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Abstract
Control systems operate industrial plants to accomplish stakeholder objectives like achieving production targets,
complying with environmental ordinances, handling faults, etc. Such stakeholder objectives get realised by
identifying and executing valid control actions on the plant’s control system. E.g., to achieve fault management a
command is fired to place machines in a fault mode when the plant is under an error state. Arriving at such control
actions is a non-trivial task demanding a detailed understanding of the plant’s structure and behaviour. Besides,
it is also essential to verify the consequences of such control actions relative to other cross-cutting objectives and
plant behaviour. E.g., to fulfil fault management objectives, the action to set machines in fault mode may affect
production goals due to the machine unavailability. Hence, validation of control actions is vital before executing
them using the actual plant’s control system. With digital twin technologies (DT), it is now possible to verify the
implications of such control actions against a plant’s behaviour and objectives in a simulated environment without
affecting the actual plant operations. DTs get developed autonomously as one-off solutions to simulate and validate
plant control actions in the current state of practice, demanding high efforts and domain expertise. Our paper
proposes a knowledge-driven approach enabling automation in DT development. The result of our approach is
an auto-generated digital twin that pro-actively mimics the plant’s control system behaviour and helps with the
validation of control actions before their execution. We use this approach to build three fault management DTs in a
power plant. The application of our approach significantly reduces the manual efforts and development time to
build such DTs.
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1. Motivation

Modern industrial plants execute multiple processes
to accomplish stakeholder objectives like achieving
production targets, managing faults, complying with
environmental regulations [1], and so on. Process ex-
ecution involves a control system[2] orchestrating[3]
the plant components and sub-systems to produce
the desired outcomes for each process. Some of
the primary responsibilities of a control system are :
1) Commissioning and integrating the plant compo-
nents and sub-systems. 2) Identifying and commu-
nicating set points to the components. 3) Receiving
and processing sensor data. 4) Managing states and
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modes of components as well as the overall system.
5) Identifying faults and notifying operators.

Control systems enable industrial processes to
achieve goals e.g., power generation in thermal
power plants, by actuating commands to plant com-
ponents like pulveriser[4], boiler[5], turbine[5], etc.,
taking into account their working states and modes.
It is a common practice to store the list of such appli-
cable commands in a plant operation manual[6]. The
plant operators and engineers refer to such manuals
to identify, decide and execute commands through
the control system. While executing such commands,
the control system ensures that the machines are un-
der appropriate states to accept and process these
commands or else flag them back to the operator or
engineer as inappropriate actions.

Instructions in operation manuals mostly do not
provide any view into the causal effects of command
executions on other processes and their objectives,
as the number of such scenarios can be too large to
incorporate in the operation manual. Plant operators
use their judgment to arrive at such actions based
on their experience in operating plants over time.

mailto:amar.banerjee@tcs.com
mailto:subhrojyoti.c@tcs.com
mailto:barnali.basak@tcs.com
mailto:dhaks.r@tcs.com
mailto:rajesh.natesan@tcs.com
mailto:venkatesh.choppella@iiit.ac
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org


For plants executing multiple processes, manually
understanding the implications of each command
becomes difficult, insufficient, complex and time-
consuming. Emerging digital twin[7] technologies
prove useful to reason about such plant behaviour
for various what-if actuation scenarios[8].

A digital twin(DT) helps to generate an abstract
representation of an operational plant, amenable to
human understanding and reasoning. A DT can
mimic a plant’s behaviour from various aspects, in-
cluding its control system aspect. This makes it pos-
sible for a plant operator to arrive at an appropriate
control action, by executing them in a DT and check-
ing their implications against other cross-cutting con-
cerns such as reliability, compliance, etc. DTs execute
in a sand-box environment[9] making it possible to
try out various actions and observe their implica-
tions within the twin without affecting the actual
plant. An action found suitable on the twin could
then be executed on the existing plant control sys-
tem. For example, a DT for a power plant can mimic
the behaviour of it’s individual components like a
Boiler, Condenser, Turbine, Steam Outlet etc. and
their inter-dependencies E.g. steam is generated in
the boiler which is then used to rotate the turbine to
produce electricity. Each of the components has it’s
own specific individual behaviour that contributes
to the overall plant behaviour. Such abstract mod-
els representing the plant structure, behaviour and
processes to enable reasoning is popularly known
as a Digital Twin of the plant. Digital - because it is
a virtual model residing in a computer and Twin -
because it mimics the plants structure and behaviour
based on realtime data from the actual plant.

