
A Privacy Framework for Hierarchical Federated

Learning

Debmalya Biswas

Darwin Edge

Lausanne, Switzerland

debmalya.biswas@darwinedge.com

Krishnamurthy Vidyasankar

Memorial University of Newfoundland

St. John’s, NL, Canada

vidya@mun.ca

Abstract

Federated Learning (FL) enables heteroge-
neous entities to collaboratively develop an
optimized (global) model by sharing data
and models in a privacy preserving fashion.
We consider a Hierarchical Federated Learn-
ing (HFL) environment with data ownership
split among the entities representing the edge
nodes. Each node can train models on the
data they own, as well as request access to
data and model(s) owned by their descen-
dant nodes - to optimize their models, perform
transfer learning on new data, and develop an
ensemble model. Unfortunately, a practical
realization of HFL is challenging today due to
issues with data/model lineage tracking and
providing subsequent privacy guarantees.

In this paper, we propose a conceptual frame-
work for HFL by capturing the data/model at-
tributes at each node, including their privacy
exposure. The framework enables scenarios
where a node output may expose certain at-
tributes of its underlying data, as well as iden-
tifying models in the hierarchy that need to be
updated once a user whose data was used in
their training has opted-out. By designing the
computations appropriately and limiting the
exposure by the nodes, we show that different
levels of privacy can be guaranteed.

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

1 Introduction

Federated Learning [MMR+17], also known as Col-
laborative Learning, or Privacy Preserving Machine
Learning, enables multiple entities who do not trust
each other (fully), to collaborate in training a Ma-
chine Learning (ML) model on their combined dataset;
without actually sharing data — addressing critical
issues, such as, privacy, access rights and access to
heterogeneous confidential data. This is in contrast
to traditional (centralized) ML techniques where lo-
cal datasets (belonging to different entities) need to
be first brought to a common location before model
training. Its applications are spread over a number of
industries including healthcare, defense, telecommuni-
cations, and advertising.

Let us now focus on ML related privacy risks [RG20,
BFA20]. Fig. 1 illustrates the attack scenarios in a ML
context. In this setting, there are mainly two broad
categories of inference attacks: membership inference
and property inference attacks. A membership infer-
ence attack refers to a basic privacy violation, where
the attacker’s objective is to determine if a specific
user’s data item was present in the training dataset.
In property inference attacks, the attacker’s objective
is to reconstruct properties of a participant’s dataset.
We focus on property inference attacks in this work.

It has been shown that the model parameters may
reveal information about the underlying dataset(s)
and/or their properties [NSH19]. When the attacker
does not have access to the model training parameters,
it is only able to run the models (via an API) to get a
prediction/classification. Black box attacks [IEAL18]
are still possible in this case where the attacker has
the ability to invoke (query) the model, and observe
the relationships between inputs and outputs.

Given the above attack scenarios, let us now fo-
cus on the applicable privacy preserving approaches.
Secure Multiparty Computation (SMC) [Gol09,
KBdH09] primitives, e.g., Secret Sharing, Homomor-

1



Figure 1: Machine Learning (ML) attack scenarios

phic Encryption, have been effectively applied to pro-
tect the privacy of model parameters in a federated
learning setting. [BIK+17] proposes a ‘Secure Aggrega-
tion’ protocol, where the aggregating server only learns
about model updates in aggregate. The αMDL proto-
col proposed in [ZJWW17] further encrypts the gradi-
ents using homomorphic encryption. The summation
of the encrypted gradients gives an encrypted global
gradient, which can only be decrypted once a thresh-
old number of participants have shared their gradi-
ents. [SPTP+20] proposes POSEIDON: a Multiparty
Homomorphic Encryption based Neural Network (NN)
training protocol, which (relies on mini-batch gradi-
ent descent, and hence) protects the intermediate NN
models by maintaining the weights and gradients en-
crypted throughout the training phase. The proto-
col can be applied to build different types of NN lay-
ers, such as fully connected, convolution, and pooling.
In terms of model accuracy, the authors show that
their model performance is comparable to a centrally
trained model.

