
A Graph Neural Network For Fuzzy Twitter Graphs
Georgios Drakopoulos1, Eleanna Kafeza2, Phivos Mylonas1 and Spyros Sioutas3

1Department of Informatics, Ionian University, Tsirigoti Sq. 7, Kerkyra 49100, Hellas
1College of Technological Innovation, Dubai Academic City, E-L1-108, UAE
3Computer Engineering and Informatics Department, University of Patras, Patras 26504, Hellas

Abstract
Social graphs abound with information which can be harnessed for numerous behavioral purposes including online political
campaigns, digital marketing operations such as brand loyalty assessment and opinion mining, and determining public
sentiment regarding an event. In such scenarios the efficiency of the deployed methods depends critically on three factors,
namely the account behavioral model, the social graph topology, and the nature of the information collected. A prime example
is Twitter which is especially known for the lively activity and the intense conversations. Here an extensible computational
methodology is proposed based on a graph neural network operating on an edge fuzzy graph constructed by a combination
of structural, functional, and emotional Twitter attributes. These graphs constitute a strong algorithmic cornerstone for
engineering cases where a properly formulated potential or uncertainty functional is linked to each edge. Starting from the
ground truth in each individual vertex, the graph neural network progressively computes in an unsupervised manner a global
graph state which can in turn be subject to further processing. The results, obtained using as a benchmark a recent similar
graph neural network architecture along with two Twitter graphs, are promising.
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1. Introduction
Graph mining is an integral part of the interconnected
era since it lays the groundwork for numerous applica-
tions across a wide array of financial and technological
fields including among others social network analysis,
database query optimization, graph signal processing
(GSP), supply chain and logistics networks, and brain cir-
cuit analysis. In this context modeling a graph in terms
of vertices, connectivity patterns, and associated features
is tantamount to data model selection. Edge fuzzy graphs
extend classical graphs as probabilities drawn from a sin-
gle distribution which may well have unknown param-
eters to be estimated. Said distribution is closely linked
to the semantics and functional nature of the underlying
graph. For instance, in a transportation network edge ex-
istence probabilities can show how likely a specific road
is to be blocked from snow in winter months, whereas
in a computer network they may model the chance of a
virus being propagated along a given link.

In order to compute an estimation of the global graph
state which allows not only a higher level overview but
also subsequent processing, in this work will be used a
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graph neural network (GNN) architecture. GNNs con-
stitute a class of unsupervised neural networks where
each vertex, representing a processing node, starts with
a local ground truth information vector and iteratively
a global status is derived based on the fundamental fact
that graphs contain inherently higher order information
in a distributed manner. The resulting graph global state
can be subsequently further processed in order to derive
global properties such as community discovery.

The primary research objective of this conference pa-
per is the development of a GNN architecture designed
for edge fuzzy Twitter graphs constructed from incor-
porating structural, functional, and behavioral features.
The proposed methodology can be inherently extended to
other possible attribute types, making it thus appropriate
for mining graphs originating from social media or evolv-
ing computational ecosystems for that matter. This work
differentiates itself from previous ones in two aspects,
namely the fusion of various heterogeneous attributes
and the induced edge fuzzy topology.

The remaining of this work is structured as follows. In
section 2 the recent scientific literature regarding GNNs,
graph mining, and computational behavioral science is
briefly reviewed. The proposed methodology along with
the relevant intuition are given in 3. The results obtained
from the experiments are the focus of section 4. Future
research directions are given in 5. Technical acronyms
are defined the first time they are encountered in the
text. Finally, the notation of this conference paper is
summarized in table 1.
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Table 1
Notation of this conference paper.

Symbol Meaning First in

△
= Definition or equality by definition Eq. (1)
{𝑠1, . . . , 𝑠𝑛} Set with elements 𝑠1, . . . , 𝑠𝑛 Eq. (2)
(𝑡1, . . . , 𝑡𝑛) Tuple with elements 𝑡1, . . . , 𝑡𝑛 Eq. (1)
|𝑆| Set cardinality functional Eq. (3)
prob {Ω} Probability of event Ω occurring Eq. (4)

2. Previous Work
GNNs operate on irregular domains expressing relation-
ships. Heterogeneous GNN architectures are examined
in [1] and representative GNNs designed to complete ver-
satile tasks in [2]. Edge labeling is proposed in [3] in the
context of few-short learning for GNNs. The technique
of aggregated neural path in conjunction with machine
learning (ML) tasks is described in [4]. The emotional
coherency of Twitter graphs with GNNs is explored in
[5], whereas in [6] are given guidelines for social recom-
mendation based on GNNs.