In the current practice, DTs are developed man-
ually for specific aspects of a plant (e.g. asset be-
haviour monitoring, fault management, energy flow
and utilization etc.) in an ad-hoc manner, relying
heavily on the knowledge of domain experts. DT
development is a collaborative task carried out be-
tween domain experts, designers, and developers.
The domain experts provide the necessary inputs
to construct DT for the aspect of interest and help
designers & developers realise it in design and com-
puter programs. The implicit domain knowledge
residing with the experts becomes the basis for de-
veloping the DT. The implicit nature of knowledge
constrains its re-use, making the twin development
highly dependent on domain experts and manual ef-
forts. As a result, a DT is typically built from scratch
for each problem, adding more time and cost to the
plant operations management. A typical plant may
need a large number of DTs, can be in hundreds.
Hence, a manual approach towards their develop-
ment can be highly challenging and cost intensive.

This paper proposes a knowledge-driven ap-
proach aiming to achieve the following objectives for
developing a DT. 1) Enable re-use of domain knowl-
edge in DT development. 2) Provide mechanisms to
reduce time and manual efforts in developing DTs.

We implement a framework that exploits the crit-
ical idea of domain knowledge explication and it’s
re-use towards the semi-automated realisation of
control system DTs. The main features of the frame-
work are

1) Domain meta-models to explicate plant’s do-
main knowledge in terms of its structure and
behaviour

2) Knowledge translation mechanisms to translate
plant domain knowledge into a control system
model, an abstract representation of the desired
DT

3) Completeness and correctness validations on the
translated control system model and finally

4) Auto realisation of the final DT from the control
system model.

This paper discusses our approach and the results &
experiences from applying it to build DTs for three
fault management use-cases in a power plant. Our
approach shows significant results and the potential
to reduce manual efforts by over 50% and develop-
ment time by almost 60%.

The paper is structured as follows:- in section 2,
we discuss related work from the literature on build-
ing DTs using knowledge. Section 3 discusses our
architecture to generate a DT from knowledge au-
tomatically. Section 4 discusses the usage of our
approach to semi-automate the development of a DT
to support the fault management aspect of an actual
plant. The discussion provides initial results from
using our approach versus the manual approach
previously used by our engineering teams to build
similar DTs for an existing plant. Finally, in section
6, we conclude the paper and outline future work.

2. Related Work

This section presents a discussion of current prac-
tices, gaps and challenges in DTs development.

The article by Wang et al. studies the application of
DTs for fault detection in smart manufacturing[10]
units. The main recommendations of their study
are:1) Use domain understanding in developing a
digital model of the actual plant. 2) Develop data
analytic strategies to analyse plant operations based
on their objectives, and 3) Create knowledge bases



of operation strategies, actions, faults & errors and
decisions based on historical data provided by tech-
nicians and diagnosticians. . Wang et al.’s approach
also proposes primary elements in developing a DT
like 1) results from analysis of historical data from
plant operations 2) experiences gained from operat-
ing plants , 3) knowledge of the experts working in
various areas of plant operations, and 4) offline data
analysis of operational data to derive new insights.
This approach emphasises the importance of gather-
ing knowledge from historical data analysis results,
experiences and expert recommendations; however,
there is no specific structure suggested in this paper
to capture the knowledge. The approach is human-
centric and requires manual efforts to develop a DT.

Marmolejo-Saucedo [11] describe a case study on
designing and developing a DT for a supply chain
process. The approach highlights key enabling tech-
nologies to build DTs, such as simulators, constraint
solvers, and data analytic tools. Technical and busi-
ness domains experts primarily configure all of these
technologies and tools. Significant manual effort and
practical knowledge go into the design of simulators,
analytics algorithms, data models, and constraint
solvers. This approach focuses on the creation of
technology and tool configuration based on experi-
ence and knowledge. The implementation of the DT
for the supply chain scenario is described as a man-
ual process. The designers use their experience and
domain understanding to design the twin. On the
other hand, developers create suitable algorithms,
data models and configure solvers based on domain
understanding. The approach to build the DT stands
on manual efforts and implicit knowledge, in their
work.