While SMC protocols are effective, they suffer from
increased communication and computational complex-
ity, both for the participant nodes and the aggregating
server. Differential privacy provides a good trade-off
here balancing utility and privacy guarantees. [SS15]
experiment with adding noise to the model updates
to satisfy differential privacy and protect the contri-
butions of participants to the global model. [PAE+17]
show how multiple (teacher) nodes trained on sensitive
data, can further train a (student) model based on dif-
ferentially private aggregated outputs of the teacher
nodes - such that the student node is able to make
similar predictions without leaking any sensitive data.

In this work, we do not focus on specific attack sce-
narios or privacy preserving methods. Rather, our
objective is to capture and quantify the privacy ex-
posure arising as a result of the diverse computations
and privacy preserving actions that can be applied by

the different participant nodes in a Federated Learn-
ing setting. The privacy exposure issue becomes even
more prevalent in a hierarchical setting, where an-
cestor nodes may not have direct visibility over the
data/computations of the descendant nodes. However,
the data, attributes, or computation results, of the
descendent nodes may still be visible to the ancestor
nodes, influencing their computations. This leads to
primarily two challenges:

• Data Lineage: Keeping track of the data, at-
tributes, computation results accessible to the dif-
ferent participant nodes in HFL.

• Privacy policies: Enforcing local and global pri-
vacy policies in HFL, such that all participant
nodes are using the data in a manner consistent
with the user consent obtained during data acqui-
sition.

For example, a recent Federal Trade Commission
(FTC) ruling [FTC21] states that it is no longer suffi-
cient to just delete data when a user opts-out; the or-
ganizations will need to delete models and algorithms
trained on that data as well. Enforcing this in a HFL
setting requires capturing the ancestor nodes, whose
computations have directly or indirectly been influ-
enced by user data belonging to descendant nodes,
and vice versa. Privacy policies, e.g. FTC Fair In-
formation Practice Principles (FIIPs) [Gel21] also rec-
ommend that data is only used for specific purposes
(for which the user has provided explicit opt-in), and
not combined with other datasets to reveal additional
insights that can be used to profile the user. Such data
aggregations can be very difficult to detect in a hierar-
chical setting, as ancestor nodes can indirectly access
(via intermediate nodes) and aggregate data belonging
to different descendant nodes, without their explicit
approval.

2



To overcome the above challenges in a hierarchical
setting, we propose a conceptual framework to capture
and quantify the privacy exposure of the data/model
attributes of each node. The framework is outlined in
Section 2 and takes into account different computa-
tions, including explicit privacy preserving computa-
tions, performed by the nodes. We show the practi-
cality of the model in Section 3 via two concrete ap-
plication scenarios: (i) Hierarchical federated training
of a Deep Neural Network - Section 3.1, and (ii) Hier-
archical (ensemble) composition of pre-trained models
- Section 3.2. Section 4 concludes the paper and pro-
vides some directions for future work.

2 Framework

We have a hierarchy (rooted tree) H of processing
nodes q. The hierarchy consists of n levels. We will
associate a persistent data store Sq at each node q and
denote the data in the store as DSq.

Processing starts at the leaf level. Each leaf node p
is capable of performing arbitrary computations on its
locally stored data in DSp. The newly computed val-
ues are sent to the parent node. The parent performs
further computation on the received values and out-
puts new values to its parent. This process continues
and it constitutes the forward flow. We also consider
reverse flow, where any intermediate node (depending
on the computation) may send newly computed val-
ues to its children nodes. The computation done at a
node q in the forward flow is denoted cq, and one in
the reverse flow is denoted c′q.

