First, two researchers reviewed each group’s
transcript independently to code the source and target of

each turn of speech, reaching the agreement (Cohen’s Kappa
= 0.97). Second, we coded the cognitive activity for each
turn using an adapted version of the meta-cognitive regula-
tion coding scheme [21] (See Table 7, 8, 9). The original
coding framework (see [21]) is developed by [53] to analyze
group knowledge construction behavior and validated in [48].
We extended it with response tokens (e.g. right, yeah, Uh
huh, and hmm), showing that a talk sent by a speaker has
been received by the audience). These response tokens are
important for analyzing discussions since they serve to for-
ward the course of a conversation [33]. Four low-level codes,
thus, were generated after we conducted an open coding for
the transcripts: follow-up response (FU), show uncertainty
(SU), show hearing (SH), agree with peers (AP). Two re-
searchers independently coded all the transcripts, reaching
a near-perfect agreement (Cohen’s kappa = 0.95).

For the one-mode analysis, we structured two data files record-
ing 1) an edge list (all source-target directions and each tie
weight) and 2) a node list (all participant id and their roles)
of the network. The weight of each turn is assigned accord-
ing to the level of cognitive activity: high-level (value = 2)
and low-level (value = 1). A two-dimensional co-concurrence
matrix was constructed for the two-mode analysis, calcu-
lating each participant’s participation frequency engaged in
each type of cognitive activity. The measures of the social
network analysis are shown in the Appendix (Table 3).

3.3.2 RQ2: Sankey Diagram
A Sankey diagram is a visualization tool that illustrates
quantitative information of the activity flow of individual
participants by using directed, and weighted graphs [42].
Thus, we applied it to discern the patterns of cognitive activ-
ity flow each participant engaged in across di↵erent phases
of the collaborative design. Moreover, we can explore the se-
quential patterns of teachers’ engagement and role-switching
in di↵erent types of cognitive activities. To simplify the vi-
sualization, we grouped all cognitive activities into six cate-
gories based on the purposes of learning: plan the next step
(pl, ph), evaluate the design purpose (el, eh), enhance the
group’s conceptual understanding (vm, ei, jd, rm, sm, qm),
seek or provide basic information (si, ai), follow up with-
out creating much new information (sh, su, ci, fu, ap), and
conclude an episode of discussion (cd, sd). And the x-axis
represents the sequence of a participant’s cognitive behav-
iors (e.g., one node with x = 7 represents the 7th cognitive
activity a participant conducted).

3.3.3 RQ3: Lag Sequential Analysis
Lag sequential analysis (LSA) is an analytical approach used
for determining if a statistically significant dependence ex-
ists between sequential events [3]. Many researchers have
adopted it to understanding the sequential patterns of par-
ticipants’ behaviors in learning activities and what the de-
sired patterns would be for learning [55, 56]. We applied it
to explore the sequential patterns of knowledge construction
occurring in the discussion contents that di↵erent groups en-
gaged in collaborative design activities.

We first chunked the transcripts into segments, whereby
each segment corresponded to a unique topic of conversation
related to the design contents. For example, teachers were
required to identify the learning objectives of the design les-



son plan. A conversation around it, from the initiation to the
end, is considered a topic. Second, we adapted the TPACK
model [24] to code the knowledge dimensions shown by the
specific speech of a turn (Table 6). Two researchers inde-
pendently coded the TPACK and reached an almost perfect
agreement, Cohen’s kappa = 0.95. Third, since we are in-
terested in understanding the sequential pattern of di↵erent
knowledge dimensions for each topic of conversation, the
duplicated codes were dropped o↵ for each segment. For ex-
ample, if TK occurs several times in one segment, we only
counted it occurred once.

The LSA is performed for each group using the program
Generalized Sequential Query (GSEQ) [3]. First, we run the
Pearson chi-square test to check if a significant dependence
exists between knowledge dimensions. Then, we used the
program to calculate the adjusted residual between any two
knowledge dimensions.