Gabor et al. in [12] propose an architectural ap-
proach for cyber-physical systems and safety engi-
neering. The architecture provides a three-model
concept to design DTs. As per the authors, phys-
ical, cognitive, and contextual(world) models are
essential building blocks for a DT. Physical models
capture the physical entities and interactions in the
cyber-physical system. Cognitive models capture
the emergent behaviour of the cyber-physical sys-
tem from a cognitive aspect. Finally, the contextual
model describes the real-world elements affecting
the execution of cyber-physical system. The archi-
tecture emphasises identifying interactions between
these three models to build DTs. The approach uses
domain expertise to describe the three models and
connect the models based on their interactions in the
real world. A significant contribution of this study is
to identify the interactions of models that typically
work in the back-end of a cyber-physical system.
The approach to populate and describe these models

remains unaddressed in this study.
A framework based on manufacturing cells

(DTMC) by Zhang et al. [13] describes a knowledge
and data-driven approach for DT development. The
DTMC framework achieves manufacturing automa-
tion by enabling intelligence during operations by
1) perceiving data by using analysis approaches,
2) simulating various what-if scenarios to arrive at
suitable conclusions, 3) understanding the emergent
behaviour of the twin based on data and domain
knowledge, 4) predicting future behaviours based on
historical data as well as domain knowledge, 5) op-
timising the executing processes based on domain
constraints and the simulation results, and finally
6) implementing strategies to control the plant opera-
tions based on reasoning and analysis. The proposed
approach relies on identifying the right experts, cre-
ating practical learning mechanisms, data analysis,
simulation modules, and optimisation approaches to
include intelligence in the DT. The critical building
block technologies for DTMC implementation are
static and dynamic knowledge bases and intellectual
skills gathered from experts. The DTMC is a futuris-
tic approach to developing DTs; all the intelligence is
still manually gathered and assembled into the twin.

Along with the state of the art approaches, we
also study the potential challenges in twin develop-
ment. Boschert et al. [14] have identified challenges
in building future DTs. The authors have also taken
an initial step towards defining a next-generation
DT. The challenges in building DTs identified in this
study are :

1. Integration of multiple simulation technolo-
gies - different simulation technologies simu-
late different aspects of the plants like physics,
chemistry, electronics etc. The authors high-
light the need to integrate various simulation
technologies to develop holistic simulations
for the DTs.

2. Changes in context affect plant operation
strategies, e.g. the plant area, the network
bandwidth, the component units etc. influ-
ence the plant operations. Such changes are
better understood through a DT that also ac-
counts for context details. Hence, the study
emphasises the need to capture and include
the context details of the plants that could
support extensive reasoning during the plant
operations.

3. Addressing real-life problems - The study
finally describes the need for DTs to focus
on real-life challenges. The primary reason
for this is to enhance the exploration of the



problem and solution space. More real-life
problems would lead to better domain under-
standing and gather new knowledge.

The authors suggest addressing the above challenges
by working with domain experts and building mod-
els, algorithms, and semantic structures for the DTs.

State of the art in developing DTs is highly depen-
dent on manual jobs such as:

1. Gathering domain knowledge from experts.

2. Translating knowledge to simulation environ-
ments, models.

3. Developing twin models and software.

4. Relying on domain experts to validate the
behaviour of the DT against the actual plant
behaviour post-development.

The challenges that arise due to the manual tasks
and approaches are: 1) Ensuring the domain under-
standing of the expert is complete and correct and
in sync with the aspect simulated by the DT. E.g. to
build a DT for control systems aspect, the knowl-
edge should be relevant and complete with respect
to control systems. 2) Ensuring correct translation
of domain understanding into computer software.
3) Investing additional efforts for testing and valida-
tion of the developed twin. 4) Re-working the whole
approach if gaps get identified in knowledge or the
knowledge itself is updated, or the implementation
technologies get replaced. Overcoming these gaps
needs an approach that can assist domain experts
to explicate domain knowledge and support devel-
opers to directly re-use this knowledge to create DT
models and implement the DT.