Graph mining is a mainstay of current ML [7]. In a
graph signal processing (GSP) context adjacency matrices
are considered as two-dimensional signals and signal pro-
cessing techniques are then employed to extract patterns
of interest [8]. An overview of the connections to deep
learning are given in [9]. In [10] a tensor stack network
(TSN) is trained to estimate the topological correlation
of graph pairs compressed with the two-dimensional dis-
crete cosine transform (DCT2), while the same architec-
ture evaluates graph resiliency in [11]. Flow-based GSP
is examined in [12]. The basic operations of GSP such as
shifting and sampling are defined in [13]. A graph ver-
sion of the LMS adaptive filtering algorithm is presented
in [14]. A versatile and space efficient data structure for
persistent graphs is described in [15].

Behavioral attributes have recently emerged as an inte-
gral part of many recent computational systems [16]. The
connection between behavioral systems and data driven
analysis is explored in [17]. Digital trust is a paramount
factor for recruiting candidates from LinkedIn [18]. Clus-
tering fMRI images with tensor distances for emotion
recognition [19], while gamification strategies are ex-
plored in [20]. An overview of behavioral systems is
given in [21].

3. Proposed Architecture
In this section the proposed GNN architecture as well as
the notions underlying it are described.

3.1. Fundamental concepts
In order to describe the proposed architecture a few basic
concepts must be first revised or defined. First the class
of edge fuzzy graphs is introduced in definition 1.

Definition 1 (Edge fuzzy graph). An edge fuzzy
graph is a combinatorial object represented by the ordered
triplet shown in equation (1).

𝐺
△
= (𝑉,𝐸, ℎ) (1)

The elements in (1) have the following meaning:

• The vertex set 𝑉 . In the context of this work
each vertex corresponds to a single Twitter account
through a bijection.

• The set of fuzzy edges 𝐸 where 𝐸 ⊆ 𝑉 × 𝑉 . The
connectivity patterns therein reflect the underlying
graph dynamics.

• The functional ℎ : 𝐸 → [0, 1] maps each edge to a
probability drawn from a single distribution. These
result from graph semantics and functionality.

In the general case the digital account behavior for any
online social network is given in definition 2.

Definition 2 (Account behavior). The online behavior
of an account consists of the total peer interaction over all
possible ways offered by the given social medium.

The above definition can be readily extended in the case
two or more accounts are connected over multiple social
media, expanding thus the interaction potential. How-
ever, this is outside the scope of this work.

In this work the online behavior of Twitter accounts
has three distinct components, namely the follow rela-
tionships, retweet patterns, and emotional polarity with
respect to a reference hashtag set. The intuition behind
their selection is as follows:

• The follow relationships capture the structural
aspect of the Twitter graph since they constitute
the core of its edges.

• The retweet patterns are an integral part of the
functionality taking place bridging accounts in a
different way.
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Figure 1: Behavioral model.

• The emotional coherency is a factor evaluating
the similarity of sentiments towards selected top-
ics expressed as hashtags.

The above are also shown in figure 1.
In order to model the behavioral aspects of the Twitter

accounts, a set of the most common hashtags from each
graph is selected. The inspiration for the selection of such
a set is the concept of node cover. Definition 3 clarifies it.

Definition 3 (Reference hashtag set). Let 𝐻0 be the
set of hashtags in a Twitter graph 𝑇 . A hashtag ℎ ∈ 𝐻0 is
also belongs to the reference hashtag set if and only if the
accounts who have used ℎ constitute a vertex cover for 𝑇 .

Let 𝐻 be the set of hashtags satisfying definition 3.

𝐻
△
= {ℎ1, . . . , ℎ𝑝} (2)

The ratio of the cardinality of 𝐻 to that of 𝐻0 can be
taken as a measure of the important information existing
in the underlying Twitter graph as in (3):

𝜌
△
=

|𝐻|
|𝐻0|

(3)

Using the notion of the vertex set to find popular hash-
tags has the following advantages:

• Selecting hashtags ℎ does not depend on any hy-
perparameters or on any thresholds whatsoever.

• The widespread use of hashtag ℎ is a clear indi-
cation of its popularity.

• Although vertex cover is an NP-hard problem,
approximation algorithms for it exist.

However, it should be noted that for larger benchmark
graphs or for dynamic ones alternative criteria should be
sought in order to avoid the overwhelming complexity
of determining a vertex cover.

