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Abstract
Quantification is a research area that develops methods that estimate the class attribute prevalence in an independent sample.
Like the other fields in Machine Learning, quantification researchers often use experimental assessment to evaluate and
compare the performance of their proposals. Therefore, the design of the experimental protocols is critical to the research
in quantification. Currently, two protocols have dominated the assessment of quantifiers: the artificial-prevalence protocol
(APP) and the natural-prevalence protocol (NPP). APP is the most employed since it allows the use of classification datasets,
plenty available. However, APP has a shortcoming: the synthetic class prevalence of the test sets. This paper discusses
the practical consequences of this shortcoming and shows simple examples of quantifiers that exploit these limitations to
improve their performance artificially. We propose a baseline quantifier, lazy, and radar charts as tools to identify situations
where the proposed quantifiers are performing poorly.
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1. Introduction
Quantification is the research area that develops methods
to estimate the class prevalence in a data sample. In
the last decade, we have witnessed a rapid evolution of
the field supported by a thriving research community
and significant developments in theoretical and practical
aspects of quantification.

Similarly to other areas of Machine Learning, quan-
tification researchers often avail of experimental assess-
ments to demonstrate the efficacy of their proposals.
Therefore, experimental setups are a critical part of quan-
tification methods development. They support a fair com-
parison of algorithms allowing the researchers to assess
research progress and guide future investigation efforts.
Several researchers have investigated how the experimen-
tal design decisions may influence the performance of
quantifiers. Recent examples are the study of the impact
of classifier hyper-parameters [1] and test set size [2]
in quantification accuracy and the investigation of the
properties of performance measures for quantification
assessment [3].

Quantification research has employed two main ex-
perimental setups in assessing their proposals: artificial-
prevalence protocol (APP) and natural-prevalence protocol
(NPP) [4]. APP is the most common one since it allows
the assessment of quantification methods using classifi-
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Figure 1: The two main experimental setups in quantifi-
cation assessment: artificial-prevalence protocol (APP) and
natural-prevalence protocol (NPP)

cation datasets including benchmark data that are plenty
available online.

In summary, APP consists of splitting a classification
dataset into training and test sets. The test set class distri-
bution is artificially manipulated through sub-sampling,
creating multiple test set samples. A typical design de-
cision is to generate test samples with class prevalence
spanning across the whole spectrum of class distributions.
The same number of test samples is often generated for
each class distribution, creating a uniform distribution
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of class prevalence across all test samples. Therefore, the
quantification methods are assessed for a whole spec-
trum of class distributions, being each class distribution
equally probable. Fig. 1-left illustrates the APP setup.

In contrast, NPP requires specialised quantification
datasets. Those datasets come with multiple naturally
occurring test samples. For example, in an insect surveil-
lance problem [5], we may have several insect traps in-
stalled in the field capturing different amounts of insects.
The final objective is to count the number of captured
insects by species using quantification methods. Each
test sample is likely to have a different class distribution.
Fig. 1-right illustrates the NPP setup.

APP has an artificially controlled component: the class
distribution of the test sets. For simplicity, virtually ev-
ery paper in quantification that uses APP has opted for
a uniform distribution of class prevalence values across
the test sets. Thus, we can expect experimental setups to
have the same amount of test sets for each class preva-
lence. However, for real problems, such uniform distri-
bution rarely holds. In the insect example, we can expect
some species are less prevalent than others, and the class
distribution across all test sets is unlikely to be uniform.

Such artificial characteristic introduces a considerable
risk of biasing the experimental results. For instance, we
often summarise the quantifiers performance across all
test sets with a statistic like the mean error to facilitate a
performance comparison. Such numbers are then com-
pared directly or through a hypothesis test. Therefore,
the best performing method in an APP experiment will
have the best average performance considering all class
distributions equally likely, and thus evenly important.
However, such average performance may not be a rel-
evant criterion for a particular problem. The practice
may demand approaches that best perform non-uniform
distributions, such as skewed class distributions.

The widespread use of APP may lead the community
to focus on methods that perform well on average across
all class distributions. Through “evolutionary” research
pressure, researchers are likely to propose variations and
improvements of the best-performing methods. One may
say that researchers can adapt APP to generate different
class distributions across all test sets besides the uniform
one. However, such a choice of distribution is arbitrary
since we do not expect to have a dominant class distribu-
tion over a variety of real-world datasets.