From our survey of the current state of art and
practice of DT development, we see the opportunity
to leverage the ideas of a) semantic web [15] and
b) model driven engineering (MDE)[16] from the
field of computer science, to mitigate the above chal-
lenges, as they have mostly been untapped for DT
development so far. We see that knowledge about
specific domains such as power plants, their struc-
tures, behaviour and processes can be captured us-
ing semantic web technologies. This enables to de-
liver much faster, the necessary inputs to the design-
ers and developers of DTs, hence improving knowl-
edge re-use towards domain specific DT develop-
ment. Model driven engineering, on the other hand,
enables synthesis of the knowledge to easily com-
pile and realize them into the DT implementations
automatically. This enables harnessing the power of
both knowledge-driven as well as model-driven ap-
proaches. While semantic knowledge enables query-
ing of relevant domain knowledge at a high level

without dependencies on human experts, an imple-
mentation domain specific model of a control system,
allows reasoning and knowledge-to-code translation
for DT realizations using MDE. A key concept ex-
ploited in our work is knowledge translator. A knowl-
edge translator allows mapping and translating se-
mantic domain knowledge into engineering models
of a system, which makes automatic implementation
of DTs possible.

The following section discusses our knowledge-
driven approach for DT development and addresses
the challenges of manual DT development.

3. Knowledge Driven Approach
to Auto-generate control
system DT

As per the challenges mentioned in the state of prac-
tice, we propose a knowledge-driven approach en-
suring the reuse of domain knowledge towards the
development of DTs in a faster-better-cheaper man-
ner. Our approach results in a framework that al-
lows us to explicate domain knowledge and reuse
the same in an automated manner to construct con-
trol system DTs for industrial plants. The frame-
work allows capturing knowledge about different as-
pects of a plant as semantic ontologies. The captured
knowledge gets translated into a control system DT
through a multi-step translation process. Figure 1
shows a high-level architecture for our proposed
framework. We demonstrate our framework on a
fault management use case in a power plant and dis-
cuss the results later in the paper.

The knowledge-base is populated by capturing
fault-management domain knowledge using a Con-
trolled Natural Language (CNL)[17]. The fault-
management knowledge consists of plant compo-
nents and their fault detection rules, captured in
terms of a hierarchy of fault types with detection
rules for each type. The captured knowledge then
gets translated to a control system model[18] that repre-
sents the abstract control model of the plant, serving
as the key input to build the DT of interest. The trans-
lation uses domain-specific translation templates,
also stored as part of domain knowledge. The trans-
lated control system model serves as a formal repre-
sentation to perform checks to ensure completeness
and correctness of the control system model as well
as to validate the knowledge from where it is trans-
lated. Finally, the control system model translates into
an implementation using model-to-text[19] transla-
tor. In our approach, we use executable finite state
machines[20] to implement the final control system



Domain
 Meta Model

(Components, 
Faults, 

Relations, 
Data)

Instance 
Knowledge

(Plant details,
Fault Instances,
Data conditions)

1. Stores mapping between Domain 
Meta-Model and view-of-interest
2. Uses reusable templates to capture 
mapping using domain-specific 
language

refers

refers

Domain Knowledge

Technology  Knowledge

Store Knowledge in 
Repositories

Knowledge
Translator

Code 
Generator

Model 
Validator

Control
System
Model

Validated
Control
System
Model

Digital
Twin

Translate 
Knowledge to 
Digital Twin 
Model

Specify 
Translation
Mappings 

Capture
Domain
Knowledge

Domain
Expert /
End User

Semantic
Application
Design 
Language
(SADL)

Custom
Domain
Specific
Language

Figure 1: High level solution architecture

DT. In the following sub-sections, we discuss the
elements of the solution architecture in detail.

3.1. Describing Knowledge Using
Controlled Natural Language

One of the significant challenges in adopting
knowledge-driven approaches is providing usable
and efficient interfaces to capture knowledge [21].
Web Ontology Language(OWL)[22] is commonly
used for describing knowledge in the form of ontolo-
gies captured in XML formats. Popular tools like Pro-
tege provide GUIs to describe OWL-based ontolo-
gies. However, GUI based interfaces make it chal-
lenging to capture large ontological structures and
reduces human readability significantly[23]. Ideally,
knowledge description tools should allow humans
to describe and read knowledge with minimal effort
using simple and intuitive interfaces. Controlled
Natural Languages (CNL) help to mitigate such
challenges and can be used for capturing knowl-
edge descriptions[24] using semi-structured English.
This makes it easy for experts to describe and read
knowledge[25] captured semantically using ontolo-
gies.

