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ABSTRACT
In this work, we introduce a framework for synthetic data
generation for academic performance prediction formulations.
A common problem in these academic performance predic-
tion dataset is that outcomes/grades are not distributed
evenly, leading to class imbalance. This poses a challenge for
predictive machine learning algorithms to learn important
characteristics at the edges of the target class distribution.
We present a general framework for synthetic embedding-
based data generation (SEDG), a search-based approach to
generate new synthetic samples using embeddings to cor-
rect the detriment effects of class imbalances. We compare
the SEDG framework to traditional synthetic data genera-
tion methods and relate the framework in relation to deep
generative models. In our results, we find SEDG to outper-
form the traditional re-sampling methods for deep neural
networks and perform competitively for common machine
learning classifiers at the student performance task in sev-
eral standard performance metrics.

1. INTRODUCTION
In the educational domain, academic performance predic-
tion approaches are at the crux of degree planning and early
warning systems. Classifiers that seek to predict the perfor-
mance of a student given input features can be biased be-
cause these datasets are often skewed centrally to the mean
as a relative grading scale is often employed. The limited
number of examples belonging to outlier students, specifi-
cally those demonstrating success and failure (needing in-
terventions/help), are not sufficiently represented. As these
predictive models are useful for identifying at-risk students
or helping students plan their degree and career pathways,
this imbalance directly conflicts with this purpose. We re-
fer to these examples belonging to the minority classes. In
contrast, there exists an overwhelming number of students
with average grade scores. We refer to these examples be-
longing to the majority classes. This evident disproportion
results in classifiers failing to understand and learn how to
classify within the minority classes, which was supported in
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[13]. This issue we are describing is known in the machine
learning community as class imbalances. Class imbalances
are recognized when working with a dataset that exhibits a
notable disparity in the number of examples amongst differ-
ent classes. This abnormality often disproportionately harm
the classifier’s performance on the minority classes. As [17]
discusses, these datasets describe a true nature of the prob-
lem, which correlates heavily with rare events, small sample
size, low class separability, and/or existence of within-class
subconcepts. For student performance datasets, we find all
to be the case, and even so, we argue gaining insight into
the outlier students is significant for the educators as it may
point to indicators of failure and success. In this paper, we
want to alleviate the setbacks caused by class imbalance.

As described in [17], there exists three common approaches
to alleviate the effects of class imbalances: data modifi-
cation, algorithm modifications and learning modifications.
Each approach modifies different aspects of the learning sys-
tem to counter the issue of class imbalances. In this paper,
we will focus on a class of data modification approach called
sampling methods. We consider two classes of sampling
methods: oversampling and under-sampling. Oversampling
methods append samples to the pre-existing training set,
whereas under-sampling methods remove samples from the
training set. With all sampling approaches, they aim to
balance the number of samples, given some criteria, in the
training set. We suggest taking a more systematic process.
We argue sampling methods must consider two important
components. First, the criteria that is targeted must be de-
fined. For the student performance dataset, the criteria may
be the number of samples in the class. Second, the method
of creating the balance should be well-defined, meaning the
use of this method should improve upon the criteria. Exam-
ples of naive approaches are randomly re-sampling or ran-
domly removing samples. In [18], a promising oversampling
approach has been generating new synthetic samples from
pre-existing samples. This approach is known as Synthetic
Data Generation (SDG). The most popular SDG algorithm
is Synthetic Minority Over-sampling Technique (SMOTE)
[2], which generates new samples by modifying a pre-existing
sample by adding the scaled (0-1) difference between feature
vectors of its nearest neighbors, with the addition of noise.
There have been notable improvements to this method, such
as DataBoost-IM [7]and ADASYN [8] changing the sam-
pling criteria to be based on predictive error. However,
these methods have yet to demonstrate sufficient perfor-
mance improvement of minority classes, but rather on the



Figure 1: Target Value Distribution: From the student per-
formance dataset, the class imbalance in the distribution
skews centrally, indicating a disproportionate number of ex-
amples between the central classes and the outer classes.

entire dataset. Thus, in our approach, we systematically
break down the process of SDG, to target the improvement
of minority classes.

