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Abstract
Since the magnitude of financial frauds grow rapidly with low clearance rates, detecting and avoiding frauds has been a
tremendous challenge for financial institutions. Both the detection performance and interpretability are critical for fraud
detection to profile the fraudsters’ modus operandi and to spot vulnerabilities of financial systems/processes. Traditional
rule-based approaches yield poor detection performances. Recent machine learning methods basically generate recency, fre-
quency, and temporal features to extract patterns from raw transaction data. On the other hand, this paper generates behav-
ioral and (financial organization’s) segmentation features based on financial expertise and characteristics solely belonging to
(non)-fraudulent accounts. While inputting aforementioned features into different models and using accumulated features
from past literature generate unstable prediction results, our features generate the best and stable results for the decision-
tree-base approach like Extreme Gradient Boosting and Light Gradient Boosting Machine. By using Kolmogorov–Smirnov
test, we discover the instable predictive results are caused by vastly different distributions of features that reflects the fast-
changing modus operandi in the training/testing sets. Thus, generating training/testing sets by random sampling (compared
to chronological separation) is improper for modeling time varying data. Combining XGBoost with our expertise-based fea-
tures provides clear causal-effect between features and fraudulent labels for further interpretations. The high precision and
recall rates allow banks to save screening labor costs and identify frauds without interfering with normal transactions. The
quality of our features can be examined by showing that they occupy three out of the five most important features under the
ranking procedure in a premium finance publication by Butaru et al. [Journal of Banking and Finance (72) 218–239 (2016)].
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1. Introduction
As financial technologies and services evolve, the mag-
nitude and variations of financial frauds have spawned
rapidly. Common financial frauds include (electronic)
transfer frauds, credit-card frauds, money laundering,
insurance frauds, and so on. These frauds not only cause
substantial financial losses but also induce a significant
management cost for law enforcement units and finan-
cial institutions. Specifically, electronic transfer frauds
denote that malicious scammers guide victims by phones
or social media to transfer their savings to accounts con-
trolled by scammers. Communication fraud control as-
sociation showed that the worldwide fraudulent loss in
2019 is 28.3 billion with extremely low clearance rates1.
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Various electronic funds transfer EFT scams, like buyer
overpays, romance scams, · · · 2 make them hard to be
prevented and detected. Fraud prevention acts have also
been enacted in many countries [1], and developing effec-
tive and efficient automatic EFT fraud precaution mecha-
nisms is important in practice and in academic researches.
For example, fraud prevention acts such as the Money
Laundering Control Act, the Money Laundering Preven-
tion Act, and the Proceeds of Crime Act, (see [1]) have
been enacted in Taiwan.

Many commercial banks have adopted the rule-based
method for fraud detection which takes the guidelines in
the fraud prevention acts and established a set of static
rules to spot suspicious accounts. However, this method
fails to capture complex features of fraudulent behav-
iors and the fast-changing modus operandi [2]. Our co-
working bank (denoted as Bank L) reported that the “Rule-
Based” method produces lousy precision rate (40%) and
recall rate(5.56%). As a consequence, substantial screen-
ing labor costs and frequent disturbance of normal clients
are incurred without effective crime prevention. There-
fore, constructing a fraud detection system with high

2See https://www.worldremit.com/en/stories/story/2020/01/20/money-
transfer-scams
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precision and recall rates is thus critical.
Recent researches broadly apply machine learning to

detect EFT frauds. To address the high-dimensional-
nature of the raw transaction data, [3] and [4] suggest
to construct features to retrieve patterns from raw trans-
action data. [5, 6, 7, 8] collect features proposed in past
literature and categorize them into recency, frequency,
monetary, (unsupervised) anomaly detection, and other
feature engineering techniques. Most of the aforemen-
tioned features are constructed based on math or statisti-
cal properties without involving much financial expertise.
[5] argues that clever feature constructions could yield
good detection results, we create features based on finan-
cial expertise3 and observations. By following [9] idea
that creating features to capture the patterns for either
positive or negative observations, we created features
specifically for fraudulent accounts and (non)-fraudulent
ones. For example, fraudsters usually try to empty an
account by withdrawing at the largest amount available
in the ATM to maximize the fund-transfer speed. And
the account’s last withdrawal amount is usually larger
than its afterwards account balance. In addition to detect-
ing fraudulent behaviors, we also create features that de-
scribe non-fraudulent behaviors to reduce harassment on
non-fraudulent accounts. For example, over-the-counter
services require account holders to be present in the busi-
ness office and are unlikely to be utilized by fraudsters.
On top of the aforementioned five feature categories, we
constructed two new categories: behavioral and segmen-
tation for our new features.

