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ABSTRACT 
Previous studies on the accuracy of knowledge tracing models 
have typically considered the performance of all student actions. 
However, this practice ignores the difference between students’ 
initial and later attempts on the same skill. To be effective for uses 
such as mastery learning, a knowledge tracing model should be 
able to infer student knowledge and performance on a skill after 
the student has practiced that skill a few times.  However, a 
model’s initial performance prediction – on the first attempt at a 
new skill – has a different meaning. It indicates how successful a 
model is at inferring student performance on a skill from both 
their performance on other skills and from the difficulty and other 
properties of the first item the student encounters. As such, it may 
be relevant to differentiate prediction in these two contexts when 
evaluating a knowledge tracing model.  In this paper, we describe 
model performance at a more granular level and examine the 
consistency of model performance across the number of student 
instances on a given skill. Results from our research show that 
much of the difference in performance between classic algorithms 
such as BKT (Bayesian Knowledge Tracing) and PFA 
(Performance Factors Analysis), as compared to a modern 
algorithm such as DKVMN (Dynamic Key-Value Memory 
Networks), comes down to the first attempts of a skill. Model 
performance is much more comparable by the time the student 
reaches their third attempt at a skill. Thus, while there are many 
benefits to using contemporary knowledge tracing algorithms, 
they may not be as different as previously thought in terms of 
mastery learning.  
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1. INTRODUCTION 
Knowledge Tracing (KT), attempting to measure student 
knowledge through performance during learning, is a critical 
component in modern intelligent tutoring systems and adaptive 
learning systems [18]. These models use students’ previous 
performance to predict their proficiency on latent knowledge and 
infer their likelihood of success in future attempts within the 
learning system.  
For well over a decade, Bayesian Knowledge Tracing (BKT; [5]) 
was the dominant algorithm in research on knowledge tracing – it 
remains the dominant algorithm in use in systems used at scale by  

 

students today. Later on, two waves of competing algorithms 
emerged – a first wave around 2010, including many 
psychometrically-influenced algorithms such as Performance 
Factor Analysis (PFA; [17]) and a second wave in the mid-to-late 
2010s based on neural networks, including Deep Knowledge 
Tracing (DKT; [19]) and Dynamic Key-Value Memory Networks 
(DKVMN; [26]). Work over the last decade has shown that variants 
of BKT and PFA that take individual differences and timing into 
account perform better  [9, 15, 25]. The current wave of algorithms 
based on neural networks, such as DKT and DKVMN, have 
reported further improvements to model fit [12, 26].  

The comparisons between these algorithms have generally focused 
on metrics comparing overall success at predicting on later items, 
within the learning system applied to held-out students. In these 
comparisons, multiple large data sets are typically used, but 
performance is considered evenly across the data set. However, 
there are some reasons to think this may be a concerning practice. 
For one thing, even though the data sets used are typically large, 
these papers generally do not report if samples are large for all skills. 
Coetzee [4] notes that BKT parameter estimation is more precise 
for larger data sets than smaller data sets. Furthermore, Gervet [10] 
concluded that algorithms based on logistic regression, such as PFA, 
tend to underfit large datasets, while deep learning based 
algorithms, like DKT, tend to overfit larger datasets.  

More concerningly, many data sets used in student modeling have 
skills which have only been encountered once or twice by many 
students, either due to stop-out [3] or rarely-tagged secondary skills. 
Slater and Baker [22] suggest that BKT models cannot be reliably 
fit unless there is sufficiently large pool of students who have at 
least three opportunities to practice each skill. As such, large 
proportions of existing data sets may reflect a seeming special case. 
Indeed, accurate prediction on these items likely reflects something 
different than accurate prediction after a student has had more 
practice. When a student has not yet worked on a skill, predicting 
their performance at this point represents what is referred to as a 
“cold start problem” – needing to perform well before having 
sufficient data for the current student [24]. It is possible that some 
more recent algorithms may perform better in these situations than 
earlier algorithms, either by using information from the student’s 
performance on other skills or information on the difficulty or other 
properties of specific items. However, this better performance may 
reflect something different than the student’s knowledge of the 
current skill being studied. As such, it may be meaningful to 
separate out cold start situations (for a given student and skill) from 
situations where the model has sufficient data to estimate the 
current skill by itself, when comparing KT algorithms. 