Deep learning methods have also exhibited advances in ro-
bustness, efficacy, and allowing end-to-end training for SDG
methods as seen in [10, 15, 19]. In specific, deep genera-
tive models (DGMs), such as generative adversarial models,
have been introduced as methods of SDG. [10, 15]. In our
approach, we leverage the advances in deep learning, using
embeddings learned by deep models.

In this paper, we introduce an novel framework for synthetic
embedding-based data generation methods, called SEDG, to
target the effects of class imbalances on academic perfor-
mance prediction tasks. In Section 2, the academic perfor-
mance dataset, the performance metrics, and the classifiers
used will be described. Further details of SEDG framework
and deep generative models will be discussed in Section 3.
In Section 4, the results are presented and evaluated.

2. PRELIMINARIES
In this section, we will discuss the details of the Student
Performance Dataset from [5], the performance metric, and
the classifiers used to test the SEDG framework introduced
in this paper. The training methods and implementation
decisions will also be described.

2.1 Student Performance Dataset
The dataset provided by [5], can be used to predict student
performance, or the final grade, on a scale from 0 to 20.
The data was collected from two Portuguese secondary level
schools, and has 649 samples of 32 features. In Figure 1, we
show the class imbalance in the dataset, skewed centrally as
mentioned in Section 1. In Figure 2, we show the distribu-
tion of features in the dataset, where some features, such as
parent’s cohabitation status, extra paid classes, and extra
educational school support, also demonstrated imbalance.
Further information on the meaning of these features to can
be found in [5]. We will not opt to use the binary or five-
level classification found in other works on this dataset, but
will adhere to the the 20 classes preset. While regression

Figure 2: Feature Distribution: From the student perfor-
mance dataset, we can see an imbalance in some of the dis-
tribution of feature values.

methods can be used, we stuck to classification methods to
better distinguish improvements in individual target values.

2.2 Performance Metrics
It is important to consider an appropriate performance met-
ric for datasets with class imbalance, as [12] found there to
exists an imbalance in the performance itself: a relatively
high predictive accuracy for the majority classes and signif-
icantly lower in the minority classes. Thus, if we consider
traditional classification accuracy to evaluate the model’s ef-
ficiency, we would obtain an overly optimistic belief in the
classifier. Thus, we consider using Area under Curve (AUC)
on the Receiver Operating Characteristic (ROC) curve. The
ROC graph is used to show the trade-off between true posi-
tive and false positive error, and is represented in the ROC
space. A mapping to the ROC space requires the true posi-
tive rate (TPR), or more commonly known as the sensitivity,
and the false positive rate (FPR), or more commonly known
as fall-out. For multi-class settings [11], we can use an one-
vs-rest paradigm, and either obtain the AUC scores at the
class level, or aggregate with or without class weighing to ob-
tain a micro-AUC or macro-AUC score respectively. When
we view at a class level, we call this AUC-class score.

2.3 Classifiers
We will use three traditional machine learning classifiers
(support vector machines, random forest, gradient-boosted
decision trees/XGBoost) and an neural network architecture
which we will denote as NNModel.

Support vector machines (SVM) [9] are optimal-margin clas-
sifiers that seek to find the hyper-plane that maximize the
geometric margins between binary classes. In a multi-class
setting, we can proceed by using an one-vs-rest approach,
where the maximum score from n SVMs, where each SVM



Figure 3: NNModel Block Diagram: In the diagram, the in-
put is composed of k features. The input data is first mapped
into embeddings, then passed into the processing component,
which has N LRND blocks, denoted as the dotted block. To
obtain the final prediction for a multi-class classification, the
output is transformed using a softmax activation.