In the forward flow, the output data from each (leaf
or intermediate) node q will have values for several at-
tributes. Some of these values may reveal (a part of)
DSq. It may also reveal DSp of some descendants p
of q. Similarly, the outputs may reveal DS of some
nodes in the reverse flow also. We address these pri-
vacy issues relating to the nodes, namely, the visibility
or exposure of the characteristics of the nodes, that is,
of (i) their attributes, (ii) the data they process and
(iii) the results of the processing, from their outputs.
We refer to this simply as exposure of the data storage
DS of the node, simplified further as exposure of the
node.

We introduce the notations and concepts of our
framework with a hierarchy depicted in Fig. 2. In the
following, the nodes u, v, w, x, y and z refer to those in
the figure, and p, q and r refer to generic nodes. We
first consider the following path, from leaf node x to
u, then to v and then to w:

x → u → v → w.

The output sent from node x to node u in the for-
ward flow is denoted Out(x,u). It will contain some
attribute values in DSx, denoted (x, u)F , or simply

as xF when there is no ambiguity with respect to the
destination node u. In addition to xF , the output will
contain some other information. The input In(x,u) to
u from x is the same as Out(x,u). When the inputs
are received from several children of u, the union of
those inputs is denoted as Inu. The output in the re-
verse flow from u to x will be denoted Out′(u,x) and

the input as In′

(u,x). The attribute values sent in the

reverse flow are denoted (u, x)R, or simply as uR. In
these notations, we pretend that the edges of the hi-
erarchy are directed from the leaves to the root in the
forward flow, and from the root to the leaves in the
reverse flow.

Consider (u, v)F sent in the output Out(u,v) from u
to v. There may be a leakage of DSu in that output.
In addition, there may be a leakage of DSx also in that
output. That is, the output may leak some character-
istics of the descendants also. We identify all nodes
that are leaked (exposed) in the output as a subgraph
consisting of those nodes as follows. Here, Hq is the
sub-hierarchy of H rooted at q.

Definition 1 For node q and r, exp(Out(q,r)) is a
subgraph G of Hq.

Out(q,r) exposes all the nodes in the graph G. Re-
ferring to the example above, we do not consider the
possibility that Out(u,v) exposes x but not u. We will
assume that if x is exposed to v then u is also ex-
posed to v. That is, we do not allow a child to be
exposed to an ancestor if the child’s parent is not.
This justifies denoting the exposure by a tree which
is a connected graph. For example, with reference to
the hierarchy outlined in Fig. 2, exp(Out(u,v)) could
be the connected subgraph consisting of x, u and v,
denoted [x → u → v].

These outputs are of the computations performed
at the nodes on an input. Now, in our example hier-
archy, cu may be such that Out(u,v) does not expose
x. For example, an aggregate of the input values may
not expose the source of an individual value. Fur-
thermore, additional privacy-preserving computations
such as, anonymization, differential privacy [PAE+16],
etc. may be performed to control the exposure. We
distinguish the privacy-preserving component of the
computation used for the output from q to r as c(q,r).
We express the exposure resulting from such compu-
tations also as a graph as follows.

Definition 2 For a node q, exp(c(q,r)) with respect to
output Out(q,r) is a subgraph G of Hq.

In our example hierarchy, some possible values for
the subgraphs in exp(c(v,w)) are: null, [v], [u → v],
[x → u → v] and [x → u → v; z → v]. In the last

3



case, the subgraph consisting of the nodes x, u, v and
z is exposed. Now, suppose Out(u,v) does not expose
x. Then, even if exp(c(v,w)) has [x → u → v], Out(v,w)

cannot expose x. That is, for the node v, the exposure
in Out(v,w) depends on the exposure in In(u,v) and the
exposure property of c(v,w). We express this as follows:

exp(Out(v,w)) is exp(In(u,v)) ∩ exp(c(v,w)).