To compare the performances of our proposed behav-
iors, we first collected and implemented features from
past literature [10, 11, 8, 3, 4, 12, 7, 13, 1, 14, 5, 15, 16, 17].
Then we compare the performance of Extreme Gradi-
ent Boosting (abbreviated as XGBoost), Bayes-Point ma-
chine, Random Forest, support vector machine (abbrevi-
ated as SVM), Neural Network, Logistic regression and
light gradient boosting machine (abbreviate as LGBM)
by inputting the features generated in past works and
the features generated in this paper. Our experimental
results suggest that XGBoost produces the best detection
results unless certain "noisy" features are inputted. These
noisy features are examined to have different distribu-
tions by Kolmogorov–Smirnov test; in addition, the recall
(precision) rates deteriorate with the level of difference
in features distributions of fraudulent (non-fraudulent)
observations. Thus, instead of separating the data into
training and testing sets by chronological orders, gener-
ating training/testing set by randomly sampling the data
could faultily generate good detection results since the
time-varying properties of noisy features are alleviated.
Besides, XGBoost also produces comparable results with

3Like the anti-money laundry (AML) guidelines from Taiwan’s
financial supervisory commission.

our features even though the number of our features is
much lower than features in past works; this entails that
generating features by expertise does work.

Interpretability is important for an EFT fraud detection
system to profile fraudulent behaviors and to discover
EFT system vulnerabilities. This gives us clear guidelines
to avoid EFT systems from being utilized by fraudulent
transfers (see [18]) and to fulfill the "risk-oriented"4 prop-
erty (of a money laundry system) required by the Finan-
cial Action Task Force5(see [19] and [20]). Combining
XGBoost with our features not only produces very good
detection results but ranks the importance of features
that can be directly explained by expertise. The good
qualities of our features and categories can also be exam-
ined by showing that they occupy three out of the five
most important features under the ranking procedure
published in a premium financial journal [21].

The rest of this paper is organized as follows. Section
2 reviews related works on financial fraud detection and
feature construction. Section 3 describes the formats of
our raw data and the data-preprocessing procedures. Sec-
tion 4 first collects the features of past fraud detection
researches. Then we describe how our features and new
feature categories are generated based on financial exper-
tise and observations. Section 5 compare fraud detection
performances with different training models and input
features. We explore the properties of bad features that
deteriorate detection performances and show that clever
feature constructions with decision tree models could
yield good detection rates and interpretability. Section 6
concludes this paper.

2. Related Works
There are many types of financial frauds, such as credit
card frauds [22, 16, 17, 14], phone fraud [23], online trans-
action fraud [24], instant payment fraud [25], and so on.
The rule-based method is commonly used to detect frauds
by conventional banks for high interpretability. However,
it is difficult for the rule-based method to capture com-
plex and time-varying fraud patterns and the detection
performance is hence related low. In addition, fixed rules
may be easily cracked once fraudsters became aware of
them.

Training a machine learning model with raw transac-
tion data is impractical since fraudulent transactions are
too rare to meet very high dimensionality of raw data.
[4] and [3] suggest to construct features to extract in-
formation from raw transaction data to train a machine
learning model for fraud detection. The aforementioned
feature engineering process is called feature construction

4Efforts should be allocated where the risk of money laundering
is higher.

5https://www.fatf-gafi.org/



(generation) (see [26]), and it can develop a more pro-
found insight into characteristics of fraudulent and non-
fraudulent accounts. Obviously, the qualities of feature
constructions significantly influence detection results.
[7] argue that many features are generated based on the
frequency of transactions. But only exploring temporal
features without considering financial/fraud detection
expertise could significantly prevent a machine learning
model from recognizing complete fraudulent behaviors.
[6] studies suggest that most recent fraudulent detec-
tion works construct their input features based on RFM
(recency, frequency. and monetary) categories. In addi-
tion to RFM, [5] show that some past studied features can
be categorized into two new categories: (unsupervised)
anomaly detection, and other feature engineering tech-
niques. By implementing past studied features, they em-
pirically show that clever feature engineering can yield
very good detection results even with simple learning
models like classification trees. Similarly, in addition to
frequency features, [7] explained that frequency features
are unable to capture chronological relationships in trans-
actions. For example, fraudsters tend to first make some
small transactions and then make a big one. They also
show that incorporating interpretable monetary features
derived from fraudulent behaviors can greatly enhance
detection performance. In light of their observations, this
paper creates new features through financial expertise
and meticulous observations of (non-)fraudulent behav-
iors. we also augment two more categories of features
according to typical (non-)fraudulent behaviors and seg-
mentational properties.