is trained on masking all but one class to formulate a binary
setting, is selected, or an one-vs-one approach, where similar
to one-vs rest, we formulate a binary setting, but with pairs
of classes instead. Decision trees [14] are tree-based classi-
fier that create binary splits based on a condition on the fea-
tures that maximizes information gain, a metric of weighted
entropy. Random forest [3] is a bootstrap aggregation, or
bagging, algorithm using decision trees, where n learners
learn on bootstrapped subsets of the dataset and are also
limited to a subset of features it can split on. Thus, infer-
ence of random forest is run on majority vote of the learners.
XGBoost [4] is a gradient boosting algorithm using decision
trees, where learners are introduced to additively correct
errors of trained learners. Gradient boosting refers to cor-
recting the errors through gradient learning when adding
new learners [6]. For our experiments, the neural network
architecture we call NNModel is a multi-layer perceptron
model that is sequentially made up of N LRND blocks, seen
in Figure 3. The LRND block is composed of a linear layer,
rectified linear activation, batch normalization, and followed
by a dropout layer. This model is used for classification, and
its parameters are optimized using gradient learning on cross
entropy loss, seen in Equation 1, where p is the true, target
function and q is the hypothesis function, and an Adam op-
timizer scheduled to reduce and anneal the learning rate on
plateaus by an order magnitude.

L(p, q) = − 1

N

∑
∀x

p(x) log(q(x)), |x| = N (1)

3. SYNTHETIC EMBEDDING-BASED
DATA GENERATION

We will describe the SEDG approach step by step, dividing
the discussion into 4 chronological parts: sample selection,
feature selection, feature modification and synthetic sample
usage. In each step, we offer various design considerations
that we have tested. For future works, we encourage new
variations and designs of this general framework. We will
then write on deep generative models in the context of the
SEDG framework.

3.1 Sample Selection
We must first consider how to select the samples from the
original dataset to base the synthetic samples on. We can set

how many samples k we want to select to be fixed constant
or stochastically chosen within a defined range.

3.1.1 Random Sample Selection
Naively, we can randomly select k samples from the entire
dataset D, all with equal probability. Once the samples are
selected, we place them into a sample pool, S, that will be
used to generate the new synthetic samples. This approach
will be referred to as random sample selection.

3.1.2 Partition-based Sample Selection
We can define a sample selection approach that partitions
the dataset D and select a member Mi of the partition
P = {M0,M1...} to sample from. The member selection can
occur at a probability p or be deterministic. The member
will be stochastically sampled from, with or without replace-
ment. Consider we want k samples from the datasets, we can
implement a partition P , where the equivalence relation is
defined by the samples’ associated class. We set each mem-
ber of the partition Mi ∈ P to be associated to a selection
probability pi proportional to their cardinality pi ∝ |Mi|.
The selection probability represent how likely the member
will be selected. We choose to define the surjective mapping
from the partition P = {M0,M1...Mn} to the probability
distribution p̄ = {p0, p1...pm} with a hashmap for simplic-
ity. A special case would be to deterministically select the
member Mi based on the cardinality, where |Mi| ≥ |Mj | for
all j ∈ [0, n]. Once a member Mi is selected, we sample m
examples from the set, where m ≤ k. The value of m, simi-
lar to the value of k, is a hyper-parameter. The m samples
are stochastically selected from M by performing random
sample selection, and we add this to our sample pool S.
We repeat this process until |S| = k. This approach will
be referred to as partition-based sample selection. We note
that this approach is dependent solely on the dataset, and
remains entirely independent on the classifier.

3.1.3 Performance-based Sample Selection
We formulate a sample selection approach to select samples
based on the classifier’s performance, similar to concept of
boosting. Specifically, we can associate higher selection like-
lihoods for samples the learner has the largest margin for
error or uncertainty. In this context, we can consider clas-
sification accuracy to quantify error and uncertainty. Thus,
we can place the highest probability of selection to the sam-
ples that were misclassified, and rank the correctly classified
samples based on the classifier’s certainty of the prediction.
So, given a classifier C and an loss function L(C, s), where
s ∈ S is a sample belonging to the training set S, we let the
selection probability pi for xi to be greater than the selec-
tion probability pj for xj if and only if L(C, xi) > L(C, xj).
The loss function returns a scalar value that represents the
correlation between the target and prediction values. This
approach will be referred to as performance-based sample se-
lection. We note that this approach, in contrast to partition-
based approach, is dependent on the classifier, thus also re-
quires trained model for its operation. Consequently, the
performance-based sample selection method is more compu-
tationally costly.