We note that x will not be exposed to w as long as
there is a (privacy preserving) computation at a node
in the path from x to w that does not expose x. This
non-exposure may be dictated by x to u, as part of
its privacy policies or it can be a result of u’s underly-
ing computation cu, such that exp(Out(u,v)) does not
contain x. If the non-exposure is mandated by privacy
policy and is not provided by cu, u may perform an ex-
plicit privacy preserving computation c(u,v), such that
exp(c(u,v)) does not contain x.

We specify the nodes to which a node (that is,
node’s attribute) can be exposed to during forward
flow as Domain of Forward Exposure, DoF :

Definition 3 Domain of Forward Exposure of a node
q, DoF (qF ), is the subtree (path) connecting q to an
ancestor r of q.

Here, we include q also as an ancestor of q. For
instance, DoF (xF ) in our example could be [x → u →
v]. DoF (qF ) will help in designing privacy preserving
computations of the ancestors of q.

In a general hierarchy, the privacy requirements
could span ancestors as well as other nodes. For ex-
ample, x may allow exposure to (i) u and its children,
namely, the siblings of x, and (ii) u, v and the siblings
of u, that is, the children of v. This is especially true
with reverse flow, where output values from a parent
u to its children, based on a computation on values re-
ceived from some of its descendants, might reveal x’s
attributes to its siblings, and their respective descen-
dants.

We capture this exposure of a node as a result of
both forward and reverse flows as Domain of Exposure,
DoE:

Definition 4 Domain of Exposure of a node q,
DoE(q), is a subtree of the tree rooted at an ances-
tor r of q, Hr.

We illustrate DoF and DoE with the help of the hi-
erarchy outlined in Fig. 2, and also outline the steps to
construct/maintain DoEs in an incremental fashion.

We consider the following scenario in the forward
flow.

(i) Starting with DoF (xF ) = [x → u], when u for-
wards its computation output Out(u,v) to its parent

v, such that exp(Out(u,v)) contains u, DoF (uF ) is up-
dated to include v, that is, DoF (uF ) = [u → v]. Sup-
pose that exp(Out(u,v)) contains x. Then DoF (xF ) is
also updated, to [x → u → v]. That is, the DoF ’s
of the descendants of u may also be updated. This is
formalized in Algorithm 1:Update DoF (v,Out(v,w)).

(ii) Node y has forwarded yF to z and so
DoF (yF ) = [y → z]; Out(z,v) does not expose y and
so DoF (yF ) is not updated further.

(iii) Going forward, when v forwards its compu-
tation output Out(v,w) to its parent w, such that
exp(Out(v,w)) contains v, DoF (vF ) is updated to in-
clude w, that is, DoF (vF ) = [v → w]. Now, suppose,
x is not exposed to w. Then there is no need to update
DoF (xF ).

Fig. 2(a) illustrates this forward flow, with
DoF (xF ) = [x → u → v], DoF (yF ) = [y → z] and
DoF (vF ) = [v → w]. The label (bold) X besides
node v indicates that forwarding of node x stops at
v. Similarly, the (bold) X besides z indicates that the
forwarding of y stops at z.

Algorithm 1: Update DoF (p,Out(v,w)): For-
ward flow update of DoF s triggered by node v
sending output Out(v,w) to parent w

for all child nodes q of p do
if q ∈ exp(Out(v,w)) then

Add v → w to DoF (qF );
Update DoF (q, Out(v,w));

end

end

Consequently, let us consider the reverse flow illus-
trated in Fig. 2(b), when v returns values to its chil-
dren u and z, Out′(v,u) = Out′(v,z). Given that c′v is

computed not only on values received (in reverse flow)
from its parent w: Out′(w,v), but also values previ-
ously provided by u and z in the forward flow; it is
feasible that Out′(v,u) might expose to u its sibling z’s
attributes. In addition, it might also expose attributes
of some descendants p of z, to u. Given this, an ad-
dition of u to DoE(z), could also trigger an update of
the DoE(p) of z’s descendants p. On the other hand,
since y’s attributes were never exposed to v in the for-
ward flow, that is, DoF (yF ) does not contain v; y will
never get exposed to u, even during reverse flow. The
reverse flow update of DoEs is formalized below in
Algorithm 2.