4. RESULTS
4.1 RQ1.1 Teacher-teacher interaction
The sociogram of the teacher-teacher interaction (see Fig. 1)
showed di↵erent roles of participants (researcher, mediator,
teacher) and their levels of contributions to the discussion,
demonstrated by the position and size of nodes in the net-
work. First, for the researcher position, r1(group A) and
r4 (group D) had a higher degree of centrality (especially
out-degree centrality) than r2 (group B) and r3 (group C),
with r2 holding the least out-degree centrality, evident by
the node-level measures (see Appendix Table. 4). This il-
lustrated that r1 and r4 played more proactive roles in fa-
cilitating the discussion and o↵ering guidance, whereas r2
intervened less and relied more on the mediator b4 to fa-
cilitate the discussion. Second, for the mediator position,
d3 (out-degree centrality = 500) and c4 (out-degree central-
ity = 469) played dominant roles in the group discussions,
taking responsibility for note-taking and guiding the discus-
sion than a1 (out-degree centrality = 215) and b3(out-degree
centrality = 260). Third, compared the out-degree central-
ity for teacher participants and visual positions in the net-
work, b1, c5, and d4 are relatively peripheral in contribut-
ing to the group discussions. The reason might be due to
the teacher’s insu�cient technology knowledge about Smi-
leyDiscovery. As to the closeness measure, we observed the
highest closeness of participants in group A, demonstrating
their relatively equal participation and greater mutuality in
the discussions.

Comparing the one-mode network attribute (see Fig. 2), we
found all groups shared a relatively high density value, be-
tween 30-40%. This indicated highly active and cohesive
participation in the group discussion across four groups, with
no isolated participants. On average, group C (avg.degree
= 360) and group D (avg.degree = 394) had a higher fre-
quency of group interactions than group A (avg.degree =
320) and group B (avg.degree = 268). However, the contri-
bution among participants was rather equal for group A and
group B, indicated by the smaller standard deviation(SD)
of the degree centrality-12.40 and 13.50 respectively- com-
pared to that of group C (SD = 26.44) and group D (SD
= 21.05). Reciprocity refers to the balance of the network.
The values of all groups are larger than 0.5, showing a rel-
atively high mutual communication between participants.

Figure 1: One-mode sociogram of teacher-teacher interac-
tions.Top left: group A; Top right: group B; Bottom Left:
group C; Bottom right: group D

Table 2: Network attribute of four groups.
group A group B group C group D

No. of participants 5 5 6 6
No. of ties 797 668 1079 1181

Average degree of group 320 269 360 394
SD of Degree centrality 12.40 13.50 26.44 21.05

Density 39.85 33.40 36.00 39.37
Reciprocity 0.75 0.66 0.66 0.57

No. of nodes in cognitive activity 18 18 18 19
No. of low-level cognitive activity 314 206 263 256
% of low-level cognitive activity 62.30% 62.80% 55.02% 56.26%

No. of high-level cognitive activity 190 122 215 199
% of high-level cognitive activity 37.70% 37.20% 44.98% 43.74%

Compared the one-node network attributes with the scores
of teacher-designed lesson plans, group C and group D with
high avg degrees and high density and more proactive roles
of researcher and mediator had better final sores. Although
not tested statistically, the association might demonstrate
a need for explicit facilitation and mediation training of re-
searchers and mediators in the future.

4.2 RQ1.2 Teacher-cognitive activity interac-
tion

The two-mode network attributes Table 2 showed the dis-
tribution of low and high-level cognitive activity frequency
during teachers’ collaborative design. While group A had
the highest number of cognitive activity events (N = 504),
the ratio of engagement in the high-level cognitive activities
(37.70% ) was smaller than that of Group C (44.98%) and
group D (43.74%). Group B had the slightest participation
in cognitive activities (N = 328) and the high-level cognitive
activities (ratio = 37.20%). This indicates that the better
quality of the lesson plans designed by group C and group D
might result from the high-quality discussion they engaged
in the knowledge construction process.