3.1.4 Partition-Performance Sample Selection



We now can formulate a selection method that incorporates
from both partition and performance sample selection ap-
proaches. In this paper, we use the class-AUC score to do so.
We first partition as described above and use the class-AUC
score as our uncertainty metric to develop a selection prob-
ability distribution to select the member to sample from.
Thus, we implement a class partition to first select a mem-
ber to sample from, and we incorporate the AUC score from
the classifier to develop the probability associated to mem-
ber selection. We call this the partition-performance sample
selection approach.

3.2 Feature Selection
At a more granular level, we can think of every sample
Si ∈ S̄ from the dataset D, where S̄ ⊆ D to be made up of
features. For example, a sample Si = {f i1, f i2, f i3..., f in} can
be defined to be a set of features where |Si| = n. We define
equality as Si = Sj if and only if f ik = f jk , ∀k ∈ Z. After
sample selection, we can modify the selected samples to gen-
erate new samples. Thus, given some mapping φ from Si to

S′
i where φ : {f i1, f i2, f i3...} → {f i

′
1 , f

i′
2 , f

i′
3 ...} would provide

us new samples S′
i, where S′

i 6= Si. But in order to modify
these features, we must consider how to select which features
to modify efficiently as to appropriately increase variance in
the dataset without creating class overlaps. But, to modify
the samples, we must first select the features of the sample
that we wish to adjust. We will discuss three approaches to
select features, which we will call random, imbalance-based,
and importance-based feature selection approach. We can
label the imbalance-based and importance-based feature se-
lection methods together and classify them as weighted fea-
ture selection.

3.2.1 Random Feature Selection
The random selection approach, similar to random sample
selection, stochastically sample a subset of feature f̄ i ⊆ Si =
{f i0, f i1, f i2...f ik}, where |f̄ i| ≤ |Si|, with all features with
equal probability. The number of feature selected k = |f̄ |
can be fixed or randomly chosen per sample.

3.2.2 Imbalance-based Feature Selection
We can weigh the feature selection based on a metric based
in feature value imbalances, as seen in Figure 2. We intro-
duce a metric that quantifies this imbalance by using the
following method, which differs from past works [17]. We
first create an nested set c = {c0, c1...} where each ci is a set
of counts that represent the number of examples that con-
tains each unique feature value for feature fi. For clarity,
for sample Si, |c| = |Si|. Then, for each ci ∈ c, we cluster
on a 1-dimensional space using a clustering method. For ex-
ample, if we use the k-means algorithm, we can obtain two
centroids to obtain the ratio ri to be set to the difference
between the coordinate of the two centroids and the maxi-
mum count in ci. In the end, we obtain a vector of ratios
R = {r0, r1...}, which we normalize to treat as a probability
distribution to select subsets of features. This approach is
largely motivated to place higher emphasis on more imbal-
anced features, and thus attempting to balance all features’
value representation.

3.2.3 Importance-based Feature Selection

Figure 4: Selection distribution from weighted feature selec-
tion methods for classifiers.

The feature importance approach creates a probability dis-
tribution p̄ based on feature importance, which will be used
to select the features. Feature importance provides insight
into the relationship between the predictive system and the
data, and how much significance each feature in the data
may have on the overall system’s performance at the given
task at hand. We will consider three approaches to calculate
and obtain the feature importance: mean decrease impurity
importance, permutation importance, drop-column impor-
tance.

Mean decrease, or gini impurity, importance methods rely
on the use of tree-based classifiers, and is calculated by ag-
gregating the gini decreases of each feature. This is criteria
used to determine the splits at every tree. However, [16] has
shown gini impurity importance approach is biased given the
scale of measurement or number of categories of the features.
Additionally, this approach can only be used for tree-based
classifiers, thus will only be consider such models. Permu-
tation importance methods, on the other hand, calculate
the feature importance by evaluating the decrease in perfor-
mance of a trained model on a test set that is shuffled on at
the single feature value of interest. The shuffling process can
be repeated to test multiple permutations of the feature val-
ues. Thus, permutation importance only requires the model
to be trained once, but also needs to use the testing dataset.
Also, this approach can be used for any models. Similarly,
drop-column importance methods obtain the feature impor-
tance using the difference between the baseline performance
of a model, which would trained on the entire dataset, and
the performance of the model that has been trained on a
limited dataset with a single feature value dropped. Thus,
drop-column importance can also be used for any model.
However, we see that drop-column importance is very com-
putationally costly, proportionally to the number of features
in the dataset.