Algorithms 1 and 2 move the hierarchy H from one
‘consistent’ state to another, with respect to the defi-
nition of DoF/DoEs. In practice, it is possible that in
reverse flow, a parent node sends the same value(s) to
all children (Section 3), as well as the scenario where
the parent sends different values to different (groups

4



Figure 2: Sample hierarchy illustrating DoF/DoE computation

Algorithm 2: Update DoE(Out′(v,u)): Re-
verse flow update of DoEs triggered by node v
sending output to its child node u

for all ancestor nodes r of u do
if r ∈ exp(Out′(v,u)) then

Add v → u to DoE(r);
end

end
for all descendant nodes p of v do

if v ∈ DoF (pF ) AND p ∈ exp(Out′(v,u))

then
Add v → u to DoE(p);

end

end

of) children - leading to sibling nodes receiving differ-
ent values from their parent (Section 3.2).

3 Hierarchical Federated Learning

In this section, we show how two hierarchical scenarios
can be enabled by the privacy framework outlined in
the previous section.

3.1 Federated Training of Neural Networks

Training a Deep Neural Network (DNN) occurs over
multiple iterations (epochs). Each forward run is cou-
pled with a feedback loop, where the errors identified
at the end of a run with respect to the difference be-
tween the network output and true value of its ob-
jective function is fed back to the previous (hidden)
layers to adapt their parameter weights - ‘backpropa-
gation’. The commonly used algorithms to solve this
optimization problem are variants of gradient descent.

A Federated Learning (FL) extension of the above

DNN training proceeds as follows: In a 2-level FL set-
ting, this corresponds to the leaf nodes holding non-
overlapping datasets with the same features. (In FL
terminology, we consider a horizontal FL environment
where the feature space is same, but the training data
is split among the participating entities.) For any two
leaf nodes (p1, p2), DSp1

∩DSp1
= ∅.

Further, all leaf nodes p agree upon the same neural
network architecture and task to train a global model,
that is, they perform the same computation cp locally.
The root node acts as a parameter server, maintain-
ing the latest version of the parameter values for the
global model. During each epoch, the leaf nodes down-
load the global model parameters from their parent
node, and update them locally using some variant of
gradient descent on their local datasets DSp, sharing
the updated values back with the parent node. The
parent (in this case, root) node averages the gathered
parameter values from all child nodes. This federated
training continues until the global model converges.

A hierarchal extension of the above FL occurs when
the root node of the previous 2-level FL becomes a
child of a 3rd level node (illustrated in Fig. 3). As
long as the information flow is restricted to parent-
child nodes only, the HFL architecture leads to a syn-
chronous bottom-up training of the neural network,
with the root node holding the optimal global model.

3.1.1 Privacy Analysis

In the hierarchical training of a DNN outlined above, a
child node p only shares parameter/gradient updates,
and never shares its sensitive training dataset DSp.
However, it has been shown that even the parame-
ter/gradient updates may reveal information about the
underlying dataset(s) DSp and/or their (properties)
attributes [NSH19]. This is because (during back-

5



Figure 3: Hierarchical federated training of a Deep Neural Network

propagation) gradients of a given layer l of a neural
network are computed using the layer’s feature val-
ues and the error from the next layer. For exam-
ple, in the case of sequential fully connected layers,
hl, hl+1 (hl+1 = Wl·hl, where Wl is the weight ma-
trix), the gradient of error E with respect to Wl is
defined as: ∂E

∂Wl

= ∂E
∂hl+1

·hl. That is, the gradients of

Wl are inner products of the error from the next layer
and the features hl; and hence the correlation between
the gradients and features. This is especially true if
certain weights in the weight matrix are sensitive to
specific features or values in the participants’ datasets
(for example, specific words in a language prediction
model [MRTZ18]).