This paper examines the two main experimental de-
signs used in quantification, APP and NPP. We discuss
some potential limitations of APP related to the creation
of multiple test sets with artificial class distributions. We
address two possible weaknesses of the APP protocol:
the uniform class distribution across all test sets and the
discrete nature of the class distributions. To make our
contributions concrete, we show two simple scenarios
in which poorly designed quantifiers use these two APP

synthetic characteristics to inflate their performance.
It is not the objective of this paper to reject APP or

to propose a different experimental protocol. It is our
opinion that APP is currently the best protocol to assess
quantifiers due to the lack of NPP datasets. However,
as APP employs partially natural and partially synthetic
data distributions, the research community must know
the APP limitations.

We conclude with a few recommendations when im-
plementing quantifiers, particularly of the distribution
matching category. We also recommend the adoption of
a new baseline quantifier for APP named lazy. Lazy is a
quantifier that constantly predicts the expected positive
class prevalence across all test sets. Lazy has a similar
semantic as the majority-class classifier, often used as a
baseline in classification assessment.

This paper is organised as follows: Section 2 discusses
the artificial-prevalence protocol (APP) and Section 3
reviews the natural-prevalence protocol NPP. Section 4
presents the related work, including a brief review of the
quantifiers employed in this paper. Section 5 discusses
two limitations of APP and examples of simple quanti-
fiers that inappropriately exploit them to improve their
performance. Section 6 brings a discussion about the
APP limitations and recommend the use of lazy as a base-
line quantifier and radar charts as a tool to inspect the
performance of quantifiers for all possible class distribu-
tions. Finally, Section 7 concludes our work and presents
directions for future work.

2. Artificial-prevalence Protocol
The artificial-prevalence protocol (APP), proposed by
Forman [6], is the most used experimental setup to assess
and compare quantification methods.

For a binary classification dataset with a set of classes
𝑌 = {⊕,⊖}, APP creates multiple test sets through the
application of sub-sampling. It means that APP randomly
removes examples from either ⊕ or ⊖ to generate test
sets with predetermined class distributions. Typically,
the experimental design uses class distributions across
the entire spectrum of possibilities, such as 𝑝 = 𝑃 (⊕) ∈
{0, .01, .02, . . . , .99, 1}.

APP involves a stochastic decision and therefore is pas-
sive of variability due to chance. Thus, most researchers
prefer to repeat this experiment to decrease variance. Re-
searchers often generate between 10 and 100 samples for
each class distribution. This procedure leads to an assess-
ment over a large number of test sets. For instance, 𝑝
with increments of .01 in the range [0, 1] and 10 samples
per value of 𝑝 leads to 1010 (101× 10) test samples.

We can now perceive the two main limitations of APP.
The first is the discrete nature of the 𝑝 values. Experi-
mental designs generate a class distribution with fixed



increments and for all values in the range. The second is
the uniform distribution across all test samples. Looking
at 𝑝 as a random variable, 𝑃 (𝑝) has a uniform distri-
bution. APP evaluations use classification datasets, and
there is no natural distribution for the test sets. Therefore,
most researchers decide to use a uniform distribution and
generate the same number of test sets for each value of
𝑝.

Quantification methods inappropriately make use of
both limitations, giving them a significant advantage
over other methods. A simple example occur with quan-
tification methods that explicitly search over the space
of possible class distributions, such as HDy [7] and the
methods of the DyS family [8]. We show in Section 5.1
that by leaking the actual values of 𝑝 and searching di-
rectly over these values, HDy can artificially boost its
performance.

Table 1
Evaluation measures for quantification.

Evaluation Measure Definition

Absolute Error (AE) 1
|𝐶|

∑︀
𝑐∈𝐶 | �̂�(𝑐) − 𝑝(𝑐) |

Normalized Absolute Error (NAE)
∑︀

𝑐∈𝐶 |�̂�(𝑐)−𝑝(𝑐)|
2(1−min𝑐𝜖𝐶 𝑝(𝑐))

Relative Absolute Error (RAE) 1
|𝐶|

∑︀
𝑐∈𝐶

|�̂�(𝑐)−𝑝(𝑐)|
𝑝(𝑐)

Normalized Relative Absolute Error
(NRAE)

∑︀
𝑐∈𝐶

|�̂�(𝑐)−𝑝(𝑐)|
𝑝(𝑐)

|𝐶|−1+
1−min𝑐𝜖𝐶 𝑝(𝑐)
min𝑐𝜖𝐶 𝑝(𝑐)

Squared Error (SE) 1
|𝐶|

∑︀
𝑐∈𝐶(�̂�(𝑐) − 𝑝(𝑐))2

Discordance Ratio (DR) 1
|𝐶|

∑︀
𝑐∈𝐶

|�̂�(𝑐)−𝑝(𝑐)|
max(𝑝(𝑐),�̂�(𝑐))