 

 

In this paper, we study how the performance of three KT algorithms 
changes, depending on how much data the algorithms have on the 
current student’s performance on the current skill. We compare the 
classic algorithms BKT and PFA to a more recent neural network-
based algorithm, DKVMN, using the ASSISTments 2009-2010 
Skill Builder data [7].  Within each model, the predictive 
performance, determined by AUC ROC (Area Under the Receiver-
Operating Characteristic Curve) and RMSE (Root Mean Square 
Error) was analyzed at students’ first through eighth encounter on 
a skill, reflecting the changes in model performance as students 
practice a skill more. We conclude with a discussion of the 
implications of our finding, for both the evaluation and use of 
knowledge tracing models. 

2. METHODS 
2.1 Data 
In this study, we utilized the ASSISTments Skill Builder 2009-
2010 dataset [7], using the updated version which represents an 
item requiring multiple skills as a single data point [23]. This 
specific dataset was chosen because it has clearly defined skills and 
because this dataset had frequently been used to compare KT 
models in previous research [11, 13, 14, 23, 27].  
In the data preprocessing stage, we removed items not linked to any 
skill. Each student attempt was annotated with how many 
opportunities to practice the relevant skill(s) the student had 
encountered so far – i.e., the first instance means the learner is 
encountering a skill for the first time, the eighth instance indicates 
that the learner is encountering the skill for the eighth time. The 
resultant data set consisted of 4,151 students who attempted 16,891 
unique problems on 101 skills, resulting in 274,590 responses. 
While all the skills were included in model training, only the four 
most common skills are discussed below (see Table 1). 

While using the ASSISTments platform, students have to 
correctly answer n problems in a row to achieve mastery of a skill 
(where n is set by the teacher but is usually three) and can only 
then move on to another skill. Given the design of the platform’s 
three-in-a-row mastery learning approach, there is a drop in 
sample size as the number of instances increases (a common 
pattern in adaptive learning systems). There is also attrition due to 
stop-out, where students stop working on a problem set without 
mastering it [3]. Table 1 shows that across all four skills, the 
number of students encountering a specific skill n times decreased 
with instance. Of the four skills, an average 20% and 45% 
attrition rate is observed on the third and eighth instances, 
respectively. 
   
Table 1: Number of students per instance in each skill 

Skill Name 1 2 3 4 5 6 7 8 

Addition and Subtraction 
Fractions 

1353 1066 978 920 836 756 692 625 

Addition and Subtraction 
Integers 

1226 1021 790 693 640 579 510 460 

Conversion of Fractions 
Decimals & Percents 

1225 1145 1121 1034 982 928 852 781 

Equation Solving Two or 
Fewer Steps 

961 877 857 821 795 745 722 690 

 

2.2 Model Construction 
We constructed the following three knowledge tracing models 
with the preprocessed ASSISTments 2009 dataset: BKT, PFA and 
DKVMN. Each model was implemented with 5-fold student-level 

cross-validation. For the cross-validation, the dataset was split 
into five folds at the student level. Four folds were used to train 
the model and the trained model predicted student’s performance 
in the 5th fold. Each part acted as the test set once. Predictions in 
the test sets were combined and used to compute AUC and RMSE 
for each opportunity to practice, within each skill. For 
comparability, the original skills were used to calculate 
opportunities to practice rather than the new skills derived by 
DKVMN. The folds were kept the same across models, reducing 
the likelihood of randomly favoring one algorithm over another. 
The metrics were averaged across the four skills in each instance 
for each model. 