3.3 Feature Modification
We now consider how to modify the selected features op-
timally. We define optimality as maximizing the variance
between the synthetic samples from original samples while
minimizing the class overlap in the new dataset. Our objec-



tive is to maximize the improvements in the minority classes,
since that is the deficient area of performance. To modify
the features, we can naively inject noise to the continuous
features and replace discrete features with sampling, but we
wish to formulate a more targeted approach. In this paper,
we will focus on embedding-based modifications, a search-
based method where we will leverage learned embeddings
to offer insights in how to optimally modify the features.
For future works, we encourage different methodologies to
feature modification.

Embeddings are mappings from the raw feature domain to a
domain that can be more useful and understandable for some
classifier to perform the task at hand. In other words, we
can think of embeddings as optimized pre-processing trans-
formation. We consider two methods of embedding genera-
tion in Section 3.3.1 and Section 3.3.2: weights from trans-
fer learning (WTL) and latent representation from auto-
encoder (LRA). There are many other embedding generation
approaches [1] that have been successfully demonstrated in
field of representation learning.

We now formulate a method for feature modification using
embeddings. Recall a sample S can be thought of as a set of
features f̄s. These features can either be discrete and contin-
uous. We will consider both cases, and discuss how we can
handle each case separately. Assume a set of features f̄d ⊆ S
that was selected for modification is homogeneously discrete,
for each feature fd,i in f̄d, then there exists a set of possi-
ble feature values fd,i can take on yi = {yi,0, yi,1, ...yi,k}.
We can sample a subset ci of yi, where |ci| ≤ |yi| and if
fd,i = yi,m then yi,m 6∈ ci. If the search space for unique fea-
ture values yi is small enough, we can try all possible values
for fd,i, however if it is large, then we could sample a subset
as mentioned. Given the embedding mapping φi : yi → Ei,
we calculate the similarity score between φi(fd,i) and φi(yi,j)
for all yi,j ∈ ci, and replace the feature value with the one
with the highest similarity score. We repeat this process
for every features in f̄d. In other form, given a embed-
ding mapping φ : S → E, where the input is the entire
sample, we will again follow the same procedure, however
we must compare φ(S) and φ(S′) where S = {f0, f1...fi, ...}
and S′ = {f0, f1...f ′

i , ...} where f ′
i ∈ ci. When we repeat this

process for each feature in f̄d, we can choose to replace S to
the updated S′ for the proceeding feature modifications, or
choose not to replace S. To place higher emphasis on lower
class overlaps, we can place a soft constraint on the similar-
ity score using the mean similarity score from most similar,
or randomly selected, samples to S from different classes. To
place higher emphasis on class variance, we can set a thresh-
old value for the similarity score, or set a soft constraint on
the similarity score using the mean similarity score from dif-
ferent samples from the same class as S. Now we assume a
set of features f̄c ⊆ S that was selected for modification is
homogeneously continuous. For each element fc,i in f̄c, we
define a range with a fixed step yi = {yi,0, yi,1, ...yi,k} where
fd,i ∈ (yi,0, yi,k) and yi,0 < yi,k. Then, we proceed similarly
to the discrete feature case for feature modification.

3.3.1 Weights from Transfer Learning
The WTL approach consists of learning the embedding map-
ping φ through training an model F on some relevant task.
For example, we choose the task to be classification of stu-

dent performance. We note that both φ and F are param-
eterized functions by their own independent weights θφ and
θF . Thus, inference on the model can be seen in Equation
2, where ŷ is the prediction, and x is the input data.