Kullback-Leibler Divergence (KLD)
∑︀

𝑐∈𝐶 𝑝(𝑐) log
𝑝(𝑐)
�̂�(𝑐)

Normalized Kullback-Leibler Diver-
gence (NKLD)

2 𝑒𝐾𝐿𝐷(𝑝,�̂�)

𝑒𝐾𝐿𝐷(𝑝,�̂�)+1
− 1

Pearson Divergence (PD) 1
|𝐶|

∑︀
𝑐∈𝐶

(𝑝(𝑐)−�̂�(𝑐))2

�̂�(𝑐)

The second limitation is exploitable in a more subtle
way. Frequently, quantification papers report the average
performance across all test sets. Table 1 summarises the
most used error measures in quantification research, and
we point the interested readers to [3] for an insightful
analysis of these measures properties. All these measures
are pointwise, i.e., they take into consideration only two
values: the actual 𝑝 and the predicted �̂� prevalences of
the positive class in a single test sample. Therefore, re-
searchers often average those numbers across all test
samples to provide a single number that summarises the
quantifier performance for an entire dataset.

The main issue with this experimental setup is that
𝑝 has a fixed and known expected value across all test
sets. For instance, E[𝑝] = .5 if we generate the same
number of test sets for all possible class distributions
with a constant increment. Therefore, a quantifier can
appear more accurate if it predicts values closer to this

expected value under certain circumstances. A simple
way to think about this is to realise that .5 is the middle
value in the range [0, 1], and it is the constant prediction
that minimises the error under a uniform distribution of
classes in the test sets.

Such observation is also the motivation for incorporat-
ing a simple baseline quantifier that we call lazy. The lazy
quantifier predicts E[𝑝] for every test set independently
of its actual class distribution.

Section 5.2 shows a simple example in which we pro-
pose a quantifier that applies Laplace smoothing to the
output of the Classify & Count (CC) method (cf. Sec-
tion 4.2). Such a new quantifier appears to outperform
CC; however, its performance improvement is merely an
artifact of the experimental design.

3. The Natural-prevalence
Protocol

The natural-prevalence protocol (NPP) requires datasets
in which multiple test samples occur naturally. These
test samples are often a result of data collection occur-
ring in various locations, periods or both. For instance,
the insect surveillance application requires the deploy-
ment of insect traps in different locations to estimate
the spatiotemporal distribution of the insect species of
interest.

An essential characteristic of NPP datasets is the pres-
ence of a class distribution drift in the test samples. Other-
wise, we can trivially solve the problem by estimating the
empirical class probability in the training set. Returning
to the insect surveillance example, we can expect that the
insect distribution will vary both spatially (for instance,
due to the presence of favourable local conditions such
as water and food) and temporally (for example, due to
seasonal factors).

NPP datasets are rare because they require a tremen-
dous effort to collect and label the data, including the
multiple test samples. One example of a dataset with
such characteristics is the Woods Hole Oceanographic
Institution (WHOI) Plankton dataset [9]. The dataset
consists of nine years of data collected by an automated
system that samples 5 ml of seawater every 20 minutes
resulting in nearly 1 billion images. Recently, González
et al. [10] used the NPP setup to assess several quanti-
fiers to a subset of this dataset consisting of 3.4 million
annotated images organized in 964 samples.

NPP has none of the mentioned limitations of APP. The
class prevalence of the test set occur naturally and vary
from dataset to dataset. Therefore, NPP has no fixed ex-
pected value for 𝑝, and designing a baseline method such
as lazy would require a different value for each dataset.
We can safely conclude that the risks of overfitting the
test sets with NPP are much lower than with APP. In par-



ticular, methods that explicitly search for �̂� cannot have
access to a fixed set of artificial 𝑝 values. Also, avoiding
extreme �̂� predictions, such as 0 and 1, is less likely to
make the method appear more accurate.

We could conclude that NPP is superior to APP, but a
scan of the literature shows that APP is the experimental
setup of choice of most of the quantification papers [11, 4,
12, 8, 13, 7, 14, 15]. The reason is the lack of NPP datasets
and the difficulties in creating them. A possible solution
is using large classification datasets that can be split into
various test sets. One example is the study in [16] that
assesses quantifiers in 5148 binary test sets created with
the RCV1-v2 dataset [17]. The authors created those test
sets by splitting the one-year worth of data in RCV1-v2
in 52 weeks. They also consider each of the 99 classes in
the data, in turn, leading to the 5148 test sets (52× 99).
However, even in this case, these datasets may not pose
a challenging problem for quantification due to the lack
of class distribution variability among test sets [18].