BKT and PFA predict students’ success at each attempt based on 
their previous performance on the skill. When predicting a 
student’s success on the first attempt of a new skill, without 
having any prior data, the initial prediction made by BKT and 
PFA reflect the overall student performance across the entire 
(training) data set on that skill, instead of the individual student’s 
knowledge level on the skill. By contrast, the deep learning model 
DKVMN utilizes all of a student’s historical data and exploits the 
underlying relationships between concepts. This transferability of 
prediction across skills can be expected to give the algorithm an 
advantage of making the initial predictions on a newly 
encountered skill. In fact, [14] studied the effect of interaction 
among skills in DKT, a closely-related deep learning model, and 
compared it to BKT. By comparing different approaches to 
leverage skill data, they concluded that DKT’s better performance 
may be largely due to their use of a student’s performance on one 
skill to predict performance on another skill, whereas skills are 
strictly separated in BKT. PFA occupies a middle ground, as skills 
do not directly influence each other, but their combinations in the 
training set may influence the model parameters found during 
fitting.  

The two widely studied deep learning algorithms DKT and 
DKVMN utilize neural networks to discover underlying 
relationships among skills and items when predicting student 
performance. Because of this, both algorithms have shown 
significant improvements in model fit compared to traditional 
algorithms. However, DKT maps the relationships on item level 
while DKVMN fits a skill model from scratch by considering the 
relationship among skills and items. Given the purpose of the 
study is to understand whether transferring information between 
skills influences a model’s accuracy during the first few 
opportunities, DKVMN is a closer comparison to BKT and PFA 
within the class of deep learning based KT algorithms.      

2.2.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT; [5]) inputs performance into 
a simple Markov model that is also a Bayesian Network [20]. To fit 
BKT, we applied BKT-Brute Force [1] to the data set with a floor 
of 0.01 for all probabilities and a ceiling of 0.3 for guess and slip to 
avoid model degeneracy [2]. The algorithm produced estimations 
for guessing, slipping, initial knowledge, and learning transition 
probabilities for each of the skills, which were then used to predict 
the probability of success for each student on each opportunity to 
practice each skill.  
2.2.2 Performance Factors Analysis 
Performance Factors Analysis (PFA; [17]) is a model that predicts 
learner performance using a logistic function that models changes 
in performance through learners’ success and failures within a skill. 
In this study, following the formulas in [17], the basin hopping 
algorithm was used to fit the model to obtain the optimal parameters. 



 

 

A set of parameters for success, failure and skill difficulty was 
derived for each skill, which were then used to compute the 
probability P(m) that the student would perform correctly, for each 
student at each opportunity to practice each skill.  

2.2.3 Dynamic Key-Value Memory Networks 
Developed based on neural networks, Dynamic Key-Value 
Memory Networks (DKVMN; [26]) employs two matrices that 
capture states and the relationships between skill and student 
mastery to predict performance on items and estimate mastery on a 
set of automatically-derived skills. We utilized code from Zhang et 
al. [26] to implement the DKVMN model and used the set of 
parameters that produced the optimal outcome for the 
ASSISTments 2009 dataset in the study. The model outputs a 
probability of success for each student at each problem. 
3. RESULTS 
3.1 AUC Results 
Table 2 summarizes the average AUC results for each of the eight 
opportunities to practice each skill and the combined AUC for 
opportunities three through eight in the BKT, PFA, and DKVMN 
models. Additionally, the overall AUC across the first eight 
opportunities is also reported for the four skills. Note that the 
overall AUC only includes the targeted four skills in the first eight 
attempts and therefore, should not be considered to be the overall 
AUC of the algorithm across the entire data set.  
For the first eight instances, a general upward trend is observed in 
AUC for all three models. Starting at the first instance, the AUC 
value for BKT is 0.49, PFA is 0.52, and DKVMN is 0.65. At this 
point, the AUC value for the DKVMN model is much greater than 
that of other two models, by approximately 0.15. Compared to BKT 
and PFA, DKVMN is better at making the initial prediction on the 
very first time a student sees a skill. In fact, at this point, both BKT 
and PFA are performing at or below chance.  