In our approach, we use Semantic Application
Design Language(SADL)[26], a tool that provides
English like textual interface for knowledge descrip-
tions, conforming to the idea of a CNL. SADL acts

as a front end to populate and store knowledge as
OWL-based ontologies. SADL comes with an inbuilt
SADL editor that provides support for content assis-
tance, syntax validation, error highlighting, seman-
tic refactoring, and type checking. It uses Apache
Jena[27] based reasoners for type checking and vali-
dating the described knowledge in the background.
It also provides a query language, Simple Protocol
and RDF Query Language (SPARQL)[28], to execute
knowledge queries[29] and a Semantic Web Rules
Language(SWRL)[30] based rule engine to execute
semantic rules. SADL syntax[26] allows the descrip-
tion of types, sub-types, properties, relations, con-
straints, rules as the basic building blocks to describe
knowledge. It also provides a feature to import exist-
ing OWL models and represent them using English
based SADL syntax. SADL reduces the learning
curve due to its natural language interface allow-
ing its users to focus on knowledge description. It
also makes the knowledge transfer process easier for
domain experts.

3.2. Describing Base Ontology Using
SADL

The first step to describe knowledge is creating a
base ontology. In our approach, we describe the
fault-management ontology using SADL as shown in
figure 2 and 3.



Figure 2: SADL description of fault knowledge
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Figure 3: Fault base ontology

A Component description in the ontology can have
multiple Faults represented by the HAS_FAULT rela-
tion. RootCause, FaultMode and FaultTree are the sub-
types of Faults. A RootCause is the lowest level fault
that can occur in a Component. Multiple RootCause
faults can be aggregated as a FaultMode. Multiple
FaultModes can be aggregated as FaultTrees. Com-
ponents have Sensors producing stream_data which
is processed by DataRules. A DataRule defines the
rules or boolean equations that detect anomalies in
stream_data to assign a RootCause. A RootCause fault
can be assigned by multiple DataRules violations.
The base ontology acts like a vocabulary to capture
the actual faults and rules in the context of a fault
management problem.

3.3. Translation From Knowledge to
Control System Model

The manual description of domain knowledge may
have errors or incompleteness issues. As a result, it
becomes necessary to verify if the captured knowl-
edge is good enough to construct a control system
DT. To verify the knowledge, we translate it into a
control system model and then validate the gener-
ated control system model against completeness and
consistency checks. To translate domain knowledge
into a control system model, we first map concepts
from the problem domain into control system con-
cepts using a mapping template implemented using
a domain-specific language(DSL). This mapping in-
formation is passed onto a translator, which gener-
ates the control system fault model from the domain

knowledge. We use a discrete control system de-
sign language named M&CML[31] to represent the
generated control system model. M&CML provides
the vocabulary and constructs to design a discrete
control system using textual syntax. We discuss the
semantics of M&CML separately in the subsequent
subsections.

3.3.1. Knowledge Translator

The translator consumes two inputs: 1) knowledge
elements from the knowledge base and 2) a trans-
lation template. The translation template is created
using a DSL that captures the mapping logic from
the knowledge elements to the M&CML(control sys-
tem model) syntax. A knowledge-driven transla-
tor uses the mappings to generate a description of
the control system model in M&CML. An example
of the mapping between knowledge elements and
M&CML syntax is shown in figure 4. This approach
allows the knowledge-driven translator to be reused
for other domains.

A pseudo code describing the internal logic of the
translator is shown in algorithm 1.