3.2. Architecture
The proposed GNN architecture relies on the fundamen-
tal fact that edges are fuzzy, namely that they belong to

the graph with a certain probability which in the general
case depends on an attribute set. The latter is frequently
strictly local or a function of a small neighborhood and
rarely global since updating such a set is costly and prone
to dependency bottlenecks. In the context of this con-
ference paper the probability 𝑝𝑖,𝑗 for edge 𝑒𝑖,𝑗 between
vertices 𝑣𝑖 and 𝑣𝑗 is computed as in equation (4):

prob {𝑒𝑖,𝑗}
△
= 𝑝𝑖,𝑗 = 𝑤𝑓𝐹𝑖,𝑗 +𝑤𝑟

𝑟𝑖,𝑗
𝑅

+𝑤𝑐𝑐𝑖,𝑗 (4)

In (4) three factors are taken into consideration:

• Whether there is a directed follow link from the
𝑖-th account to the 𝑗-th one denoted by the binary
indicator 𝐹𝑖,𝑗 .

• The ratio of the number 𝑟𝑖,𝑗 of retweets of the
𝑖-th account coming from the 𝑗-th one to the total
retweets 𝑅 in the graph.

• The signed correlation factor 𝑐𝑖,𝑗 expressing the
emotional coherency of the 𝑖-th and 𝑗-th accounts
with respect to the reference hashtag set.

The sentiment 𝑙[𝑡] of the 𝑖-th account during iteration
𝑡 consists of a vector containing an emotional polarity
score, namely the percentage of the how positive, neutral,
of negative the 𝑖-th account feels towards the as shown
in (5). Initially the ground truth vector of the 𝑖-th account
is the respective average percentage of positive, neutral,
or negatively charged words in the tweets containing at
least one hashtag from the reference set.

𝑙
[𝑡]
𝑖

△
=
[︀
𝑛𝑝,𝑖 𝑛𝑛,𝑖 𝑛𝑔,𝑖

]︀𝑇 (5)

Given the iteration-dependent value of 𝑙[𝑡], the value
of the correlation factor 𝑐𝑖,𝑗 should be computed dur-
ing each iteration as shown in (6). It should be high-
lighted that 𝑐𝑖,𝑗 is the only term of (4) which is signed,
thereby reinforcing or weakening the strength between
two accounts depending on whether they have similar
sentiments towards the reference hashtag set.∑︀3

𝑘=1

(︁
𝑙
[𝑡]
𝑖 [𝑘]− 1/3

)︁∑︀3
𝑘=1

(︁
𝑙
[𝑡]
𝑗 [𝑘]− 1/3

)︁
√︂∑︀3

𝑘=1

(︁
𝑙
[𝑡]
𝑖 [𝑘]− 1/3

)︁2√︂∑︀3
𝑘=1

(︁
𝑙
[𝑡]
𝑗 [𝑘]− 1/3

)︁2
(6)

The weights of the linear combination in (4) encode
the sign and relative strength of each factor contribu-
tion, namely how much each factor participates to the
edge probability existence and whether such participa-
tion reinforces or weakens said probability respectively.
Moreover, they ensure the numerical stability of 𝑝𝑖,𝑗 .

Intuitively speaking, equation (4) is a linear estima-
tor of the true edge existence probability. The weights
𝑤𝑓 , 𝑤𝑟 , and 𝑤𝑐 express the relative contribution of each
term and in our experiments follow the semantic strength
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of the respective factor. This means that 𝑤𝑓 is higher
since the follow denotes a high degree of coherency be-
tween the two accounts. Along a similar line of reason-
ing, frequent retweets between two accounts indicate a
somewhat strong connection between them. Moreover,
a consistent emotional coherency between two accounts
may well suggest a behavioral link between them.

Additionally the weight 𝛿𝑖,𝑗 assigned to each edge is a
function of the strength of the corresponding edge.

𝛿𝑖,𝑗
△
= 𝑓 (𝑝𝑖,𝑗) (7)

The weight function 𝑓 (·) of (7) is the same for each
edge and it is directly or at least indirectly linked to
the semantics of the underlying graph. One of the most
common options is that shown in (8).

𝛿𝑖,𝑗
△
=

1

𝑝𝑖,𝑗
(8)

However, the weight selection of (8) has the disadvan-
tage of being almost singular close to zero, generating
thus excessive weight values. A viable alternative is the
inverse linear weight function of (9).

