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ABSTRACT 

The transition of the National Assessment of Educational Progress 

(NAEP) to digitally based assessments (DBAs) allowed for the 

collection of data that can provide insights into students’ problem-

solving processes. When students interact with a NAEP DBA 

item, their recorded timestamped events in the process data form 

sequences. We refer to action sequences as the series of clicks or 

other actions a student makes within an item. Using data from one 

released block of the NAEP 2017 mathematics assessment for 

grade 4, this study aims to provide an understanding of the 

relationships among action sequence characteristics, item 

characteristics and student performance.  

 

First, we extract individual actions sequences across items. 

Second, we categorize each individual action into one of four 

activities: Browsing, Passive investigation, Active investigation, 

or Decision. This categorization enables us to investigate 

sequence patterns within and across different items. Sequence 

characteristics are summarized from two perspectives: a) the time 

spent on each activity is calculated for each student across items 

and b) the within-sequence entropy (Shannon, 1948) and 

turbulence (Elzinga, 2006) of the sequences are calculated to 

quantify students’ action mobility. 

 

We found that the time students spend on “Decision” and “Passive 

investigation” activities can be used to predict student 

performance. 
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1. BACKGROUND 
In 2017 the National Assessment of Educational Progress (NAEP) 

transitioned from paper-based assessments (PBAs) to digitally 

based assessments (DBAs). DBAs allow us to capture student 

interactions with the test screen that are recorded as timestamped 

events. These records form data known as process data.  

 

 

 

 

 

 

It has become commonplace to include response time (RT) in 

addition to responses in the psychometric models to account for 

speed and accuracy (e.g., Goldhammer, 2015), and to examine the 

relationship between response time and item- and person-level 

factors (e.g., Masters, Schnipke, & Connor, 2005). Response time 

is used to examine psychometric quality of items and students’ 

test-taking behaviors and it is concluded to be promising for 

various assessment elements. Yet, the process data contains richer 

information such as actions that students use during their 

problem-solving processes and the allocation of the time students 

spend on particular activities within a single response time 

remained unexplored.  

When students interact with a NAEP DBA item, their recorded 

timestamped events in the process data form sequences. These 

sequences contain information about the order, mobility, and 

duration of the tasks students take throughout the problem-solving 

process and may shed light on the processes underlying the 

students’ test-taking behaviors. In this study, we divide response 

times into subcategories using the action definitions to provide a 

more meaningful understanding of student test taking behavior 

and examine the differences across item types and student 

performance. 

1.1 Literature 
Process data is most commonly used to calculate response time 

(RT), defined as the time an examinee takes to complete an item 

or assessment. Due to the association of RT with psychological 

and cognitive processes (e.g., Huff & Sireci, 2001), RT is often 

used to make decisions such as setting assessment time limits 

(e.g., van der Linden, 2011) and capturing aberrant test-taking 

behaviors (e.g., Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 

2014).  

However, RT alone may not provide sufficient information to 

draw inferences about the processes underlying students’ test 

taking behaviors (Lee & Haberman, 2016). In fact, RT could 

consist of the time for various components in the problem-solving 

process such as preparation (e.g., forming a response plan) and 

writing down/typing the response. The decomposition of RT can 

differ depending on item types (e.g., Li, Banerjee, & Zumbo, 

2017). Thus, to ensure the validity of inferences drawn from RTs, 

it is necessary to understand what students actually do throughout 

the RT. 

2. CURRENT STUDY 
In the assessment setting, RT could consist of the times for 

various components in the problem-solving process such as 

preparation (e.g., forming a response plan) and writing 

down/typing the response. The decomposition of RT can be 

different for different item types (e.g., Li, Banerjee, & Zumbo, 
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2017). Since the NAEP mathematics assessment consists of items 

with a mix of item types (e.g., multiple choice, constructed 

response), using the decomposition of RT for different tasks (e.g., 

investigation, decision) rather than total RT could be helpful when 

different decisions (e.g., setting assessment time limits, capturing 

aberrant test-taking behaviors) are to be made based on the time.  

A more fine-grained understanding of the relationships among 

RTs and students’ problem-solving behaviors can be gained by 

analyzing students’ action sequences, which can further improve 

the usefulness of RT in psychometric research (e.g., determining 

non-response categories such as omit and not reach). 