Recall that given two nodes p1, p2 and their par-
ent q, q’s computation cq corresponds to an averag-
ing of outputs Out(p1,q) and Out(p2,q) received from
p1 and p2, respectively. The ‘averaging’ computation
part can be considered as an implicit privacy preserv-
ing computation in this case, which has the same ef-
fect as adding noise, e.g., using synthetically generated
data [BDR19]. This does not mean that q’s output
Out(q,r) to its parent r will never expose any of p1, p2’s
attributes to r. Rather, it implies that

exp(Out(q,r)) ⊂ (exp(Out(p1,q)) ∪ exp(Out(p2,q))).

Due to the iterative nature of the training, it is pos-

sible that node attributes exposed in an iteration are
no longer exposed in a later iteration. Here, we assume
that the nodes have capability to store historical val-
ues and the exposure at iteration n is an aggregation of
the exposures resulting from previous iterations. Let
Outi(p,q) denote p’s output to q at iteration i

Definition 5 For nodes p and q, the cumulative ex-
posure until iteration n is defined as

expCn(p,q) =
n⋃

i=1

exp(Outi(p,q))

which is a subtree of Hp.

The DoE definition follows analogously from Defi-
nitions 3 and 4 respectively.

Definition 6 Domain of Exposure of a node p, at it-
eration n, DoEn(p), is a subtree Hq of the tree H

rooted at the highest (ancestor) node q ∈
n⋃

i=1

DoEi(p).

In this setting, we consider the privacy problem of
maintaining (global) model compliance when a user
opts-out. This implies that not only can the opted-out
user’s data be no longer used, but also that all models
exposed to that data during training must be deleted
as well. Without exposure (lineage) tracking, it would
be very difficult to assess the impact of such an opt-
out on the global model, leading to re-training of the

6



whole hierarchy in the worst case. The below property
shows how our model helps in containing the impact
of a user opt-out - limiting the amount of re-training
needed, while maintaining privacy compliance.

Property. For any opt-out of user U , where U ’s
data belongs to DSp of a leaf node p of hierarchy H,
it is sufficient to re-train models up to the ancestor q
of p, such that DoE(p) is a subgraph of Hq.

3.2 Ensemble Learning/Models Marketplace

In this section, we consider a more generic hierarchical
composition of services [Bis21], where the underlying
data, (trained) models, APIs of different (existing) ser-
vices can be orchestrated to form a new service. This
is enabled by pre-trained models available on model
marketplace platforms, e.g., Amazon Sagemaker Mod-
els, Algorithmia, Bonseyes, Papers with Code, etc.

Scenario. Let us consider the online Repair Ser-
vice of a luxury goods vendor. The service consists of a
Computer Vision (CV) model enabled Product Repair
Assessment Service that is able to assess the repairs
needed given a picture of the product uploaded by the
user. If the user is satisfied with the quote, the assess-
ment is followed by an Ordering Chatbot conversation
that captures additional details required to process the
user’s repair request, e.g., damage details, user name,
contact details, etc.

In future, when the enterprise is looking for mod-
els to develop a Product Recommendation Service,
the Repair Service is considered. As evident, the
data gathered by the Repair Service: state of prod-
ucts owned by the users (gathered by CV assessment
model) together with their demographics (gathered by
the Ordering chatbot) - provides additional training
data for the Recommender Service. In this case, how-
ever, the privacy policies of the CV assessment app,
Ordering Chatbot [Bis20], or any global privacy poli-
cies governing the hierarchical ecosystem (e.g. FTC
FIPs [Gel21], which require that user data is only used
for specific purposes, for which the user has provided
explicit opt-in) may prevent their data from being
combined, such that, they cannot be used to profile
customers.

Let us now consider another hierarchical composi-
tion scenario, where the enterprise further wants to de-
velop a CV enabled Manufacturing Defect Detection
Service. The Repair Service can help here as it has la-
beled images of damaged products (with the product
damage descriptions provided to the chatbot acting
as ‘labels’). The labeled images can also be provided
as a feedback loop to the Product Repair Assessment
Service - CV model, to improve its underlying model.