The generated control system model consists of
a hierarchy of controllers where every controller is
derived from a fault type in the base ontology. The
controllers have operating states that are derived
from the instances of the fault types. The hierarchi-
cal relation between the controllers is derived from
the captured fault propagation knowledge. A struc-
tural representation of the generated control system
model is shown in figure 5



Figure 4: Translation of fault knowledge to control system
model using DSL

Algorithm 1: Translation Algorithm

Input: knowledge base, mappings
Output: control model
/* instantiate empty control model */

1 set control model ← empty description
/* iterate through the mappings */

2 for map : mappings do
/* set ke as knowledge element */

3 set ke← map.ke
/* set cs as M&CML syntax from map */

4 set cs← map.mnc
/* fetch instances of ke */

5 instances_ke← f etch instances(ke)
/* loop over fetched instances */

6 for ike : instances_ke do
/* append instance to M&CML syntax */

7 set cssyntax ← ike.append(cs)
/* insert cs in control model */

8 set control model.insert(cssyntax)

/* return control model */

9 return control model

Figure 5: Control system model for fault management

3.4. Knowledge and Model Validation

Since the knowledge is described manually by the
framework users, there are possibilities for errors or
gaps to be present in the knowledge. This poses the
risk of such errors propagating into the generated
control system model and eventually into the final
DT implementation. As the control system model is
derived from the knowledge, any gaps in the control
system model provide hints about potential gaps in
the knowledge. We check the control system model
for correctness and completeness, which indirectly
validates the knowledge. The validation checks per-
formed on the generated control system model are
shown in table 1.

As the control system model gets derived from
knowledge and translation templates, any gaps, er-
rors or inconsistencies identified in the model dur-
ing validation imply gaps in the captured knowl-
edge and translation mappings. In our approach, we
rely on the inbuilt validation mechanisms offered by
M&CML to perform such validation checks. More
checks can easily get added to the control system
model by extending the M&CML interpreter. The
validation checks ensure that the generated control
model is good enough to get used as a DT model
and can be used to implement the DT. The valida-
tions also ensure the knowledge itself is complete
and correct from the control system viewpoint.

3.5. Semantics of Control System
Model

We discuss the semantics of the control system model
to understand the structure of generated model.
The control system model embeds into it seman-
tics of discrete control systems. The control system
model allows capturing a hierarchical structure of
controllers using a parent-child relationship between
them. The InterfaceDescription block captures the in-
terface(input/output) items for a controller such as
command-response, events or alarms, data, ports, address
and operating states. The behaviour for a controller
is captured using the Transition block. The Transition
can be specified for various input-output control ac-
tions like command-response, events, alarms and
data. These semantics provide a basis for the cor-
rectness checks of the populated model against the
control system viewpoint. M&CML allows design-
ers to describe the control system design using the
discussed semantics.



Sr. No Checks Description
1 Correctness It ensures that the generated model follows the semantics of the control system and

correctly uses concepts like commands, events, etc. If there are any correctness
issues in the control system model like non-terminating cyclic-state-transitions, we
can conclude that the knowledge is incorrect from the control system viewpoint.
Multiple such checks can be incrementally added in our framework to support the
translation process.

2 Completeness It ensures that the model is complete concerning the control system viewpoint.
E.g. A control system design without having a valid state machine description is
an incomplete model. Such incompleteness checks can get incorporated into the
model checking step based on the needs of the application.

3 Consistency It ensures that the generated control system model is consistent and does not
contain any semantically conflicting terms. For E.g. A state transition rule in the
model should not conflict with other transitions. Such consistency checks can also
be defined as per the needs of the plant.

Table 1

3.6. Implementing Control System
Model as a DT

The generated control system model represents the
interactions, behaviour and hierarchical structure of
the controllers in the model. However, the gener-
ated control system model in M&CML[31] cannot
directly execute as a DT. We use SCXML[20], a java-
based state machine execution framework, to further
translate the control system model into, to realize
the final DT. SCXML being a W3C[32] standard, be-
comes a suitable implementation format for the con-
trol system model to translate into. SCXML supports
concepts like states, transition, input & output events,
streaming data, rule specification using XML based syn-
tax. As the control system model already captures
such information, it becomes possible to easily de-
rive an SCXML based specification from the model.
We use model-to-text[19] translation approaches to
generate SCXML specifications from the control sys-
tem model. We use Xtend[33], a Java-based library
to implement translation templates for translating
the control system model to SCXML.