The goals of this study are: a) identify and describe the action 

sequences of students in a meaningful way, b) examine mobility 

across actions, c) differentiate profiles of action sequences, and d) 

explore students’ performance in connection to sequence clusters. 

Steps taken for current project can be presented as follows: First, 

individual actions are extracted. Second, students’ response 

processes are represented as sequences consisting of four tasks, 

i.e., Browsing, Passive investigation, Active investigation, and 

Decision (See definitions in Table 1). Since the variation across 

time for individual actions can be very large, we decided to use a 

set cut off point (2 seconds) for defining each action. In the end, 

we recoded the sequence of student actions in these groups for 

further analyses (See Figure 1 for an example). Then, the 

characteristics of the sequences are summarized from two 

perspectives: a) the time spent on each task is calculated for each 

student, which allows the decomposition of the RT, and b) the 

within-sequence entropy (Shannon, 1948) and turbulence 

(Elzinga, 2006) of the sequences are calculated to quantify 

students’ action mobility. 

Table 1. Definition and Example Action of Each Behavior 

Category 

Behavior 

category 
Definition Example Action 

Browsing 
Examinees browse the content 
of an item by executing scroll 
on the screen 

Horizontal 
scrolling, vertical 

scrolling 

Passive 
investigation 

Examinees get support from 
assistive tool for their 
problem-solving process 
without interacting item   

Change theme 
(change the color 
of background) 

Active 
investigation 

Examinees interact with item 
as a part of their problem-
solving process 

Draw with 
scratchwork, 

highlight 

Decision 
Examinees make responses to 
an item 

Click choice, text 
enter 

 

In addition to summarizing sequence characteristics in a 

descriptive manner, this study examines the relationships among 

the sequence characteristics, item characteristics and students’ 

item responses. Specifically, to examine the relationship between 

sequence characteristics and item characteristics, the RT 

decomposition and students’ action mobility are compared across 

different items. Furthermore, representative sequence(s) are 

identified for each item with the use of a sequence dissimilarity 

measure and a clustering algorithm. The representative 

sequence(s) can inform the typical response process of an item.  

Finally, to examine the relationship between sequence 

characteristics and student performance, sequence characteristics, 

such as the time duration of each task, within-sequence entropy 

and turbulence, are used as features to predict students’ item 

scores. The results could inform which feature(s) of the sequences 

best contribute to correct/incorrect item responses or the 

presence/absence of the responses. Moreover, the score 

distributions are compared across sequence clusters. 

In sum, this study, by decomposing RT and examining the 

relationships among the sequence characteristics, item 

characteristics and student performance, aims to inform more 

meaningful ways of calculating RT (e.g., different ways of RT 

calculation for different items) and the validity of score categories 

such as “omit” and “not reach”. For instance, if the sequences of 

students who were scored as “not reach” were found to contain 

some actions that are related to making responses (i.e., the 

“Decision” actions), the scores of these students may be 

considered as “omit” as opposed to “not reach”. 

2.1 Research Questions 
Specifically, the following research questions are examined in the 

current study: 

RQ1. What actions do students take and what are the 

characteristics of the action sequences (mobility, time 

distribution) throughout the RTs of the NEAP math items? 

RQ2. How do students’ action sequences differ across different 

item types (e.g., multiple-choice item, constructed-response 

item)?  

RQ3. Which action sequence characteristic(s) best predict the 

item scores? 

3. DATA 
We used data from one of the released blocks from NAEP 2017 

Grade 4 Mathematics assessment. One of the released blocks 

includes 29,100 4th graders in both public and private schools and 

consists of 14 cognitive items. The sample was collected using the 

conventional NAEP sampling procedures, i.e., a two-stage 

stratified random sampling design with schools selected in the 

first stage and students in the second stage. In the data cleaning 

procedure, students with accommodation or interruptions were 

excluded. Comparisons of the demographic composition of the 

two samples, full sample and analytical sample, are presented in 

Table 2. 

Table 2. Summary Statistics for Full and Analytical Sample: 

Student Demographic Characteristics 

 Weighted Unweighted 

 Analytical Full Analytical Full 

Observations 649,500 780,500 24,100 29,100 

Gender Percentages 

Female 50 49 50 49 

Race/Ethnicity Percentages 

White 51 49 52 50 

Black 14 15 17 18 

Hispanic 24 26 20 22 

Asian 6 5 4 4 

American Indian 1 1 2 2 

Other 4 4 5 5 

National School 
Lunch Program* 

Percentages 

Eligible 48 50 51 54 

Not Eligible 46 44 45 43 

* No Information categories are not presented. 
Note: Because all extended time accommodation students (that are 
excluded from analyses) are either with limited English 



3 

 

proficiency or in individualized education program, the results for 
these variables are not included. Detail may not sum to totals 
because of rounding. 