Ê = φθ(x)ŷ = FθF (φθ(x)) (2)

Following the specification from the example above, a classi-
fier F and the embedding mapping φ can be optimized using
the same loss function L, defined in Equation 1. With gra-
dient learning, the weight updates can be seen in Equation
3.

θφ = θφ −∇θφL(y, ŷ)

θF = θF −∇θFLF (y, ŷ)
(3)

3.3.2 Latent Representation from Auto-encoder
Auto-encoders are parameterized functions learn to com-
press and decompress the input data using unsupervised
learning. The architecture thus has a bottleneck structure.
Let the set of layers l = {l0, l1...ln} be the layer that make
up the autoencoder, and the cardinality |li| for i ∈ [0, n] be
the number of parameters in layer li. Given 0 ≤ a < c ≤ n
and b ∈ (a, c), there exists an unique lb such that |lb| < |la|
and |lb| < |lc|, where we will refer to lb as the bottleneck
layer. We define φ = {l0, l1...lb} and D = {lb+1, lb+2...ln}.
The aim of the autoencoder is to accurately build a recon-
struction of the input given this decompression. Inference
on auto-encoders can be seen in Equation 4, where x̂ is the
prediction, and x is the input data.

Ê = φ(x)

x̂ = D(Ê)
(4)

Auto-encoders are optimized given the reconstruction loss
L, and the target is the input data x. Typically, the loss
function L will compare the input x to the predicted value
x̂ directly, using a function like mean-square error or cross
entropy. If gradient learning is used, the weight updates can
be seen in Equation 5.

θφ = θφ −∇θφL(x, x̂)

θD = θD −∇θDL(x, x̂)
(5)

Once the auto-encoder is optimized, we can export the com-
pressing subset of layers φ as the embedding mapping. We
call this procedure LRA.

We also consider variational auto-encoders (VAE), which
follows the same inference and optimization methods, how-
ever, we represent the bottleneck layer lb as a probability
distribution, often a Gaussian N(µ, σ). Thus, the input
of layer lb+1 will be samples from the distribution from lb.
The loss function used is the empirical lower bound (ELBO)
loss, which combines the reconstruction loss normally used
in auto-encoders and the Kullback–Leibler divergence loss



term KL(Pφ(z|x), PD(z)), where φ is a mapping that uses
the layers {l0, l1, ...lb}, D is a mapping that uses the layers
{lb+1, lb+2, ...ln} and z is the latent space representation, or
the output of the φ. Thus, z will be considered to be the
embedding of the sample.

3.4 Synthetic Sample Usage
Once we obtain the synthetic samples, we now must decide
how the samples will be utilized. We evaluate two consider-
ations: cold or warm start and iterative or non-iterative.

Initially, the model learns on the training set Dtrain. Then,
the set of synthetic samples Ds,t is appended to the train-
ing set Dtrain. We can choose to either re-initialize the
weights of the model, which we will call cold-start, or keep
the weights from the previous training cycle, which we will
call warm-start. By doing cold starts, we remove the bias
from the previous dataset, but lose what was learned from
that dataset. We consider whether to repeat the process of
creating a new Ds,t+1 from the newly trained model, mak-
ing the process iterative, or end the training cycle entirely,
making the process non-iterative. If the process is iterative,
we can choose to dropout and replace the previous Ds,t par-
tially or wholly with Ds,t+1, or append Ds,t+1 to the current
Ds,t at each step using a finite queue system. Another con-
sideration is whether to re-sample the distributions used for
sample and feature selection.

3.5 Deep Generative Models
In this section, we will discuss deep generative models (DGM)
in context with the SEDG framework.

Generative models can model the conditional probability
P (x|y), the joint probability P (x, y) or the prior P (x). A
DGM is expressed using a deep neural network parameter-
ized by learnable weights θ. Equivalently, DGM are map-
pings fθ : y → x, fθ : x→ x, or fθ : x, y → x. In context of
SEDG, DGM can be viewed as an end to end approach to
generating synthetic samples, bypassing the need for Section
3.2, and 3.3. For our purposes, the objective is to learn how
to generate new samples following the definition of optimal-
ity discussed in Section 3.3. We can set the input of the
DGM to either be random noise, or samples selected using
methods from Section 3.1. A potential issue is the possi-
bility of the generative model learning to map the input to
itself without any variance, especially for traditional auto-
encoders and given the nature of the optimization. This
paper does not propose a proven solution to this issue. In
fact, we address this issue by simply preventing over-fitting
with early stopping with heuristics and holding out a subset
of the training dataset, discussed in further detail in Section
4. Now, we will discuss two main approaches to training
DGMs: unsupervised and adversarial training.