The two-mode sociogram (Fig. 2) shows interaction patterns
of the participants with the cognitive activities, with the
size of the participant node indicating the degree of par-
ticipation. Group A had a relatively equal distribution of
cognitive activities. Participants b1 and c5 had the rela-
tively less engagement compared to the other participants
in their groups. Group D was unequal as the mediator



Figure 2: Two-mode sociograms of participant to cognitive
activity interactions.Blue circle: Participants (m - mediator);
Red square: Cognitive activity. Top left: group A; Top right:
group B; Bottom Left: group C; Bottom right: group D.

d3 undertook more cognitive activities than other partici-
pants.Furthermore, participants of group C shared a rela-
tively higher frequency of the high-level cognitive activity;
because the nodes of cognitive activities are near each other
and surround all participant nodes. The researcher and me-
diator in group C both actively participated in high-level
planning (PH) and explore ideas (EI). For group D, we ob-
served a proactive role of mediator in facilitating discus-
sions, demonstrated by d4’s engagement in the high-level
cognitive activities such as QM- Questioning, RM- reflect
meaning, and PH- high-level planning. Also, the mediator
engaged in low-level cognitive activities for responding to
the participants and transitioning the discussion, as SI- seek
information, SD- stop discussion, and SU- show uncertainty.
We argue that for future study, the researcher or mediator
should be o↵ered a more explicit strategy to help facilitate
the discussion and actively participate in the collaborative
design to support participants engaging in high-level cogni-
tive activities.

4.3 RQ2 Sequential patterns of cognitive ac-
tivities

Preparation phase. Di↵erent from the rest phases, there
is no enhance of conceptual understanding during this phase
(Fig. 3). There are two main patterns identified in partici-
pants’ cognitive flows: (1) some participants mainly focused
on seeking information or providing information; (2) some
participants (e.g., researchers) illustrated how the next step
should take place and evaluated the current progress.

The phases for learning objective setup, learning activ-
ity development and reflection. During these three phases
(Fig. 4), most participants switched frequently between the
role to enhance the group’s conceptual understanding (‘en-
hance’), the role to seek or add basic information (‘info’),
and the role to follow up with someone else (‘follow’). Fig. 4
showed that, during these three phases, a few participants

Figure 3: The Sankey diagram illustrating 18 teachers’ prepa-
ration phase during the design activity.

Figure 4: The Sankey diagrams illustrating the phases for
learning objective setup, learning activity development and
reflection.

generated much longer cognitive activity flows than other
participants (long-tail flows). Those participants who con-
tributed more to the discussions tended to be more con-
stantly and frequently engaged in cognitive activities that
enhance the group’s conceptual understanding (‘enhance’).
This indicates that individual participant’s frequency of the
cognitive activities might be positively related to one’s con-
tribution to the group’s conceptual understanding.

4.4 RQ3 Sequential patterns of TPACK tran-
sition in knowledge construction

Fig. 5 illustrates the patterns of TPACK transition in knowl-
edge construction of di↵erent groups. The curve indicates
the sequence between two knowledge dimensions and the
values are the adjusted residual of the sequential transition.
Any sequential transition below 1.96 is dropped o↵ as it indi-
cates a non-significance between two knowledge dimension.
Also, the information of group B is not presented here be-
cause the overall pattern is not significant assessed by the
chi-sqaure test (p = 0.97). By comparing the knowledge
construction patterns of group A, group C, and group D
with the quality of their design artifacts, we found the level
of complexity of TPACK transition patterns in knowledge
construction corresponds to the groups’ outcomes.



Figure 5: Patterns of knowledge construction in four groups
produced by lag sequential analysis.

Group C (with the highest group outcome) shows the most
complex patterns of knowledge transition, including six sets
of transitions with six knowledge dimensions involved (TK–
>TPK, CK–>TCK, CK–>PCK, TPK–>TK, PCK–>CK,
PCK–>PK). Group D (the second-highest group outcome)
consists of four sets of transitions with five knowledge dimen-
sions involved (PCK–>PK, PK–>TPK, TCK–>CK, CK–
>TCK). Compared with group C, group D lacks the tran-
sition between TK with any other knowledge dimensions.
That means teachers in group D were more likely to discuss
TK exclusively for a design component than connecting it
to others. Group A (the third highest group outcomes) has
a simpler pattern, containing four sets of knowledge con-
struction with four knowledge dimensions (TK–>TPK, CK–
>TCK, TPK–>TK, TCK–>CK). Compared with group C
and group D, group A lacks PK and PCK as well as their
transitions to other knowledge dimensions. Group B (the
lowest group outcomes) does not show significant depen-
dence between any two knowledge dimensions. According to
the LSA results, the higher group outcomes, the more com-
plex TPACK transition patterns displayed in the knowledge
construction process. Nevertheless, given the small sample
data, further studies are needed to validate this finding.