 

A small non-significant difference in the proportion of White 

(50.5 % in analytical, and 48.9% in full sample) and Hispanic 

students (24.4% in analytical and 25.9% in full sample) are 

observed. A significant difference in term of NSLP non-eligible 

category is found (46% vs. 43.8%). 

4. ANALYSIS 
To construct sequences and decompose RT from the process data, 

we followed two steps (See Figure 1 for a demonstration of the 

procedure): a) Recoding the actions into four task categories (i.e., 

Browsing, Passive investigation, Active investigation, Decision; 

See definitions in Table 1); and b) Calculating the time duration 

of each task. Thus, students’ item response processes were 

represented as sequences whose lengths are proportional to the 

time durations. Since the variation of time students spend on an 

item can be large (i.e., range from 0.01 second to 30 minutes), 

using a small-time unit (e.g., 0.01 second) could result in 

extremely long sequences that exceed the computer memory 

capacity. Therefore, we decided to use 2 seconds as the time unit 

while constructing the sequences. Only actions in students’ initial 

item visit (i.e., actions between the first pair of “Enter Item” and 

“Exit Item” actions) were included in the sequence. Students 

whose initial item visit lasts longer than 8 minutes (480 seconds) 

were excluded from the analyses to avoid extremely long 

sequences. For all the items in the MA block, the percentages of 

students with initial item visit longer than 8 minutes are lower 

than 1%. 

  

Figure 1. The procedure of turning raw process data into an 

action sequence. 

The mean time spent on each action as well as the action mobility 

were summarized as the sequence characteristics. The number of 

task transitions, Shannon entropy (Shannon, 1948) and turbulence 

(Elzinga, 2006) measures were used to quantify the action 

mobility. 

To examine how students’ action sequences differ across different 

item types (e.g., multiple-choice item, constructed-response item), 

the characteristics of sequences were summarized and compared 

across different items. To identify the typical response process for 

an item, the hierarchical agglomerative clustering algorithm was 

applied to all the students’ sequences based on the optimal 

matching edit distance (Levenshtein, 1966) matrix. The medoids 

of the clusters (i.e., the sequence that is the nearest to the virtual 

center of the cluster) were treated as the representative sequences 

that represent the typical response processes for an item. As no 

study to our knowledge has been done to determine the optimal 

number of clusters when the clustering is based on the edit 

distance matrix. Ward’s algorithm was used to form clusters by 

maximizing within cluster homogeneity. We chose the number of 

clusters by visually inspecting the dendrogram and assessing the 

interpretability of the clusters. Specifically, for each item, we 

examined the cluster medoids when the number of clusters ranged 

from 2 to 4 and chose the number of clusters that resulted in 

interpretable clusters from practical perspectives. All sequence 

analyses were performed using the TraMineR R package. 

To examine the relationship between the sequence characteristics 

and student performance, the sequence characteristics were used 

as features to predict the item scores using the regression tree 

(Breiman, 2017). In addition, the score distributions were 

compared across the sequence clusters identified based on the 

hierarchical clustering algorithm and edit distance. 

5. RESULTS 
For the purposes of this paper, we present the results for two 

selected items1 listed in Table 3. The items are different item 

types (Item A is multiple-choice item while Item B is constructed 

response item) and are close in the presentation order. Thus, the 

two items were chosen to demonstrate the difference in sequence 

characteristics between items of different types (with minimal 

confounding of the presentation order).  