3.2.1 Privacy Analysis

Consider the hierarchy in Fig. 4, as a generic represen-
tation of the hierarchical scenario discussed above. In
this context, we show how the different privacy con-
cerns can be addressed by our privacy model (Sec-
tion 2).

• We consider the Repair Service as a parent node
u orchestrating pre-trained Computer Vision and
NLP models - nodes x and y, respectively.

• In case of the Product Recommendation Service -
node v, depending on the applicable privacy pol-
icy, the Repair Service node umight need to apply
an explicit privacy preserving computation c(u,v)
on the ‘demographics’ attribute yF such that it is
only shared in aggregate form with v (e.g., num-
ber of users having product type P with damage
Q, without specific details of the users possessing
those products).

• Both the Product Manufacturing Defect Detec-
tion App - node w and the Product Repair As-
sessment Service - node x are CV models that
would benefit from the product damage descrip-
tions gathered by the Ordering Chatbot - node y.
The descriptions basically act as “ground truths”
that can be used to further improve the under-
lying CV models. The Repair Service needs to
perform explicit privacy preserving computations
c(u,w) and c′(u,x) (e.g., filtering), during forward
and reverse flows, such that the uploaded images
with their damage descriptions can be shared with
w and x respectively, without the corresponding
user demographic details.

• Further, it also shows that the parent node u can
send different values to different children nodes x
and y, such that Out′(u,x) 6= Out′(u,y) - as dictated
by their computational needs and applicable pri-
vacy policies.

The core privacy issue here is to ensure that at each
step of the hierarchical composition, user data is only
used, and combined with other data, for purposes for
which the user has provided explicit opt-in. This can
become difficult to track in a hierarchy, with ances-
tor nodes not having clarity over whether opt-ins have
been acquired by descendant nodes for their use-cases.
In our model, the above privacy compliance require-
ment can be enforced as follows:

Property. The inclusion of an ancestor node r in
the DoE(p) of a descendent node p, implies that p has
obtained the necessary opt-in for an attribute pF to
be used:

• by r, as part of computation cr.

7



Figure 4: Hierarchical composition scenario

• in an aggregated fashion with other attributes qF ,
where q, q 6= p, is also a descendant of r, such that
r is in DoE(q).

From a user point of view, this enables continuous
tracking of the nodes having visibility over their data,
that is, the purpose(s) for which their data is used, as
well as the different types of data with which they are
combined.

4 Conclusion

In this paper, we presented a framework to quantify
the privacy exposure at different nodes in a hierar-
chical setting. It provides the necessary constructs to
track lineage of data/models in a hierarchal composi-
tion, ensuring that appropriate privacy policies can be
applied to meet compliance requirements. We showed
the practical utility of the proposed framework on two
hierarchical scenarios: (i) federated training of a DNN
and (ii) ensemble composition of AI/ML Services.

Our work is seminal in both raising awareness and
providing a framework to reason about privacy in
a hierarchical setting. The presented framework is
conceptual, and any implementation will be entirely
application-specific. Future work will involve (for spe-
cific applications) precise specifications of privacy re-
quirements of the datasets of the different nodes, and
the feasibility and design of privacy-preserving com-
putations placed at different levels of the hierarchy
to satisfy the privacy requirements. Several choices
for the latter can be experimented and an insight into
better choices can be found.

References

[BDR19] S. M. Bellovin, P. K. Dutta, and N. Re-
itinger. Privacy and Synthetic Datasets.
Stan. Tech. L. Rev., 22(1), 2019.

[BFA20] C. Briggs, Z. Fan, and P. Andras.
A Review of Privacy-preserving Feder-
ated Learning for the Internet-of-Things.
arXiv, abs/2004.11794, 2020.