The correspondence between the control system
model and the SCXML state machine structure is
shown in figure 6

The controllers in the control system model from
figure 5 are represented as hierarchical states in
SCXML. The controller states are represented as par-
allel states inside each of the hierarchical states. The
sensors from the control system model are repre-
sented as datasources in the translated SCXML. The
translated SCXML description is an XML file that is
executed by the Apache SCXML[34] execution en-
gine. The state machine starts executing from the
initial Start state that receives and processes data
from the sensors. The state machine executes and
processes data from the data sources (sensors), and

Figure 6: SCXML description of a state-machine struc-
ture performing fault management for a control system
DT

any violation of the rules leads to an appropriate
state transition in the state machine. Violation of
fault detection rules leads to a transition to the Root-
Cause state. The state machine moves to a suitable
RootCause sub-state based on the data source pro-
ducing erroneous data. The transitions continue till
the topmost Fault state is reached following the fault
aggregation logic.

The SCXML implementation represents the final
control system DT. The DT uses the real-time data
from the actual data sources and mimics the be-
haviour of the plant components in terms of their
fault hierarchy relations and propagation rules. The
generated control system DT can now be used to per-
form study and analysis of various what-if scenar-
ios like 1) Setting control system in different states.
2) Injecting erroneous data in the state machine and
observing the emergent behaviour. 3) Interacting
with the state machine by raising injected or dummy
events and alarms.



3.6.1. Deploying DTs as a Service

The generated control system DT is deployed as a
service in a Java Virtual Environment(JVM). The us-
age of service-based architecture makes it easier for
consumers to interact with the DT. Multiple DTs de-
veloped for multiple components are deployed as
independent services. The DT services allow con-
sumers to 1) Interact with the DT (e.g. setting states,
injecting errors, events and data etc.) using simple
service APIs. 2) Observe DT behaviour using API
calls. (e.g. getting current state, getting the next
state etc.) 3) Integrate DT services with third party
analysis platforms. The behaviour analysis and DT
usage are consciously kept out of scope in this paper.
Our approach provides an automated mechanism
to generate the DT implementation from high-level
semantic knowledge.

3.7. Summary

Using the knowledge-driven approach, we per-
formed the tasks of 1) capturing knowledge using
SADL. 2) translating the knowledge to a control sys-
tem model represented using M&CML. 3) enabling
validations of the control system model for correct-
ness, consistency and completeness. 4) and finally,
translating the M&CML based control system model
to executable SCXML descriptions. Our approach
does not require developers to manually program
the DT using general programming languages like
C++, Java etc. The translation mechanisms auto-
mate the generation of state machine descriptions.
SCXML format further reduces the need to write
computer programs by providing a configuration
based execution engine. The only manual tasks in
our approach are describing 1) knowledge using
SADL and 2) providing mapping information be-
tween domain knowledge and control system con-
cepts as templates created using our DSL. With our
approach, it also becomes possible to absorb changes
at multiple levels.

1) The knowledge acts as a single point of truth.
Any changes in the knowledge can get handled
by simply regenerating the DT. Hence there is no
manual intervention required to perform refac-
toring or code changes.

2) Translation templates capture the traceability of
knowledge to control system model.

3) Any changes in the control system model can
be handled by updating the mapping template,
used to translate the control system model into
SCXML format and regenerating the DT.

We use this approach for three fault management
scenarios to generate DTs for a power plant. The use-
case details, results and experiences are discussed in
the next section.

4. Use-Case - Power Plant Fault
Management

We apply our knowledge-driven framework to gen-
erate digital twins for multiple fault managements
scenario in a power plant, as discussed below.

1) Main Steam Temperature Low[35] - The objective
of this scenario is to maintain the main steam
temperature at the desired operating range for
a given load, coal quality, ambient conditions
and detect if the temperature goes below the low
threshold and indicate it as a fault.

2) Main Steam Pressure High[35] - This scenario main-
tains the main steam pressure at the desired op-
erating range for a given load, Coal quality and
ambient conditions and detects if the tempera-
ture goes above the high threshold to indicate a
fault.

3) Mill Outlet Temperature High[36] - This scenario
maintains the main mill outlet temperature
within a certain range and detects if the tempera-
ture goes beyond the high threshold for a possible
fault.

Each of the above scenarios has a fault management
structure associated with it. The different fault in-
stances and rules described in SADL are stored as
fault knowledge. For other scenarios, the knowledge
is described similarly.