Table 3. Characteristics of the Two Example Items 

Item Characteristics Item Label 

 Item A Item B 

Item type Multiple-Choice  Fill In Blank 

Presentation order 2 4 

Item difficulty 

parameter 
-0.17 0.29 

Item content 

description 

Compare heights 

of objects in a 

figure 

Divide 3-digit 

whole number by 1-

digit whole number 

 

5.1 Response Time Decomposition 
The average time students spent on each recoded behavior actions, 

i.e., browsing, passive investigation, active investigation, and 

 

1 https://nces.ed.gov/NationsReportCard/nqt/Search 

https://nces.ed.gov/NationsReportCard/nqt/Search
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decision are shown in Figure 2. For Item A, the “decision” task 

had the highest average time among the four tasks; however, for 

Item B, the “passive investigation” task had the highest time. On 

average, students spent 10 seconds browsing Item A by executing 

scroll on the screen, while students hardly spent any time 

browsing Item B. Such difference in the browsing time could be 

associated with the content of the items: Item A needs to be 

solved by inspecting and comparing the heights of the trees which 

may result in browsing actions, while Item B is a straightforward 

computational item which may not require much browsing. 

 

Figure 2. Average time students spent on recoded actions 

when interacting with two selected items. 

5.2 Sequence Characteristics 
Figure 3 presents the state distributions at each time unit for the 

two selected items. Each unit of the x-axis represents 2 seconds. 

For instance, in the first 2 seconds, students who conducted 

“passive investigation” make up the largest proportion in both 

items. When responding to Item A, more than 10% of the students 

were browsing the item in the first 2 seconds; when interacting 

with Item B, nearly no students browsed the item in this time unit. 

 
Figure 3. State distribution plot of the two selected items. 

 

Table 4 lists the summary statistics of three mobility measures, 

i.e., the number of task transitions, within-sequence entropy, and 

turbulence. Task transition refers to switching among the four 

tasks (i.e., browsing, passive investigation, active investigation, 

and decision) in the sequence. The average task transitions for 

item A and B are 2.28 and 2.13, respectively. As for the within-

sequence entropy and turbulence measures, higher values indicate 

larger mobility. On average, item A is found to have higher 

within-sequence entropy and turbulence.   

Table 4. Mobility Measures of the Two Selected Items 

Mobility Measure  Item A Item B 

Number of task 

transitions 

Min 1 1 

Median 2 2 

Mean 2.28 2.13 

Max 4 4 

Within-Sequence 

Entropy 

Min 0 0 

Median 0.38 0.29 

Mean 0.37 0.30 

Max 1 0.92 

Turbulence 

Min 1 1 

Median 3.18 2.76 

Mean 3.36 3.28 

Max 11.24 14.43 

5.3 Typical Response Process 
Figure 4 shows the representative sequences for Item A and Item 

B. A representative sequence refers to the sequence with the 

smallest sum of edit distance to the rest of sequences; the 

representative sequence is considered to be representative of the 

typical response process of an item. As the sequence length is 

proportional to the time duration, the overall time duration of the 

typical response process is shorter for Item A than Item B. We 

observe that, in the typical response process;  

• for Item A, the student conducts passive investigation, 

browses the item, and makes response decisions, 

sequentially.  

• for Item B, the student conducts passive and active 

investigations and makes response decisions. 

 
Figure 4. Representative sequences of the two selected items. 
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While identifying a single typical response process for an item is 

desirable for the purpose of interpretation, a single sequence may 

not be enough to represent all the sequences. It is possible that 

there are multiple response process archetypes for an item. Thus, 

we conducted hierarchical agglomerative clustering based on the 

edit distance matrix. In the clustering process, each unit is a 

student. After examining the dendrogram and the interpretability 

of the clusters, we chose to retain three clusters (labeled as Type 

1, Type 2, and Type 3). The weighted cluster sizes and students’ 

demographic characteristics by sequence clusters found in Item B 

are presented in Table 5. 

Table 5. Student demographic characteristics by Sequence 

Clusters in Item B 

 Weighted Percentages 

 Type 1 Type 2 Type 3 

Observations 307,100 172,500 157,400 

Gender Percentages 

Female 45 52 57 

Race/Ethnicity Percentages 

White 49 53 51 

Black 15 13 13 

Hispanic 24 23 26 

Asian 6 6 4 

American Indian 1 1 1 

Other 4 5 4 

National School 

Lunch Program* 
Percentages 

Eligible 48 45 49 

Not Eligible 45 49 45 

Detail may not sum to totals because of rounding. 

Figure 5 displays the representative sequences of the three clusters 

in Item B, which represent three archetypes of response processes 

in this item. The representative sequences of Type 1 and Type 3 

only consist of “passive investigation” and “decision”. The time 

duration of “passive investigation” is longer for the representative 

sequence in Type 3 than Type 1. The representative sequence of 

Type 2 consists of “active investigation” in addition to “passive 

investigation” and “decision”. 