The creation of NPP datasets may involve a signifi-
cant amount of work in gathering data from quantifi-
cation applications. Sentiment analysis is an example
of an application domain that has used quantification
frequently and a candidate to provide NPP benchmark
datasets. However, a relevant study performed in this
area using NPP setup [19] have been re-assessed with
APP recently [4]. The main reason is the reduced num-
ber of test sets used in the experiments and the potential
risks of generalising those experimental results based on
limited evidence [4].

Therefore, we see a legitimate need to use APP datasets
due to the lack of NPP datasets. However, as we discuss
and show empirical evidence in this paper, researchers
must be mindful of the limitations of APP setup to avoid
proposing methods that take advance of the experimental
design to provide competitive performance.

4. Related Work
This section provides a summary of the quantification
algorithms included in our experiments. We start by
providing some initial background and notation that will
be useful to explain the quantification approaches.

4.1. Background
Quantification is a supervised machine learning task that
shares similarities with classification. The main one is
the attribute-value representation for observation and
their relation to a nominal class attribute.

Formally, in the case of binary classification, let 𝐷 =
{(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} be the labeled set, in which
each example x𝑖 ∈ 𝒳 is a vector in the 𝑚-dimensional
feature space 𝒳 , and 𝑦𝑖 ∈ 𝒴 = {⊕,⊖} is its respec-

tive class label. In such a setting, we can define a binary
classifier as a model ℎ𝑐 induced from 𝐷 such that:

ℎ𝑐 : 𝒳 −→ {⊕,⊖}

The objective of ℎ𝑐 is to predict the class label of pre-
viously unseen examples accurately. In this scenario, a
scorer ℎ𝑠 is defined such that:

ℎ𝑠 : 𝒳 −→ R

which aims to predict, for each example, a numerical
value that correlates to P(𝑦𝑖 = ⊕|x𝑖), that is, the poste-
rior probability of an example belonging to the positive
class. To simplify the remaining of the text, we refer to
scores of positive examples as positive scores and scores
of negative examples as negative scores. We can con-
veniently convert a scorer into a classifier by setting a
threshold: only examples scored above the threshold are
classified as positive.

In binary quantification, we are not interested in indi-
vidual class labels. Instead, we predict the proportion of
the positive examples in a test sample. A quantification
model ℎ𝑞 is, therefore, defined as follows:

ℎ𝑞 : S𝒳 −→ [0, 1]

where S𝒳 denotes the universe of possible samples from
𝒳 and ℎ𝑞 estimates the prevalence of the positive class
in a given sample 𝑆 ∈ S𝒳 .

In the last decade, we have witnessed the proposal of
several quantification algorithms. Although they share
the same objectives, their introduction by different com-
munities led to different names for the quantification
task, such as prevalence estimation [20], class prior es-
timation [21], and class distribution estimation [7]. We
recommend the survey of Gonzalez et al. [22] as an or-
ganised and comprehensive review of the most relevant
quantification methods proposed in the literature. In
what follows, we provide a summary of the quantifica-
tion algorithm included in our experiments.

4.2. Quantification Methods
The most straightforward quantification approach is
Classify & Count (CC). It is a naive adaptation of classi-
fiers to quantification problems. Forman [15] has demon-
strated CC has a systematic error that monotonically
increases as we move away from a distribution that CC
provides optimal counting.

CC uses a classifier to label each instance in the test
sample. Afterwards, it counts the number of examples be-
longing to each class. CC provides optimal quantification
results with a perfect classifier. However, classifiers with
balanced errors, such as a binary classifier that commits
an equal number of false-positive and false-negative er-
rors, are also optimal. Intuitively, in these situations, CC



benefits from the fact that opposite mistakes can nullify
each other.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Score

Negative distribution
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False negative

Figure 2: Score distribution for a set of positive and negative
examples and a classification threshold [23].

Fig. 2 illustrates the probability density functions of the
scores for a binary classification problem for a hypothet-
ical test set. We chose the threshold so that the number
of false positives matches the false negatives. Therefore,
the CC quantifier provides perfect quantification, albeit
the underlying classifier is not perfect.

The CC outcome is the count of every observation
with a score above the threshold. In other words, it is
the sum of true positives and false positives. However,
the actual count is the sum of true positives and false
negatives. Fig. 2 helps us to understand the motivation
behind several quantification methods that correct the
counts by estimating false-positive and false-negative
errors.