[BIK+17] K. Bonawitz, V. Ivanov, B. Kreuter,
A. Marcedone, H. B. McMahan, S. Pa-
tel, D. Ramage, A. Segal, and K. Seth.
Practical Secure Aggregation for Privacy-
Preserving Machine Learning. In Proceed-
ings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications
Security, CCS ’17, page 1175–1191. ACM,
2017.

[Bis20] D. Biswas. Privacy Preserving Chatbot
Conversations. In Workshop on Privacy-
preserving Machine Learning (PPML),
2020.

[Bis21] D. Biswas. Compositional AI: the future
of Enterprise AI. Towards Data Science,
2021.

[FTC21] FTC. California Company Settles FTC
Allegations it deceived consumers about
use of Facial Recognition in Photo Storage
App, 2021.

8



[Gel21] R. Gellman. Fair Information Practices:
A Basic History - Version 2.20. 2021.

[Gol09] O. Goldreich. Foundations of Cryptogra-
phy. Cambridge University Press, 2009.

[IEAL18] A. Ilyas, L. Engstrom, A. Athalye, and
J. Lin. Black-box Adversarial Attacks
with Limited Queries and Information. In
Proceedings of the 35th International Con-
ference on Machine Learning, pages 2137–
2146. PMLR, 2018.

[KBdH09] F. Kerschbaum, D. Biswas, and
S. de Hoogh. Performance Compari-
son of Secure Comparison Protocols. In
20th International Workshop on Database
and Expert Systems Application (DEXA),
pages 133–136, 2009.

[MMR+17] B. McMahan, E. Moore, D. Ram-
age, S. Hampson, and B. A. Ar-
cas. Communication-Efficient Learning of
Deep Networks from Decentralized Data.
In Proceedings of the 20th International
Conference on Artificial Intelligence and
Statistics, volume 54, pages 1273–1282.
PMLR, 2017.

[MRTZ18] B. McMahan, D. Ramage, K. Talwar, and
L. Zhang. Learning Differentially Private
Recurrent Language Models. In Interna-
tional Conference on Learning Represen-
tations (ICLR), 2018.

[NSH19] M. Nasr, R. Shokri, and A. Houmansadr.
Comprehensive Privacy Analysis of Deep
Learning: Passive and Active White-box
Inference Attacks against Centralized and
Federated Learning. In IEEE Symposium
on Security and Privacy (SP), pages 739–
753, 2019.

[PAE+16] N. Papernot, M. Abadi, U. Erlingsson,
I. Goodfellow, and K. Talwar. Machine
Learning with Privacy by Knowledge Ag-
gregation and Transfer. In Workshop
on Privacy-preserving Machine Learning
(PPML), 2016.

[PAE+17] N. Papernot, M. Abadi, U. Erlingsson,
I. Goodfellow, and K. Talwar. Semi-
supervised Knowledge Transfer for Deep
Learning from Private Training Data.
arXiv, abs/1610.05755, 2017.

[RG20] M. Rigaki and S. Garćıa. A Survey of Pri-
vacy Attacks in Machine Learning. arXiv,
abs/2007.07646, 2020.

[SPTP+20] S. Sav, A. Pyrgelis, J. Troncoso-Pastoriza,
D. Froelicher, J.-P Bossuat, J. S. Sousa,
and J. Hubaux. POSEIDON: Privacy-
Preserving Federated Neural Network
Learning. arXiv, abs/2009.00349, 2020.

[SS15] R. Shokri and V. Shmatikov. Privacy-
preserving Deep Learning. In 53rd An-
nual Allerton Conference on Communica-
tion, Control, and Computing (Allerton),
pages 909–910, 2015.

[ZJWW17] X. Zhang, S. Ji, H. Wang, and T. Wang.
Private, Yet Practical, Multiparty Deep
Learning. In IEEE 37th International
Conference on Distributed Computing
Systems (ICDCS), pages 1442–1452, 2017.

9