 

Figure 5. Representative sequences of the three sequence 

clusters found in Item B. 

5.4 Relationship Between the Sequence 

Characteristics and Student Performance 
Figure 6 shows the regression tree learned from the process data 

of Item B. Time durations of browsing, passive investigation, 

active investigation and decision, number of task transitions, 

within-sequence entropy and turbulence are used to predict item 

scores. Item B has five score categories, i.e., incorrect, correct, off 

task, omitted, and not reached. Each box in Figure 6 is called a 

“node” and the five decimals in each box are the predicted 

proportions of students having the five score categories in that 

node. The name (and color) of the node is determined by the score 

category that has the highest proportion among the five categories. 

For example, as the first split was performed with the decision 

time, for students with decision time longer than 14 seconds (25% 

of the students in the sample have decision time longer than 14 

seconds), the predicted proportions of getting “incorrect” and 

“correct” scores are 0.70 and 0.28, respectively. In addition, all 

the splits in this regression tree are performed with either decision 

or passive investigation time durations. 

 

Figure 6. Regression tree learned from the process data of 

Item B. 

5.5 Relationship between the Sequence 

Cluster and Student Performance 
Table 6 lists the score distribution of scores within each sequence 

cluster found in Item B. Item B is a fill-in-blank item, which is the 

fourth item in the block with a difficulty level of 0.29. In all three 

clusters, the proportion of students getting “incorrect” score was 

the highest among the five score categories. The similarity in the 

score distributions across sequence clusters implies that no clear 

pattern on the performance difference has been found among 

students with different response process archetypes. 

Table 6. Score Distribution of Each Sequence Cluster in Item 

B. 

  Percentages (%) 

Cluster Cluster 

Size 

Correct Incorrect Omitted Not 

reached 

Off 

task 

Type 1 11,500 42.2 54.0 3.4 0.2 0.2 

Type 2 6,100 42.9 53.5 3.3 0.2 0.1 

Type 3 5,900 42.5 53.7 3.5 0.2 0.2 

Note. Percentages of each row add up to 100%. 



6 

 

6. DISCUSSION 

6.1 Summary 
In summary, this study provided insights into the decomposition 

of RT by constructing action sequences from students’ process 

data. In particular, the action sequences contained information of 

the time duration, order and mobility of the tasks students 

executed to solve the NAEP mathematics items. By presenting the 

sequences of two selected NAEP released items as examples, this 

paper demonstrated the differences in RT decomposition and 

typical response processes between items of different types (i.e., a 

multiple-choice item vs a fill-in-blank item). This methodology 

and set of results suggest that examining action sequences and RT 

decomposition can be a useful way to mine process data and 

uncover educational processes. Also, action sequence mining can 

be useful to analyze high variance data such as process data. 

Response process archetypes were found by conducting a 

hierarchical clustering algorithm using the edit distance matrix of 

students’ action sequences. As for the relationship between 

student performance and sequence characteristics, the time 

students spent on “Decision” and “Passive investigation” were 

incorporated in the learned regression tree of the example fill-in-

blank item, meaning that these components of RT can be used to 

predict the scores of this item. Further, among the 10,000 students 

who correctly responded to Item B, 48.6% had their action 

sequences clustered into Type 1, 26.3% into Type 2 and 25.2% 

into Type 3, which implied that students who responded to the 

item correctly may have different response processes. 

6.2 Limitations and Future Research 
As an initial exploration of action sequences in the NAEP 

mathematics items, this study has limitations and opens up 

opportunities for future research. First, the actions were 

categorized into four tasks (browsing, passive investigation, active 

investigation and decision) in this study. However, this may not 

be the only way to categorize the actions. For instance, in a 

multiple-choice item, the actions could be recoded based on 

students’ selected options. Thus, sequences that reflect students’ 

trajectory of answer changes can be constructed. 

Second, the number of clusters was determined only based on the 

dendrogram and the interpretability of the clusters in this study. 

To better justify the choice of the number of clusters, future 

studies could develop quantitative measures to determine the 

optimal number of clusters based on the edit distance matrix. 

Finally, this study only included a limited number of sequence 

characteristics as features to learn the regression tree. Other 

features such as the frequencies of subsequences (e.g., the 

frequency of a student switching from passive investigation to 

active investigation and then to decision), together with feature 

selection algorithms, could be incorporated in future studies. 
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