Since a decision tree is inherently interpretable (see
[18]) and our proposed features (categories) are con-
structed based on financial expertise and observations,
combining our features and the XGBoost provides good
detection results and proper causal explanations as dis-
cussed later. Thus our model is practical and can avoid
flawed or unfair AI usages. The interpretability of AI
models has attracted widespread attention in both aca-
demics and especially practical applications in finance
and law. According to the evaluation indicators based
on human subject-based evaluation metrics proposed by
Moraffah [27], our model is causal interpretable that can
explain and predict the classification results. Our pro-
posed features can be explained by financial expertise and
the fraudulent detection results also conform to human
intuition. Good interpretability makes our model more
suitable to meet financial institutions’ requirements.

3. Data Descriptions and
Preprocessing

Our data set contains transaction data during Apr. 2018
to Sep. 2018 from Bank L and the fraudulent accounts

from the National Police Agency. Sophisticated features
are designed in this paper based on real raw transaction
data that contains featureful details as in Table 1. We do
not test our method with public fraudulent detection data
sets on the Internet 6 since the limited disclosure informa-
tion provided by public datasets due to strict protection of
privacy regulations prevent the construction of expertise
features. The survey paper [28] also show that some anti-
fraud works, like [29] and [30], only raise their methods
without conducting experiments due to the aforemen-
tioned problem. Inputting the entire transaction record

Table 1
Structure of Transaction Data

Item Description
Account ID Unique identification number for each account
Transaction Date The date when the transaction took place
Transaction Type The transaction type (in code) such

as ATM intra-bank withdrawal and
at the counter deposit.

Withdrawal Amount The withdrawal amount. It is empty
if the transaction is not withdrawal.

Deposit Amount The deposit amount. It is empty if
the transaction is not deposit.

Account Savings The balance of the account after per-
forming the transaction.

Note Textual information of the transac-
tion, like “transferred to company X”,
or the ATM ID for performing the
transaction.

Internet Whether the transaction is per-
formed through E-bank services

Voice Whether this transaction is per-
formed through telephony services

Warned Whether the account is fraudulent or not.

to a fraud detection system is impractical (see [4]) due to
very high dimensionality of raw data and heterogeneity
of transactions. Thus they aggregate n transactions for
each user within a fixed time interval and extract fea-
tures from these transactions. To our knowledge, this
technique is widely used in recent researches. However,
deciding the value of the hyper-parameter n results in
a trade-off. Specifically, as n decreases (increases), less
(more) transactions are aggregated to describe the charac-
teristics of an account but more (less) accounts are eligible
to be included as training/test data. This is because many
accounts do not have frequent transactions and will be
removed if n becomes large. But removing samples can
be detrimental to fraud detection since fraudulent sam-
ples are scarce and some of them are seldomly transacted.
To strike a balance between the number of aggregated
transactions and the removed accounts, we choose n to
be 9 as illustrated in Table 2. It can be observed that the
percentage of fraudulent accounts being included in the
trading data drop rapidly when n exceeds 9. The ratio
of aggregated transactions of fraudulent accounts to all

6Like https://www.kaggle.com/ealaxi/paysim1?fbclid=IwAR1wwa2npiZsoLHf1yNUTODJU
z_x JoCQ5eKOLLpDMBkmyGDnNz2OIsmxcac



Table 2
Percent of Used Accounts and Transactions Given n

Per1: % of fraudulent accounts that contains more than 𝑛 transactions to all
fraudulent accounts

Per2: % of aggregated transactions of fraudulent accounts to all fraudulent
account transactions

n Per1 Per2
4 100.00% 19.40%
5 95.36% 23.13%
6 93.30% 27.15%
7 90.72% 30.80%
8 87.63% 34.00%
9 85.57% 37.35%

10 78.87% 38.25%
11 69.59% 37.13%
12 64.43% 37.50%
13 58.76% 37.05%
14 51.55% 35.00%
15 47.42% 34.50%
16 43.81% 34.00%
17 38.66% 31.88%

transactions of these accounts during the time period is
also the highest for 𝑛 ≤ 9 scenarios.