𝛿𝑖,𝑗
△
=

1

1 + 𝑝𝑖,𝑗
(9)

Another option for the weight function is that the in-
verse square function of equation (10). The latter typically
expresses a potential function in various applications.

𝛿𝑖,𝑗
△
=

1

1 + 𝑝2𝑖,𝑗
(10)

In figure 2 the weight functions of (9) and (10) are
shown for their entire range. It can be immediately
inferred they are strictly decreasing and everywhere
smooth, expressing the fact that the more likely is an
edge to belong to the graph, the easier to cross it.

At the core of the proposed GNN architecture is the
update mechanism of (11). For the 𝑖-th vertex the 𝑙

[𝑡]
𝑖

is computed as in (11). Therein the index 𝑗 ranges over
all inbound neighbors of the 𝑖-th vertex and thus it de-
pends on local connectivity patterns. However, since the
state vector of its neighbors depends on recursively on
that of its own vectors, this mechanism is essentially a
higher order status computation. During an update it
may be possible that certain neighbors may have already
had their own state vectors updated, whereas others not.
Thus, the iteration indicator * will be used. This process
terminates when the state vectors remain unchanged
under a threshold of 𝜂0 for three consecutive iterations.

𝑙[𝑡+1] = 𝜙

(︃
𝛽0

2
𝑙[𝑡−1] +

𝛽0

2

∑︁
𝑗

𝛿𝑖,𝑗
∆

𝑙
[*]
𝑗

)︃
(11)

The hyperparameter 𝛽0 scales input to a practical do-
main for the sigmoid function 𝜙 (·), 𝛿𝑖,𝑘 is the weight of
the edge, and ∆ is the sum of the edge weights of the in-
bound neighbors. In (11) the sigmoid function is defined
as in (12) which is differentiable and smooth everywhere.

𝜙 (𝑠;𝜎0)
△
=

1

1 + exp (−𝜎0𝑠)
(12)

The derivative of the sigmoid function is given in (13).

𝜕𝜙 (𝑠;𝜎0)

𝜕𝑠
= 𝜎0𝜙 (𝑠;𝜎0)𝜙 (−𝑠;𝜎0)

= 𝜎0𝜙 (𝑠;𝜎0) (1− 𝜙 (𝑠;𝜎0)) (13)

The last form of (13) comes from the fundamental
property of the sigmoid function described in (14) below:

𝜙 (𝑠;𝜎0) + 𝜙 (−𝑠;𝜎0) = 1 (14)

The preceding properties ensure that 𝜙 (·) is smooth
enough to prevent divergence in most cases for a broad
spectrum of distributions.

4. Results
The results of the proposed GNN methodology are pre-
sented in this section along with intuition about them.
They are divided to four groups, one for each possible
combination of benchmark graph (1821 / US2020) and
weight function (inverse linear / inverse square).

4.1. Dataset
The two benchmark graphs used in the experiments were
taken from [5]. They represent two characteristic cases
of social graphs, namely one with a relative quiet and
coherent one (1821) and one containing heated conversa-
tions and a considerable degree of dissonance (US2020).
The Twitter sampling interval was 8/2020-10/2020.

4.2. Number of iterations
In table 3 the parameters used in the experimental setup
of this work are shown. This allows for the easy explo-
ration of the parameter space. Observe that the actual val-
ues of these parameters are in accordance of the strength
of the respective factor.

Table 4 contains the normalized number of iterations
as a function of the hyperparameter 𝛽0 of (11) for the
two benchmark graphs of table 2 and for the two possible
weight functions shown in equations (9) and (10). Nor-
malization takes place per graph and per weight function
in order to show the comparative effect of 𝛽0 in each
case. In order to demonstrate the effect of the emotional
attribute 𝑐𝑖,𝑗 of (4) on the convergence rate the same
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Figure 2: Weight functions.

Table 2
Dataset synopsis (from [5]).

Property 1821 graph US2020 graph

Number of vertices 132.317 147.881
Number of edges 2.225.177 2.447.224
Density / Log-density 16.8170 / 1.2393 16.5486 / 1.2357
Completeness / Log-completeness 2.54𝑒−4 / 0.6196 2.38𝑒−4 / 0.6173

Number of triangles 446.513 489.773
Number of squares 215.387 218.633
Number of cliques of size four 102.044 125.806
Graph diameter 10 11
Percentage of vertices reachable at diameter-1 95.33% 98.17%
Percentage of vertices reachable at diameter-2 93.26% 96.44%
Percentage of vertices reachable at diameter-3 89.11% 91.22%
Percentage of vertices reachable at diameter-4 84.73% 87.47%

Number of favorites 36.994.815 42.114.509
Number of tweets 17.465.844 22.773.674

Table 3
Parameters of the experiments.