3.5.1 Unsupervised Training
Unsupervised training refers to learning the prior P (x), thus
in more practical terms, optimizing the model using only the
input x. An example of unsupervised training is training
auto-encoders, where we treat the input as the output as
well. Instead of exporting the embedding function, as seen
in Section 3.3.2, we treat the auto-encoder as the generator
model fθ : x → x̂, where x̂ is the synthetic sample. In this

Figure 5: Percent error distribution on the testing set over
all target classes averaged over classifiers from Section 2.3

paper, we will solely evaluate DGMs using auto-encoders
and VAEs.

3.5.2 Adversarial Training
Adversarial training adds onto unsupervised learning with
the discriminator model, which learns to discern real or fake
data. At a high level, the generator model attempts to trick
the discriminator model by learning how to generate samples
that are realistic. We will consider the traditional approach
and the conditional approach.

The traditional approach is to train the generator and dis-
criminator models separately using unsupervised and super-
vised learning respectively. The training for the generator
model will follow the procedure discussed in Section 3.3.2,
however we aggregate the discriminator’s inaccuracy and the
reconstruction loss, scaled by α and 1−α respectively, where
|α| ≤ 1, to obtain our generative model’s loss. The train-
ing of the discriminator will optimize the classification loss
between real and fake data using the dataset and the genera-
tor model. The conditional approach follows most of what is
stated in the traditional approach, however we aim to have
both the generative and discriminative models conditioned
on the class label, y. Similar to practices discussed in [19],
we can append y to the input paired with an embedding
layer, and is trained accordingly.

4. RESULTS
In this section, we will evaluate the methods discussed in
Section 3 using the student performance dataset and clas-
sifiers described in Section 2. We will compare our re-
sults with other balancing methods from past works, such
as random oversampling, random under-sampling, SMOTE,
Tomek Links, extended nearest neighbors, and combinations
methods of these approaches. We see that if the classifiers
are trained on the dataset normally, optimizing the cross
entropy loss, we obtain performance seen in Figure 5, which
follows our hypothesis of disproportion performance between
minority and majority classes. We seek to mitigate these ef-
fects of class imbalances with the SEDG framework we have
proposed.

We now will discuss our results from our experiments us-
ing the SEDG and DGM methods mentioned in Section 3
and using the NNModel and the traditional models men-
tioned in Section 2.3 as the classifier. For all of the exper-



Model % improvement
OvR SVM 8.4615
OvO SVM 3.0769

Random Forest 13.846
XGBoost 4.2307

Table 1: Performance improvement when using trained NN-
Model’s embedding as data pre-processing to following clas-
sifiers. In the table above, OvR SVM represents one-vs-rest
SVM and OvO SVM represents one-vs-one SVM.

iments below, we set the number of synthetic samples that
will be generated to 100 samples. All recorded improve-
ments are on the testing set, which encompasses 40% of the
dataset. We define % improvement PI in Equation 6, where
M(ysyn, ŷsyn) is the score from some performance metric M
from the dataset with the synthetic samples, and M(y, ŷ) is
the score from the performance metric M from the original
dataset.

PI = M(ysyn, ŷsyn)−M(y, ŷ) (6)

We consider using the NNModel defined in Section 2.3 as
our classifier, and we will test our embedding-based SDG
methods and DGMs on the student performance dataset.
In Figure 6, we find that the SEDG method outperforms all
traditional sampling methods for all performance metrics
when using NNModel as the classifier. Even given 50 inde-
pendent trials to run, many of the classic sampling method
perform poorly, some even harming the performance. Most
notably, the class-AUC score demonstrate a significant pos-
itive difference in targeting the minority classes when using
SEDG methods.