A well-known approach of this approach is Adjusted
Classify & Count (ACC) [6]. In absolute numbers, ACC’s
correction factor adds the false negatives to CC’s output
and then subtracts the false positives. However, ACC is
more commonly expressed as frequencies, in the follow-
ing manner:

𝑃𝐴𝐶𝐶(⊕) =
𝑃𝐶𝐶(⊕)− 𝑃 (⊕|⊖)

𝑃 (⊕|⊕)− 𝑃 (⊕|⊖)
(1)

where 𝑃𝐶𝐶(⊕) is the positive class prevalence provided
by CC in the test set. 𝑃 (⊕|⊖) is the false-positive rate,
and 𝑃 (⊕|⊕) is the true-positive rate.

If we knew the true-positive and false-positive rates
in the test set, then ACC would be a perfect quantifier.
However, as the test set is unlabelled, the best we can
do is to estimate these quantities in a validation set. Es-
timating these values in the validation set often makes
ACC far from perfect and not as accurate as the state-of-
the-art [12].

Another class of quantification methods is known as
distribution matching. These methods include algorithms
that mixture distributions on the training set to match
the test set distribution. A practical way of matching
distributions is to consider the scores obtained on an
unlabeled set follow a parametric mixture between two
known distributions (one for the positive and another
for the negative class). In general, these methods use

a search mechanism to find the parameters that best
match a mixture of positive and negative training set
score distributions with the unlabelled score distribution
of the test set. The computation of the parameters of this
mixture leads to the quantification estimate.

The HDy algorithm [7] represents each score distri-
bution as a histogram. A weighted sum of these his-
tograms gives the mixture between the positive and neg-
ative score distributions, where the weights sum up to 1.
The weights that minimize the Hellinger Distance (HD)
between the mixture and the unlabeled (test) score dis-
tribution (𝒮⊙) are considered to be the proportion of the
corresponding classes in the unlabeled sample. The next
equation details this computation:

𝑃HDy(⊕) =

argmin
0≤𝛼≤1

{︀
HD

(︀
𝛼𝐻[𝒮⊕] + (1− 𝛼)𝐻[𝒮⊖], 𝐻[𝒮⊙]

)︀}︀
(2)

where HD represents Hellinger distance and 𝐻[·] indi-
cates an operation that converts a set of scores into a
histogram. Fig. 3 illustrates this process.

]] ,S⊕ S⊙
S⊖

+ (1 - α)αHD ))
Figure 3: HDy searches for an𝛼 thatminimizes theHellinger
Distance [24].

HDy uses histograms to represent the positive, neg-
ative and unlabelled score distributions. A histogram is
a discrete representation that has a relevant parameter,
the number of bins1. HDy authors recommend applying
the method over a range of bins from 10 to 110 with an
increment of 10. The final output is the median of the
estimated positive distributions across all bins values.

The original HDy method uses a linear search to find
the alpha that minimises the Hellinger distance. Some
minor improvements to HDy are the use of ternary
search to makeHDy more efficient and the use of Laplace
smoothing [25] to compute the bin values [26].

The HDy method inspired a recently proposed frame-
work named DyS [8] that supports the use of different
distance measures besides HD:

𝑃DyS(⊕) =

argmin
0≤𝛼≤1

{︀
DS

(︀
𝛼𝑅[𝒮⊕] + (1− 𝛼)𝑅[𝒮⊖], 𝑅[𝒮⊙]

)︀}︀
1Bins divide the entire range of score values into a series of

intervals, so we can count how many values fall into each interval.



whereDS is a dissimilarity measure to estimate the match
between the distributions of training scores and test
scores, and 𝑅[·] is an operation that converts a set of
scores into a suitable representation for DS, such as a
histogram in the case of HD.

The DyS approach with Topsøe distance is among of
the most accurate quantifiers in the literature [11, 8].

5. Exploring APP
This section discusses two limitations of APP: the dis-
crete nature (Section 5.1) and the uniform distribution
(Section 5.2) of the 𝑝 values. We show simple examples
of how quantifiers can exploit these limitations leading
to inflated performance.

5.1. Exploring the Discrete Nature of 𝑝
APP requires the explicit specification of the test class
prevalences that will be generated to assess the quanti-
fiers. The common practice is to subsample the positive
or negative classes, producing class prevalences across
the entire spectrum of possibilities.

The nature of the generated artificial class prevalences
is inherently discrete. Therefore, it is a researcher’s deci-
sion how many different test distributions they will gen-
erate. For example, we can create test set distributions
with .1 increments such as 𝒜 = {0, .1, . . . , .9, 1} or with
.01 increments such as 𝒜 = {0, .01, . . . , .99, 1}. Apart
from the obvious computational overhead caused by the
smaller increments, it is unclear how such a decision will
affect the assessment of quantifiers’ performance.