4. Feature Construction
[4, 3] create features to extract information from aggre-
gated transaction data and then use these features to
train a machine learning model.

This approach is generally adopted in machine-
learning-based fraud detection papers. To comprehen-
sively analyze the characteristics of past features and
analyze their effectiveness, we collect features that can
be applied to our raw data in Table 4 from past literature,
including [10, 11, 8, 3, 4, 12, 7, 13, 1, 14, 5, 15, 16, 17], and
these features7 are denoted as Others in the following ex-
periments. On the other hand, we create two new sets of
features: behaviors and segmentation, that are generated
based on financial expertise or observations. Features
that are first proposed in this paper will be denoted as
Ours. The categories of Ours and Others features are il-
lustrated in Table 5. The definitions of Others and Ours
features are listed in Table 4 and later in this section,
respectively. Our experiments suggest that our proposed
features can significantly improve the performance of
the fraudulent detection model.

In addition to the aforementioned RFM features, [7]
and [5] create features only based on anomaly proper-
ties of fraudulent accounts; this is, they focus solely on
identifying typical fraudulent behaviors. This is because
fraudsters act very similarly to a normal user for most
of the time, and fraudulent behaviors usually take place

7Some features like transaction locations that cannot be re-
trieved from the raw data in Table 1 are ignored.

in a short period of time. Thus it is intuitive to pinpoint
“what fraudsters would do” to identify fraudsters. On
the other hand, profiling certain normal behaviors could
also be beneficial since fraudsters avoid these behaviors
due to the risk of getting caught or due to potential dis-
turbances to their criminal schemes. Taking account of
“what fraudsters would not do” in addition to “what fraud-
sters would do” is beneficial to identifying normal users
whose transaction characteristics are closer to fraudsters;
intuitively, this improvement could alleviate the harass-
ment to normal clients and hence reduce screening labor
costs for fraud detection as well as reducing the heavy
cost of dealing false alarms for banks [8]. But we find
that our way of constructing features with respect to
“what fraudsters would (not) do” could not be easily clas-
sified into categories proposed by [5] and therefore we
augmented the categories by inserting "Behavioral" and
"Segmentation".

Behavioral features denote specific transaction at-
tributes that do not relate to RFM and anomaly detection
techniques but are considered to be important in fraud
detection according to financial expertise. These features
include:

ATM_Transaction: It is defined as the number of ATM
transactions of all 9 aggregated transactions (defined in
Table 2) of an account. A Bank-L’s expert suggests that
most EFT frauds include transferring and dispatching
money through ATM services for it is faster and involves
less risks of being caught. In fact, there are 405 types of
transactions and creating features for every type results
in unnecessary dimensions of inputs, deteriorating fraud
detection performances.

Immediate_Withdraw:
It is defined as the number of times a withdrawal hap-

pening right after a deposit within the same trading day.
This is because fraudsters strive to withdraw the illicit
money prior to polices’ investigations and freezing the
suspicious accounts.

Internet:
It is defined as the number of times an account uses the

E-bank service. Very few fraudsters ever used the E-bank
service since additional personal information should be
provided at the bank counter in advance to enable certain
E-bank services like wire transfer.

Voice: Similar to the descriptions for Internet.
LT_Count:

It is defined as the number of times an account con-
ducted "likely-legal" transactions, which are defined as
transaction types that have never been used by fraudulent
accounts. Such transaction types may increase the risk
of being caught or identified, like withdrawal/deposit at
bank counters, Or they are unrelated to criminal schemes,
such as the purchase/redemption of funds provided by
Bank-L.

Last_Withdrawal_Larger_Than_Savings: It indicates a



specific scenario that the last withdrawal amount is larger
than the account balance. This is because fraudsters
would transfer as much illicit money as possible from
a fraudulent account under the limitation of the ATM:
the minimum withdraw amount is a 1000 or 100 Taiwan
dollar note. Note that no withdrawals can be made after
the fraudulent account is frozen.