5. DISCUSSION

Effective group discussion and the role of participants.
Group C and group D outperformed group A and group B
as for the discussion quality, and the result is potentially as-
sociated with the previously-graded design artefacts scores,
with lesson plan scores (group C > group D > group A
> group B). The result, consistent with the previous liter-
ature, indicates that groups engaged in a large amount of
high-level conceptual understanding, elaboration, and justi-
fication of content material were also associated with better
overall conceptual understanding demonstrated in the end
learning product [21]. We expected to see high group den-
sity, active participation, and high-level knowledge construc-
tion To promote a high-quality discussion [22, 53].

The mediator and the researcher might play a pivotal role
in promoting the discussion quality. Group C and group
D’s mediators (c4 and d3) played a dominant role in direct-

ing the discussions and taking notes for the whole group,
demonstrated by their engagement in planning, evaluation,
and direction while group A had a relatively equal engage-
ment in the cognitive activities. Previous literature showed
that assigning students with leadership roles (e.g., facilita-
tors) could empower students to engage in the discussions
[39], which echoed with the case in group C and group D,
but how to empower and engage the peripheral members
would be a future discussion. Also, discussion facilitation
strategies make a significant di↵erence in the extent of col-
laboration [40, 49]. In our case, researchers who take an
active role in facilitation and help address the technological
and content knowledge gap of participants promoted bet-
ter quality of discussion. Thus we need to explicitly train
mediators and researchers to facilitate discussions.

Engage learners in more meaningful discussion. The
Sankey diagrams show that teachers who participated in the
discussion constantly and frequently engaged in more activ-
ities enhancing the group’s conceptual understanding. One
interpretation is that note-takers in each group who had to
talk more throughout the design activity needed to take re-
sponsibility for the learning activity construction and reflec-
tion; in turn, they got involved in more cognitive activities
that enhance the conceptual understanding. Another po-
tential explanation is that participants who produced more
dialogues of “enhance” had more opportunities to explore
their ideas further. This suggests the facilitation is needed
to prompt learners with fewer discourses or fewer “enhance”
cognitive activities to share their ideas with the group.

Knowledge transition in group discussions contributes
to the TPACK development. The results of the lag sequen-
tial analysis suggest that the transitions between the sub-
dimensions of TPACK in collaborative design might con-
tribute to groups’ learning outcomes. This finding adds new
evidence to the research of TPACK, showing that grasping
the connections between TK, PK, and CK is significant for
developing an integrative understanding of TPACK. Previ-
ous research has found the impacts of TK, PK, and CK on
teachers’ TPACK by a regression model using pre-post as-
sessments [6]. Few studies, however, have examined it taking
a process perspective. Given the importance of collaborative
design in developing TPACK [24], our research suggests the
design contents are better to be addressed by discussing the
knowledge dimensions and the related sub-dimensions. For
example, when teachers are engaged in talking about TPK
for a while, the facilitator can intervene and guide teach-
ers to discuss TK or/and PK related to the TPK. Such a
process provides teachers with opportunities to understand
each dimension of TPACK and its connections. Our further
step is to conduct a qualitative analysis of the transcript
data, primarily how knowledge transition occurred in some
interaction units but not others. The findings generated can
o↵er more insights on how to facilitate teachers’ collabora-
tive design activities.
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[15] R. Hämäläinen and K. Vähäsantanen. Theoretical and
pedagogical perspectives on orchestrating creativity
and collaborative learning. Educational Research
Review, 6(3):169–184, 2011.

[16] A. Handelzalts. Collaborative curriculum development
in teacher design teams. In Collaborative curriculum
design for sustainable innovation and teacher learning,
pages 159–173. Springer, Cham, 2019.

[17] J. Harris, N. Grandgenett, and M. Hofer. Testing a
tpack-based technology integration assessment rubric.
In Society for Information Technology and Teacher
Education International Conference, pages 3833–3840.
Association for the Advancement of Computing in
Education (AACE), 2010.

[18] T. Huizinga, A. Handelzalts, N. Nieveen, and J. M.
Voogt. Teacher involvement in curriculum design:
Need for support to enhance teachers’ design expertise.
Journal of curriculum studies, 46(1):33–57, 2014.