Next, we create the mapping template by de-
scribing mapping from the captured knowledge to
the control system model represented in M&CML.
This mapping specification enables the translator to
translate the knowledge to generate a control sys-
tem model in M&CML. Next, we create a model-to-
text template using the Xtend library to derive the
SCXML specification from the control system model.

4.1. Evaluation & Results

We record the results from applying our approach
against the previous efforts of our engineering teams,
who manually built similar fault management dig-
ital twins for the same power plant. We compare
the two approaches using parameters such as devel-
opment time, number of programmers and lines of
code. Table 2 shows the comparison of the manual



SN. Fault Management Usecase Hours Dvlprs LoC
Manual Effort for Digital Twin Construction

1 Main Steam Temperature Low 18 2 500
2 Main Steam Pressure High 12 2 300
3 Mill Outlet Temperature High 6 2 300

Knowledge Driven DT Generation
1 Main Steam Temperature Low 3 1 220
2 Main Steam Pressure High 2 1 140
3 Mill Outlet Temperature High 1 1 90

Table 2
Manual vs Knowledge-driven development of DTs for
Power Plant Fault-Management Usecases

approach against our approach. From the compar-
ison, it is evident that our approach significantly
outperforms the manual approach by reducing time
and efforts for digital twin development. The de-
velopment time was reduced by almost half and,
only half the developers were required while using
our approach. We acknowledge that the results are
early, and a thorough evaluation of the approach
with extensive experimentation is planned going for-
ward. Nevertheless, the early results are promising
enough to motivate and establish the applicability of
knowledge-driven approaches for developing digi-
tal twins.

4.2. Learning and Experiences

We gather the experiences and feedback from the de-
velopment teams for our approach. The experiences
and feedback are as described below:

1) Knowledge description using English is much
easier and human friendly. While experts used
presentations and text documents to describe the
domain knowledge, it became effortless to use
the SADL based interface.

2) The captured semantic knowledge is the single
point of truth captured from the experts and
used towards the automatic realization of the DT
through multiple layers of validation and trans-
lation.

3) The development team could easily consume the
domain knowledge with fewer efforts by reading
the SADL descriptions. They could read and un-
derstand complex elements like rules, equations
in plain English better than the same written us-
ing programming languages.

4) The auto-generation of the control system model
provided ample time for the verification team
to validate the correctness of the model. This
resulted in lesser time consumed during post-
development testing.

5) it was possible to reuse the knowledge captured
for one use-case in other subsequent use-cases
too. This further reduced the time to capture
knowledge, and the experts did not have to start
knowledge descriptions from scratch for each use
case.

6) Use of off-the-shelf framework like SCXML al-
lowed the teams to execute the generated SCXML
file without writing any code. This resulted in
investing more time in verifying the model and
the final solution.

7) The teams had to be trained to use the
knowledge-driven approach and get them famil-
iar with the techniques. This required some learn-
ing curve that is not measured in this study.

5. Conclusion & Future Work

In this paper, we discussed the role of a control sys-
tem in operating industrial plant systems. We dis-
cussed the significance and need for digital twins
in arriving at crucial decisions to control and oper-
ate complex and mission-critical plants. The state
of practice in developing digital twins indicates ad-
hoc approaches to use domain knowledge for de-
veloping DTs. The manual approach cannot scale
well for large industrial plants, as approaches miss
finer details because of informal communications of
required domain knowledge that serves as the crit-
ical input for DT realisation. Hence, to reduce the
time and effort in developing digital twins, we pro-
posed an approach that automates domain knowl-
edge reuse to realise DTs. In our approach, we focus
on generating a control system digital twin from do-
main knowledge. Our approach captures domain
knowledge using a controlled natural language. The
captured knowledge is translated into a control sys-
tem model using a knowledge-driven translation
approach. Finally, the control system model is used
to generate an implementation of the digital twin
using the SCXML framework.

Our approach significantly reduces the time and
efforts to construct digital twins, as is evident from
its usage for a real-life use case discussed in the pa-
per. Our approach can be easily scaled for large and
complex systems. Going forward, we will apply our
approach in generating digital twins for multiple as-
pects of a power plant, such as emission compliance,
component wear and tear etc. We want to extend the
idea of knowledge-driven DT development to other
plant systems and enhance it to build digital twins
to simulate the behaviour of a system based on the
underlying physics and chemistry knowledge.
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