A possible issue with APP discrete distributions occurs
when this design information is inadvertently leaked to
the quantification method. To illustrate this problem, we
use HDy, a state-of-the-art quantifier. The use of HDy is
motivated by this algorithm searching over the possible
class distributions, looking for the match that provides
the smallest Hellinger distance. TheHDy is formalised in
Equation 2. We restate this equation making an explicit
statement of which values of 𝛼 will be tested:

𝑃HDy(⊕) =

argmin
𝛼∈Σ

{︀
HD

(︀
𝛼𝐻[𝒮⊕] + (1− 𝛼)𝐻[𝒮⊖], 𝐻[𝒮⊙]

)︀}︀
where Σ is a set of positive class prevalence values. No-
tice that there is no requirement to search exactly over
the set of actual test class prevalences, i.e., Σ = 𝒜. In
fact, to mimic the reality, we should design experimental
setups in which |Σ| ≪ |𝒜|.

We executed an experiment to illustrate how much
a quantifier such as HDy can benefit by having im-
proper access to the class distributions in 𝒜. This ex-
periment involves seven classification datasets from UCI

[27], OpenML [28], PROMISE [29], and Reis [26] reposi-
tories. Table 2 briefly describes the main features of the
datasets.

Table 2
Datasets Description.

Dataset Size Features Repository
AedesSex 24,000 27 Reis
AedesQuinx 24,000 27 Reis
Anuran Calls 6,585 22 UCI
ArabicDigit 8,800 27 UCI
BNG (vote) 39,366 9 OpenML
EEG Eye State 14,980 14 OpenML
Nomao [30] 34,465 118 OpenML

We control two main parameters: the
cardinality of the sets 𝒜 and Σ. |𝒜| ∈
{10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450,
500} and |Σ| ∈ {10, 20, 30, 40, 50, 100, 150}. We use
two state-of-the-art quantifiers, HDy and DyS. The
results are expressed as the mean absolute error (MAE)
(c.f. Table 1) across all datasets2.

0.00
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0.02

0.03

0 50 100 150 200 250 300 350 400 450 500
Number of discrete positive class distributions |A|

M
AE

HDy−10
HDy−20

HDy−30
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HDy−50
HDy−100

HDy−150
DyS−TS

Figure 4: Experimental results forHDy andDyS quantifiers
as |𝒜| and |Σ| vary.

Figure 4 summarises the results. There is a noticeable
drop in HDy’s MAE when |Σ| ≤ 50 and |Σ| = |𝒜|. In
contrast, DyS performance is constant independently of
|𝒜|. The reason is that our implementation of DyS uses
a ternary search procedure that do not require specifying
a list of search values.

Experimental evaluations have shown that DyS has
an overall performance superior to HDy [8, 11]. How-
ever, Figure 4 shows that poorly-designed experimen-
tal designs could lead us to conclude the opposite. In
particular, HDy misleadingly outperforms DyS when
|Σ| = |𝒜| ∈ {10, 20, 30} and have comparable perfor-
mance when the cardinality is 40. Overall, Figure 4 shows

2We are not keen on reporting average results across datasets.
However, this presentation allows summarising all results in a sin-
gle plot. The results for individual datasets follow the same pat-
tern and are available on the paper website (https://quantification.
shinyapps.io/quantificationrisks/)

https://quantification.shinyapps.io/quantificationrisks/)
https://quantification.shinyapps.io/quantificationrisks/)


a very stable performance for all variations of HDy when
|𝒜| ≥ 100. Therefore, we have evidence to recommend
|𝒜| = 100 since greater values would require additional
computational processing.

Recent publications with large experimental assess-
ments have used |𝒜| ≪ 100, such as |𝒜| = 12 [11] and
|𝒜| = 21 [4]. These smaller values of |𝒜| are necessary
to avoid a combinatorial explosion since these papers
also vary the class distribution in the training set. In the
particular case of these two papers, there is no leakage
of test information to the quantifier.

In [11], the authors use convex optimisation as a search
procedure and a ternary search when the first procedure
fails to find a response. Regarding [4], the implementa-
tion in the QuaPy framework [31] uses |Σ| = 100 by
default. In our experiments, |Σ| = 100 and |𝒜| = 20
leads to slightly optimistic MAE estimates. We recom-
mend that QuaPy replaces the search procedure of Distri-
bution Matching algorithms with ternary [8] or convex
optimisation procedure or a combination of both [11].

5.2. Exploring the Uniform Distribution
Let us suppose we want to create a new quantifier based
on the well-known Classify and Count (CC) approach.
CC is a quantifier that estimates the prevalence of the
positive class, 𝑝 = 𝑃 (⊕), by counting the output of a
classifier. Let us suppose that we want to improve the em-
pirical probabilities provided by CC using a “smoothed”
estimator such as Laplace smoothing [25]. We name this
variation of CC as Laplace CC or simply LCC.