[19] G.-J. Hwang, H. Xie, B. W. Wah, and D. Gašević.
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[47] F. Sullivan, E. Suárez, E. Pektas, and L. Duan.
Developing pedagogical practices that support
disciplinary practices when integrating computer
science into elementary school curriculum. 2020.

[48] M. Summers and S. Volet. Group work does not
necessarily equal collaborative learning: evidence from
observations and self-reports. European Journal of
Psychology of Education, 25(4):473–492, 2010.

[49] J. Thormann and P. Fidalgo. Guidelines for online
course moderation and community building from a
student’s perspective. Journal of Online Learning &
Teaching, 10(3):374–388, 2014.
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Figure 6: SmileyDiscovery system components for teachers
to drag and drop during the collaborative design of the ML-
empowered scientific discovery lesson plan: (a) components
to introduce the STEM context and multidimensional feature
space, modify and view the data-face visualization mapping;
(b) components to facilitate pattern interpretation (i.e., intra-
cluster pattern, inter-cluster pattern); (c) components to fa-
cilitate the conduction of clustering (i.e., manual clustering,
automatic clustering).

teachers. 2021. (In press).

APPENDIX

Figure 7: The instructional steps designed in the ML-
empowered scientific discovery lesson plan created by one
group of teachers collaboratively (group A).



Table 3: Node-level and network-level measures for Social Network Analysis
Measures Definition Level
In-degree centrality Total number of interactions a participant received from

others in the network [14]. High value indicates a partici-
pant’s prestige or influence when engaging in a discussion
[29, 44]

Node-level

Out-degree centrality Total number of interactions a participant sent to others
in the network. High value indicates a participant active-
ness in providing comments or information to others in
the network [38, 45].

Closeness centrality Length of paths from a participant to all others in the
network, defined as the inverse total length [37]. High
value indicates high e�ciency of a participant has on re-
ceiving and spreading information in the network.

Number of participants Number of participants in the network

One-mode Network
Number of ties Total number of ties in a network without tie weights.
Average degree by group Average number of the sum of connections of a group.
Density Ratio of the number of ties observed in the network di-

vided by the maximum number of possible ties (equals to
n*(n-1), where n is the number of nodes. For example,
our max number of possible ties will be 30). High value
indicated the high level of teacher participation in the
discussion.

Reciprocity Likelihood of nodes in a directed network to be mutually
linked [46]. It indicates the balanced of the mutual dyads
relations in a network, and reflects teacher participants’
connection level within the network.

Number of nodes in cogni-
tive activity

Number of cognitive activity types in the network.
Two-mode Network

Number and ratio of low-
level cognitive activity fre-
quency

Number and ratio of low-level cognitive activities in the
network.

Number and ratio of high-
level cognitive activity fre-
quency

Number and ratio of high-level cognitive activities in the
network.



Table 4: Node-level attribute of four groups.
Participant Roles In-degree Out-degree Closeness
ID Centrality Centrality
a1 mediator 169 215 0.80
a2 teacher 166 115 0.67
a3 teacher 168 110 0.57
a4 teacher 154 89 0.57
r1 researcher 140 267 0.50
b1 teacher 122 22 0.25
b2 teacher 156 140 0.25
b3 teacher 133 75 0.17
b4 mediator 133 260 0.25
r2 researcher 124 171 0.25
c1 teacher 177 175 0.13
c2 teacher 161 98 0.20
c3 teacher 198 120 0.17
c4 mediator 224 469 0.10
c5 teacher 156 34 0.14
r3 researcher 163 183 0.20
d1 teacher 191 86 0.20
d2 teacher 228 172 0.20
d3 mediator 209 500 0.20
d4 teacher 172 22 0.17
d5 teacher 204 93 0.20
r4 researcher 177 308 0.17

Table 5: Assessment rubric for teacher-designed ML-enhanced lesson plans adapted from Harris et al (2010).
Criteria 4 3 2 1
Learning
contents and
Technologies
(TCK)

Technologies selected
for use in the les-
son plan are strongly
aligned with one or
more learning goals.

Technologies selected
for use in the lesson
plan are aligned with
one or more learning
goals.

Technologies selected
for use in the les-
son plan are partially
aligned with one or
more learning goals.

Technologies selected
for use in the lesson
plan are not aligned
with one or more
learning goals.