In the following instances, the values of BKT and PFA became 
closer to the performance of DKVMN. In fact, by the fourth 
instance, the models’ AUC values were fairly similar, having a 
range of 0.65-0.70. From the fourth opportunity to the eighth, the 
AUC values increased by 0.02 to 0.06 across skills. Performance 
stayed similar between algorithms at this point, but DKVMN still 
tended to achieve slightly higher performance. Across the 3rd-8th 
opportunities, DKVMN averaged AUC 0.02-0.05 higher than the 
other two algorithms (0.70 versus 0.68 for BKT and 0.65 for PFA). 
These trends can be seen in Figures 1-3.  

Table 2: Average AUC values in each instance 

Model Type 1 2 3 4 5 6 7 8 3-8 
All 

(1-8) 

BKT 0.49 0.63 0.68 0.68 0.68 0.68 0.66 0.70 0.68 0.66 

PFA 0.52 0.59 0.63 0.65 0.65 0.65 0.66 0.71 0.65 0.63 

DKVMN 0.65 0.68 0.70 0.70 0.70 0.69 0.69 0.72 0.70 0.69 

Figure 1: AUC results for BKT model across instances 
 

 
Figure 2: AUC results for PFA model across instances 
 

 

Figure 3: AUC results for DKVMN model across instances 

 

3.2 RMSE Results 
Table 3 summarizes the average RMSE results for each opportunity 
to practice the skills and the combined RMSE for the 3rd-8th 
opportunities and the 1st-8th opportunities in the BKT, PFA, and 
DKVMN models. Again, the RMSE reported in the table only 
considers the targeted four skills in the first eight opportunities.  

The RMSE demonstrates a downward trend across the first eight 
opportunities in all three models. As RMSE measures the 
difference between actual and predicted values, lower RMSE 
values indicate more accurate predictions. In the first instance, the 
RMSE value for BKT is 0.49, PFA is 0.51, and DKVMN is 0.47. 
As the RMSE value for DKVMN is better than that of BKT and 
PFA, similar to the AUC value, DKVMN is better able to predict 
student knowledge at the first attempt (0.02 better than BKT and 
0.04 better than PFA). 

In the following instances, the values of BKT and PFA became 
closer to the performance of DKVMN. In fact, by the fourth 
instance, the models’ RMSE values were fairly similar, having a 
range of 0.43-0.46. From the fourth opportunity to the eighth, the 
RMSE values in all three models roughly remained the same across 
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skills. Across the 3rd-8th opportunities, DKVMN’s average RMSE 
was similar to BKT and 0.02 lower than PFA (0.44 versus 0.44 and 
0.46). These trends can be seen in Figures 4-6. 
Table 3: Average RMSE values for all models in each instance 

Model Type 1 2 3 4 5 6 7 8 3-8 
All 

(1-8) 

BKT 0.49 0.46 0.44 0.44 0.44 0.44 0.45 0.44 0.44 0.45 

PFA 0.51 0.48 0.46 0.46 0.47 0.46 0.48 0.46 0.46 0.47 

DKVMN 0.47 0.45 0.44 0.43 0.44 0.44 0.45 0.43 0.44 0.45 

 

Figure 4: RMSE results for BKT model in each instance 

 

 

Figure 5: RMSE results for PFA model in each instance 

 

Figure 6: RMSE results for DKVMN model in each instance 

 

 

4. CONCLUSION AND DISCUSSION 
In the last few years, there has been an explosion of interest in new 
variants to knowledge tracing that achieve higher predictive 
performance using neural networks. However, this work has 
generally not yet explored where and when these algorithms 
perform better, and what the implications are for using these models 
in practice. More specifically, previous practices have averaged 
predictions across students’ entire learning history, ignoring the 
difference between the earliest work and later work on a skill.  