Laplace smoothing is a technique often applied when
computing empirical probabilities from data. In the case
of binary quantification, the class estimate provided by
the Classify & Count (CC) is given by

�̂� =

∑︀|𝑆|
𝑖=1 1[ℎ𝑐(x𝑖) = ⊕]

|𝑆|
where 𝑆 is a test sample and x𝑖 ∈ 𝑆.

Laplace smoothing provides a smoothed estimator by
adding a pseudo-count 𝛼. In the case of �̂� given by CC,
we have

𝑝�̂� =
𝛼+

∑︀|𝑆|
𝑖=1 1[ℎ𝑐(x𝑖) = ⊕]

|𝑆|+ 𝛼𝑑

where 𝛼 ≥ 0 is the smoothing parameter and 𝑑 is the
number of classes, i.e., two for binary classification. The
resulting estimate is between the empirical probability �̂�
and the uniform probability 1/𝑑.

Although Laplace smoothing is a well-established tech-
nique, there is no reason to expect LCC to outperform
CC in any experimental setting. Laplace smoothing is a
technique that pushes the prevalence estimates towards

the uniform distribution. In the case of binary quantifi-
cation, the estimates provided by LCC will be closer to
.5.

We assessed CC and LCC, adding to the datasets of
Table 2 additional datasets listed in Table 3. Our exper-
iments use test sets of size 100 and smoothing factor
𝛼 = 10 and Random Forests with 200 trees as the under-
lying classifier.

Table 3
Additional Datasets Description.

Dataset Size Features Repository
Bank Marketing [32] 45,211 16 UCI
Credit Card [33] 30,000 23 UCI
HTRU2 17,898 8 UCI
JM1 10,880 21 PROMISE
Letter Recognition 20,000 16 UCI
Pollen 3,848 6 OpenML
Numerai 96,320 22 OpenML

Table 4 summarises the results, showing the mean
absolute error (MAE) of each quantifier (CC and LCC)
and the 𝑝−value estimated according to the Friedman
test with 95% confidence. The best quantification result
for each dataset is shown in bold. Underlined values
represent a statistical difference between CC and LCC.

Table 4
CC and LCC mean absolute error per dataset.

Dataset CC LCC 𝑝-value

O
ri
gi
na

lD
at
as
et
s AedesSex 0.010 0.044 ≤0.001

AedesQuinx 0.089 0.103 0.136
Anuran Calls 0.013 0.042 ≤0.001
ArabicDigit 0.011 0.044 ≤0.001
BNG (vote) 0.011 0.046 ≤0.001
EEG Eye State 0.058 0.088 ≤0.001
Nomao 0.032 0.050 0.022

A
dd

it
io
na

lD
at
as
et
s Bank Marketing 0.253 0.264 ≤0.001

Credit Card 0.294 0.250 ≤0.001
HRTU2 0.071 0.065 0.004
JM1 0.370 0.312 ≤0.001
Letter Recognition 0.065 0.061 0.004
Pollen 0.270 0.270 0.549
Numerai 0.249 0.252 0.619

LCC seems to outperform CC for the additional
datasets. In the datasets that LCC is better than CC, the
performance of LCC is consistently superior to CC for
all possible values of 𝑝. Figure 5 illustrates this perfor-
mance improvement using radar plots for four datasets
from Table 33. The radar plots use the angle to represent
the test set positive-class distribution 𝑝 and the radius to
describe the mean absolute error.

3The results for all datasets are available on the paper website.
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Figure 5: Radial plots for CC and LCC for four datasets.

We can notice in Table 4 that the additional datasets
often show larger quantification errors than the original
datasets. Therefore, we could be tempted to conclude
that Laplace smoothing is a technique that can help to im-
prove quantification performance for complex problems.
However, this conclusion is incorrect.

The reason for the performance enhancement is, in
fact, an artifact of the experimental design. As the prob-
lem becomes more challenging and the quantification
error increases, it pays off to forecast class prevalences
closer to E[𝑝]. In our experiment, if we constantly predict
�̂� = .5 for all test sets, the expected MAE is just .25.

We may argue that this is not a limitation of APP. In
other experimental setups, we could also have an ap-
parent performance improvement by forecasting values
closer to E[𝑝] under certain circumstances, such as dif-
ficult datasets. However, what makes APP particularly
dangerous is that E[𝑝] is fixed for all datasets. Therefore,
a single mistake can consistently improve the quantifier
performance for several datasets.

Before we conclude this section, let us define a baseline
quantifier known as lazy. We can use lazy as a reference
quantifier and require all assessed methods to outperform
lazy in an APP setup.