Now we consider the traditional classifiers seen in Section
2.3, and how SEDG methods affect their performances. First,
we show that when we transfer the embeddings from the
deep models, to act as data pre-processing mappings to these
learners. We find their performance increases noticeably, as
seen in Table 1. This supports and allows us to proceed to
use embedding-based SDG methods without worries of the
embeddings being incompatible to these classifiers.

In Figure 7, we find that the SEDG method, while it does
not excel in accuracy and macro-AUC score % improvements
for traditional machine learning classifiers, it is able to tar-
get the minority classes more effectively in class-AUC score
than all other methods. Additionally, compared to the other
sampling methods, the results show when considering all the
performance metric, SEDG and DGMs performs the best as
other approaches that may excel in one metric often fail to
replicate the same success in other metrics.

Here, we discuss design considerations made in Section 3
from what was demonstrated in these trials. We found
partition-performance based sample selection demonstrates
highest improvements in classification accuracy over other
sample selection methods. However, based on the macro-
AUC and class AUC scores, there doesn’t seem to be a
clear sample selection method that outperforms the others,
all performing comparatively targeting the minority classes

than the traditional sampling methods.

We also remark that DGMs demonstrates very minimal im-
provements in predictive accuracy and macro-AUC score
when using the NNModel classifier. We assume this to be
related to the issue of over-fitting, which we accommodated
for by employing early stopping with basic heuristics: if the
majority of training data (≥ 50%) share ≥ 80% of the fea-
tures to the target sample, then we end training. We sug-
gest for future works to handle this issue of over-fitting in
the context of SDG more efficiently.

We further confirm that weighted feature selection is more
effective than random feature selection in all performance
metrics. The feature imbalance approach performs better in
all metrics, with permutation importance and drop-column
importance, the two feature importance methods, perform-
ing similarly in predictive accuracy. We find that for both
accuracy and macro-AUC score, using the embedding ma-
trix from the NNModel outperform the other methods, with
VAE being a close second in terms of macro-AUC score. For
class AUC scores, we find that VAEs and embedding matrix
from NNModel improve the scores of the minority classes
the most.

4.1 Understanding Student Performance
In this section, we investigate the synthetic samples more
in-depth for each class to improve our understanding for stu-
dent performance by showing how likely certain features are
allowed to change without much significant changes to the
data distribution, similar to feature importance. However,
with synthetic samples, we can also see how we can change
these features, thus seeing possible feature value candidates.

In Figure 8, we use a VAE as DGM to create 100 synthetic
samples for each class to show how likely each feature in each
class is subject to change, and what feature values is reason-
able. For example, we can see for low performing students,
the likelihood of changing absences is low, with greater num-
ber of absences being a possible candidates. We also see that
some features, such as travel time, school supplies, and fam-
rel, are highly susceptible to change, inferring to their lack
of distinction between possible candidates. Thus, we can
leverage this method for feature understanding at a class
level. Its usage can inform educators further on different
performing students.

5. CONCLUSION
In this paper, we proposed a general framework for embedding-
based SDG and investigated DGMs for academic perfor-
mance tasks. We tested the SEDG approach and DGMs
against standard re-sampling methods, and found greater
improvements in our proposed approaches in all performance
metrics when we use our NNModel as the classifier and a
more comprehensive improvement when we use traditional
machine learning classifiers. We also introduced a technique
for greater interpretibilty and insight into the dataset using
a DGM by looking at the synthetic samples generated and
seeing how likely each feature is modified and to what values
it can take on for each class.
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Figure 6: Performance improvement comparing traditional sampling methods against DGMs and SEDG using NNModel as
classifier. The graphs above use the following notation: score refers to classification accuracy, auc macro refers to macro-AUC
score, and auc class refers to AUC score per class.

Figure 7: Performance improvement comparing traditional sampling methods against DGMs and SEDG with traditional machine
learning classifiers. The graphs above use the same notation as Figure 6.

Figure 8: Likelihood of feature modification and feature value candidates using generative VAE from 100 synthetic samples per
class.
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