In this study, we examined the performance of three KT models, 
BKT, PFA, and DKVMN, across students’ history of work on 
specific skills, and compared how the three models differ in 
predictive accuracy during the earliest and later opportunities to 
practice each skill. With all eight opportunities considered together, 
DKVMN outperformed BKT and PFA in both AUC and RMSE. 
However, DKVMN’s better performance appears to be largely due 
to its initial prediction on the first attempt on a skill, in which 
DKVMN ‘s AUC was 0.16 higher than BKT and 0.13 higher than 
PFA, and RMSE was 0.02-0.04 better. After the first attempt, BKT 
and PFA’s predictive performance improved substantially, and 
model performance became closer across the three algorithms after 
the third attempt, though DKVMN remained slightly better.  
The results suggest that much of the difference in performance 
between these algorithms is due to DKVMN’s ability to make more 
accurate initial predictions by using factors other than mastery of 
the current skill, such as past performance on other skills and other 
students’ performance on the same item. In other words, a 
substantial amount of the difference between algorithms appears to 
be due to factors other than estimating mastery of the current skill 
the student is working on, from their performance on that skill. This 
may be especially true in datasets where students stop-out on 
specific skills [3], or where the skill model is added to or modified 
after the system is built. In these cases, many student/skill 
combinations may only occur once or twice and having relatively 
higher performance on the first attempt will inflate AUC and 
RMSE values for models such as DKVMN. This raises the question 
of what the application is for having better knowledge prediction at 
the first time when a student sees a new skill. This type of 
improvement in prediction may be useful to systems that decide 
which skill a student should work on next (i.e., [6, 28]) but less 
useful in systems that have a predefined order of skills for the 
student to work on (i.e. [5, 8]) and the student does not move on 
until they have demonstrated mastery on the current skill.  
Given the difference in predictive performance between situations, 
it may be appropriate to separate cold start situations (for a given 
student and skill) from situations where the model has sufficient 
data to estimate the current skill by itself when comparing KT 
algorithms. Specifically, we propose that the calculation of 
predictive metrics should separate the predictions on the initial two 
opportunities to practice each skill from the rest. Adopting this 
approach will increase our ability to interpret the difference 
between algorithms and understand how much better a specific 
algorithm will be for specific use cases.  
Two limitations to the current analyses can be addressed in future 
work. First, our recommendations may not be meaningful for all 
learning systems where contemporary KT is used. In specific, some 
systems may not have skill models at all, and may never intend to 
make inferences at the level of interpretable skills. Although these 
systems typically use an entirely different family of KT models (i.e. 
[16, 21]), our recommendations would not be relevant in these 
cases. Second, we have only investigated these issues in the context 
of a single system and a set of skills for which there is extensive 
data, and for three algorithms; the generalizability of the findings 
presented here should be further investigated, using data from other 
learning systems where, for instance, the granularity of the skills 
differs. However, only a limited effort is needed to separate practice 
on early learning opportunities from later learning opportunities 
when calculating model AUC/RMSE. Therefore, it may be 
warranted to adopt this approach and see whether practical 
differences are found for other contexts and algorithms as well. 
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Overall, we find initial evidence that one key factor leading to 
better performance for DKVMN compared to earlier algorithms is 
its performance in situations before a student has had a significant 
opportunity to work on a skill. This result leads to 
recommendations in how to better evaluate KT algorithms and 
suggests that the benefits of this algorithm may be greater for some 
applications (deciding which skill a student should work on next) 
than others (deciding if a student has reached mastery in the current 
skill they are working on). From the results of this study, future 
studies conducting research involving KT models may find it useful 
to calculate performance separately for a student’s initial 
performance and their later performance on a skill; this would 
provide researchers with more information on how their models are 
working, and where their greatest benefits and potential are. 
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