Parameter Meaning Value

𝑤𝑓 Edge follow weight 0.5
𝑤𝑟 Edge retweet weight 0.25
𝑤𝑐 Edge hashtag emotional coherence 0.25

𝜂0 State vector equality threshold 0.05
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Table 4
Normalized number of iterations as a function of the hyperparameter 𝛽0.

Hyperparameter Graph inv.linear inv.linear+beh inv.square inv.square+beh

0.5 1821 1.49 1.26 1.37 1.38
0.7 1.45 1.24 1.32 1.23
0.8 1.39 1.16 1.27 1.15
0.9 1.33 1.08 1.22 1.07
1 1.28 1 1.19 1

0.5 US2020 1.41 1.17 1.33 1.13
0.7 1.42 1.14 1.29 1.11
0.8 1.37 1.09 1.25 1.08
0.9 1.29 1.05 1.21 1.03
1 1.24 1 1.18 1

Table 5
Emotional distributions (pos/neu/neg) computed with the best value of 𝛽0.

Graph init i.linear i.linear+beh i.square i.square+beh

1821 0.64/0.24/0.12 0.68/0.14/0.18 0.73/0.15/0.12 0.69/0.15/0.16 0.74/0.14/0.12

US2020 0.28/0.23/0.49 0.21/0.22/0.57 0.17/0.16/0.67 0.22/0.22/0.56 0.16/0.16/0.68

GNN is run with the latter removed from the initial local
ground truth vectors at the vertices.

From table 4 it follows immediately that the inclusion
of the behavioral factor in (4) leads to quicker conver-
gence of the proposed GNN architecture. This can be
attributed to the following reasons:

• Information enrichment: From an algorithmic
perspective, the behavioral factor adds an inde-
pendent dimension to the profile of each vertex.
Hence, the new vertex profile space can differenti-
ate adequately between dissimilar vertices while
maintaining close enough similar ones.

• Numerical variation: The above is enhanced
by having more diversified edge weights. Besides
the additional factor, the behavioral term is also
signed. In turn this expands the range of weights,
increasing thus the possible number of values.

The above factors suggest that variability in the weight
space as well as in the vertex profile increase the flexibil-
ity of the update mechanism of (11). This is in accordance
with the standard pattern recognition maxim stating that
mapping data to a space of higher dimensionality facil-
itates their clustering. On the other hand, the curse of
dimensionality imposes a limit on how big this new space
can get. As both spaces used in this work however are
low dimensional, this does not constitute a problem.

Regarding the total sentiment, in table 5 is shown the
average emotional distribution before and after the GNN
execution in each case using the value of hyperparame-
ter 𝛽0 which leads to the quickest convergence in each

case. There it can be seen that the US2020 yields for
both weight choices slightly different results from the
initial distribution when the emotional factor is excluded
but considerably different ones when they are included.
Thus, it is a graph with a heavy emotional charge. On the
other hand, the 1821 graph tends to yield similar results
in every case, signifying thus greater coherency.

5. Conclusions And Future Work
This conference paper focuses on a graph neural net-
work architecture for discovering community structure
in large Twitter graphs. In this approach said structure is
formed using a Twitter account behavioral model which
results from fusing structural and functional attributes
with emotional ones. The proposed model can be natu-
rally extended to include additional features from these
categories or even ones belonging to different categories
as long as they can be expressed in a numerical scale
where normalization does not influence semantics. In
our experiments the inclusion of behavioral attributes
leads consistently to quicker GNN convergence.

This work can be extended in a number of ways. First,
multiple weight functions can map each edge to a weight
vector and hence to a multidimensional weight space
where each dimension has its own semantics. Then the
fundamental parameters of candidate distributions de-
scribing this space can be derived through signal esti-
mation techniques. Second, alternative behavioral mod-
els depending only on local properties or on local esti-
mates of global ones should be developed as this would be
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most appealing for a distributed implementation. Third,
models for computing or estimating the edge existence
probability which reflect the underlying graph semantics
should be research objectives. Finally, given the evolv-
ing nature of online social networks, an architecture for
non-stationary graphs should also be developed. In this
case certain transient global graph states can be used to
obtain intermediate status results regarding clustering,
flow, degree distribution, or any other global property.
These transient states can well serve as starting points
for new partitioning techniques.
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