Instructional
Strategies and
Technologies
(TPK)

Technologies selected
optimally supports in-
structional strategies.

Technologies selected
supports instructional
strategies.

Technologies selected
minimally supports in-
structional strategies.

Technologies selected
not supports instruc-
tional strategies.

Instructional
Strategies
and Learning
Contents
(PCK)

Instructional strate-
gies selected are
exemplary for the
learning goals.

Instructional strate-
gies selected are
appropriate, but not
exemplary for the
learning goals.

Instructional strate-
gies selected are
marginally appropriate
for the learning goals.

Instructional strate-
gies selected are
inappropriate for the
learning goals.

Overall
(TPCK)

calculated as an average of the TCK, TPK, and PCK.



Table 6: Codes of knowledge dimensions of TPACK in group discussions.
Codes Knowledge Dimension Description
TK Technology knowledge Teachers talked about the concepts and the usage of SmileyDiscovery

and ML techniques.
PK Pedagogical knowledge Teachers talked about issues related to instructional methods, class-

room management, and students’ characteristics.
CK Content knowledge Teachers talked about the details of learning activities related to the

content topic.
TPK Technological Pedagogical

Knowledge
Teachers talked about how to sca↵old scientific discovery through ap-
plying SmileyDiscovery and ML techniques, and what aspects of Smi-
leyDiscovery can be improved to provide better pedagogical support.

TCK Technology Content Knowl-
edge

Teachers talked about how to facilitate student content learning by
using SmileyDiscovery and ML techniques, and what aspects of Smi-
leyDiscovery should be improved to fulfill the content learning.

PCK Pedagogical Content Knowl-
edge

Teachers talked about how to facilitate student content learning by con-
sidering such pedagogical aspects as instructional methods, classroom
management, and students’ characteristics.

TPCK Technological pedagogical
content knowledge

Teachers talked about the alignment of SmileyDiscovery, instructions
of scientific discovery activity, and subject matters.

Table 7: Coding scheme for cognitive activities during the group regulation of planning.
Codes Abbr. Level Description
Planning without justification PL Low Determine how to achieve the task; Assign tasks to certain participants; Set-

ting of ground rules and norms for group discussion; Guide the activity flow.Planning with justification PH High

Table 8: Coding scheme for cognitive activities during the group regulation of monitoring.
Codes Abbr. Level Description
Seek information SI

Low

Ask for more factual information to assist with the group’s current under-
standing of the task or content, often a tentative enquiry.

Add information AI Inject new factual information to bring the group back into gathering facts or
pursuing content discussion. This may also include adding information that
was previous discussed.

Agree with peers AP Agree with someone’s proposal and didn’t know the answer before previous
person’s input.

Stop Discussion SD Stop the flow of discussion to bring the group to a decision or action point. It
could trigger the end of an episode of high-level talk.

Follow-up response FU A brief response from the talk initiator.
Confirm information CI Provide a confirmation with knowing the answer before previous person’s in-

put, following a question.
Show uncertainty SU Express uncertainty about the content mentioned in the previous conversation.
Show hearing SH Show a sign of hearing others’ response, but not with clear semantic meaning.
Seek meaning SM

High

Ask questions that would enhance the group’s conceptual understanding of
the case.

Volunteer meaning VM Propose an explanation, elaboration, or interpretation that enhance the
group’s conceptual understanding of the case. It could be based on knowl-
edge and understandings from readings or experience.

Explore Ideas EI Engage in tentative explanations, interpretations or speculations to enhance
the group’s conceptual understanding of the case (on their own ideas).

Question meaning QM Question the group’s current conceptual understanding of aspects of the case
with a view to clarify or rectify that understanding.

Justify decision JD Justify a task-related decision on the basis of the group’s conceptual under-
standing of the case.

Reflect on meaning RM Reflect on the group’s current understanding of the content or case and what
is needed to further enhance understanding.

Conclude from discussions CD Draw a summary or conclusion from the discussion.

Table 9: Coding scheme for cognitive activities during the group regulation of evaluation.
Codes Abbr. Level Description
Evaluate without justification EL Low Check if the requirements have been met, if the contents on the design canvas

match with what participants talk about, if anyone has inquiries, if everyone
can follow.

Evaluate with justification EH High