Lazy is a quantifier with a constant output equals to
E[𝑝]. Lazy is the best constant quantifier we can conceive,
and in APP setup with uniform 𝑝 distribution, it has a
constant expected MAE of .25 across all test sets.

6. Discussion
The purpose of this paper is to discuss the APP experi-
mental setup and some of its limitations. These deficien-
cies are related to the synthetic data distributions used to
create test sets with a wide range of class distributions.

Our objective is to illustrate with simple examples
how quantifiers can exploit APP limitations to improve
their performance artificially. These examples are sim-
plifications of some scenarios our research group has
experienced while developing quantification methods.
As quantification methods increase in sophistication, it
becomes more challenging to identify these issues.

We have spent countless hours looking for a theoretical
explanation of why a quantifier 𝑋 empirically outper-
forms a quantifier 𝑌 to find out that 𝑋 approximates the
lazy method under challenging situations, such as tiny
test set sizes.

This situation becomes more difficult to diagnose given
the need to assess Machine Learning proposals in sev-
eral datasets. The more datasets we use in an empirical
evaluation, the less likely it becomes to look at individual
numbers. There is a need to summarise the results into a
relatively small amount of data to compare them more
easily.

By presenting and analysing summarised results, we
are less prone to identify potential issues. We increase
the chance of having a biased model being recognised as
legit by authors and reviewers.

In this sense, using the lazy baseline quantifier helps
identify the conditions the models are not performing
well enough. Informally, the community has used CC as
a baseline classifier. However, we have seen situations
where the performance of CC (and other quantifiers)
was much worse than lazy. These situations gave us the
impression that we were making progress when we were
far from a practical performance.

A simple plot to compare the performance for multiple
quantifiers across all class distributions is the radar chart.
Figure 6 illustrates two of these plots for the datasets
Numerai (left) and Bank Marketing (right) and quantifiers
DyS, HDy and lazy.

The lazy quantifier shows a well-defined heart shape.
For the Bank Marketing dataset, the performance of DyS
and HDy is worse than the baseline for most class dis-
tributions. Meanwhile, for the Numerai dataset, DyS
outperforms HDy for all distributions. These two quanti-
fiers also outperform lazy for the majority of the 𝑝 values.

Radar charts are helpful to spot when a quantifier per-
forms differently according to 𝑝. For instance, HDy per-
forms better for small 𝑝 values (such as .25) than large
ones (around .75) in the Numerai dataset. Figure 5 shows
more extreme cases of such performance imbalance that
are difficult to identify when we analyse mean perfor-
mance numbers, such as in Table 4
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Figure 6: Radar charts for the datasets Numerai (left) and
Bank Marketing (right) and quantifiers DyS, HDy and lazy.

We are aware that the community has used other plots
to visualise the performance of quantifiers. A plot of-
ten seen in the literature is a scatter plot with the 𝑥-axis
representing the true and 𝑦-axis the predicted class preva-
lences. Thus, the diagonal line represents the optimal
quantifier. However, we note that the radar plot and this
scatter plot convey different information. The radar plot
informs the average MAE, while the scatter plot presents
the average �̂� for each value of 𝑝.

We find the scatter plot interesting to access if a cer-
tain quantifier provides biased estimates, i.e., under or
overestimates �̂� for different values of 𝑝. However, it may
not be a handy tool to access the accuracy of unbiased
quantifiers. In contrast, the radar plot directly shows
the quantification error for different values of 𝑝. There-
fore, it can be a more valuable tool to assess the error
distribution according to 𝑝.

7. Conclusion and Future Work
This paper reviews the experimental protocols used in
quantification and discusses the shortcomings of APP.
As the name suggests, APP has an artificial component
that modifies the test set distribution to create multiple
test sets with different class distributions.

The artificial part of the APP creates some structural
regularities that are not present in the real world. Such
regularities can be subject to exploitation by quantifiers,
leading to an improper increase in counting accuracy.

The objective of this paper is to call the attention of
the community to the shortcomings of APP. Therefore,
reducing the chance of inadvertently taking advantage
of them when proposing new quantification methods.

We propose lazy, a baseline quantifier that can help
us to identify when quantifiers are performing poorly.
Lazy constantly outputs E[𝑝]. Any useful quantifier must
outperform lazy.

Also, we propose the use of radar charts as a visual
tool to compare quantifiers. These plots are helpful to
understand how the performance of a quantifier varies

according to 𝑝.
We intend to develop quantification performance mea-

sures that use the lazy quantifier as a reference for future
work. Another possibility is to define a new measure
that considers the area and lack of symmetry in the radar
chart.
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