Suspicious_Score: It computes the suspicious likelihood
of frauds by the products of several suspicious features
and the equation is defined as follows:

(𝐿𝑎𝑠𝑡_𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙_𝐿𝑎𝑟𝑔𝑒𝑟_𝑇ℎ𝑎𝑛_𝑆𝑎𝑣𝑖𝑛𝑔𝑠)

× (𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝐴𝑚𝑜𝑢𝑛𝑡_𝐶𝑜𝑢𝑛𝑡)/𝑛

× (𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤)/𝑛

× (𝐴𝑇𝑀_𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛)/𝑛,

(1)

where “Suspicious_Amount_Count” is a monetary fea-
ture proposed by [7] that denotes the maximum or the
quick-transfer amount in an ATM. In Taiwan, the maxi-
mum inter-bank withdraw amount is $60,000 (Taiwanese
Dollar). The maximum cross-bank withdraw amount is
$20,000 plus the service fee $5. The maximum quick-
transfer service is $10,000 plus the fee $5. The ATM
withdraw menu is illustrated in Fig. 1 . Besides, 𝑛 de-
note the number of aggregated transactions defined in
Table 2. This feature allows us to capture simultaneous
occurrences of suspicious features to precisely identify
fraudulent transactions.

Figure 1: An Example Interface of Taiwanese ATM for quick-
transfer options

Segmentation features label each account/ATM ma-
chine with the bank, branches, or other meaningful clas-
sifications that they belong to. These features include:

Suspicious_ATM_Bank: We first calculate the number
of times each ATM has been accessed by fraudulent ac-
counts and recognize its owner bank. Then we label
the banks with top 5% lump sums (see Fig 2) of fraudu-
lent ATM accesses as "Suspicious ATM Banks". 5% is a
common statistical threshold for significance tests. High

fraudulent accessed numbers of a specific Bank’s ATMs
are probably due to its management and location selec-
tion policies8. For instance, ATMs located in the vicinity
of police station are less likely to be accessed by fraud-
sters.

Figure 2: Histogram and Percentile of the Number of
Fraudulent Accesses of a Bank’s ATMs. Each bar shows
the the number of banks and the ratio (in parenthesis) to the
total number of banks.

LATM_Count: It is defined as the number of times for an
account to access "likely-legal ATMs", which are defined
as ATMs that have been accessed by fraudsters less than 6
times. 6 is decided due to 95%(a widely adopted threshold
in statistics) of ATMs in our training set data have been
accessed more than 6 times (see Fig 3) by fraudulent
accounts.

Suspicious_Branch: Label Whether an account’s transac-
tions are performed in areas with dense fraudulent activ-
ities. Although actual ATM locations are not accessible
from our raw data, we can identify the branch to which
each ATM belongs by comparing a bank’s branches se-
rial numbers and its ATM’s serial numbers. Since ATMs
belonging to a bank’s branch office are normally located
in its proximity, we can then profile each branch office
with its own ATM data. We found that some ATMs have
only been accessed by fraudsters with Bank-L’s accounts.
We then label the ATM’s owner branches as suspicious
branches (see Fig. 4). Note that this label does not imply a
suspicious branch’s ATMs are only accessed by fraudsters
since we can only access Bank-L accounts’ transaction
data during a limited time span.

8For example, a bank may corporate with a chain store to de-
ploy ATMs to its branch stores.



Figure 3: Histogram and Percentile of Fraudulent Ac-
cesses of ATMs. Each bar shows the the number of ATMs
and the ratio (in parenthesis) to the total number of ATMs.

In addition to the aforementioned features, we also add
one frequency feature, "Most_Frequent_Object_Count"
that has never been studied before. It denotes the num-
ber of times an account transfers money to its most fre-
quently transferred account.

Table 3
Top 5 important features in XGBOOST with Others+Ours

Xgboost Feature Importance
Features Importance rank

LT_Count 2.08410446 1
Average_Transaction_Interval 1.696345674 2

untrusted_frequent_trade_count 1.401884328 3
Big_onetime_deal_count 1.320201917 4

BranchID_CPP 1.098959776 5

Table 3 ranks the importance of all features in Table
5, including the features constructed exclusively by us,
based on the method proposed in a top financial exper-
tise publication [21]. It can be observed that 3 out of 5
top important features belong to our proposed behav-
ioral or segmentation categories. It confirms [5] claims
that clever feature engineering can yield good detection
results even with simple machine learning models.

5. Experiments
After constructing a feature vector defined in Table 5 for
each account, we compare the fraud detection perfor-

mance with different machine learning models and input
features to show that clever feature constructions could
yield good performance. The qualities of our proposed
features (and corresponding categories) are examined by
feature importance defined in [21] and detection results.
We examine the following machine learning models: XG-
Boost, BayesPoint machine, Random Forest, SVM, Neural
Network, Logistic regression and Light GBM.

In addition to detection accuracy, the performance
of precision and recall are also demanded by commer-
cial banks for practical reasons as follows. Precision
reflects the ratio of actual fraudulent accounts detected
to all accounts detected as fraudulent. A lower precision
rate denotes that our fraudulent detection system would
significantly affect the false positive observations since
bank staffs will make phone calls and even freeze these
accounts if necessary; these precaution procedures in-
evitably annoy normal users. On the other hand, recall
measures how many real fraudsters can be identified in
advance to block their further actions from causing po-
tential financial losses. Financial regulatory authorities
provide anti-money laundering documents9 and require
banks to provide

qualified detection mechanisms. To strike a balance
between precision and recall, this paper use F1-Score to
measure model performances, but how to find a proper 𝛽
for F-score to reasonably measure the loss for annoying a
normal user or for missing a fraudster from a bank point
of view is still an open problem.

5.1. Analyzing Different Learning
Models and Inputs

Here we first sort the observations by chronological or-
der and divide the first 60% of the data as the training
set and the last 40% for testing as illustrated in Table 6.
Then we compare the fraud detection performance with
different machine learning models and input features as
illustrated in the "Model+Data" column. It can be ob-
served that decision-tree-based models like XGBoost and
LGBM can often yield very good detection results but on
rare occasions perform badly due to different input fea-
tures.10 Specifically, using only Ours features produce a
very good F1-Score (73.95%) while incredibly low Recalls
and F1-Scores are produced if all features in Table 5 are
included. It confirms [5] arguments that clever feature
constructions do influence machine learning results since
we could use less features (marked in red colors in Table
5) to achieve similar prediction results. To check for the
causes for the severe drop in performance, we adopted

9See https://www.banking.gov.tw/en/home.jsp?id=17&parentpath=0,3
10https://medium.com/@aravanshad/gradient-boosting-versus-

random-forest-cfa3fa8f0d80 also suggests that boosted decision
trees such as XGBoost and LGBM are more sensitive to overfitting
if the data is noisy.

https://www.banking.gov.tw/en/home.jsp?id=17&parentpath=0,3
https://medium.com/@aravanshad/gradient-boosting-versus-random-forest-cfa3fa8f0d80
https://medium.com/@aravanshad/gradient-boosting-versus-random-forest-cfa3fa8f0d80


Figure 4: Fraudulent and Normal Accesses of ATMs and Corresponding Owner Branches’ Locations

(a) Branches that have ATMs
being accessed by fraudsters
in Bank-L

(b) Branches that have ATM
being accessed by normal
users in Bank-L

(c) Branches that have ATMs
being accessed by only
fraudsters (denoted by the
yellow color) and normal
users (in purple color) in
Bank-L

leave-one-out feature selection to monitor the change
in detection performance by repeatedly singling out one
feature each time for all features. We discover that the
significant drops in recalls and F1-scores are caused by
two features from the (unsupervised) anomaly detection
category: LOF and KNN_ distance. Removing these two
features as in the right panel of Table 6 could restore the
XGBoost performance which the F1-score is 74.34% (with
Others+Ours without LOF&KNN_distance) and 68.42%
(with Others without LOF&KNN_distance). Besides, al-
though the performance of the non-linear-kernel SVM is
worse than XGBoost when input parameters are properly
designed, SVM performance tends to increase with the
number of features without suffering from the problem
of the aforementioned improper features, the non-linear-
kernel SVM cannot provide feature importance for a bank
to profile fraudulent behaviors or to identify the weak-
nesses of transaction process.

To find the reason of this anomaly, we repeat the afore-
mentioned experiments with different proportions of the
training/testing data in Table 7. If both LOF and KNN_
distance are removed, the F1-scores remain high and sta-
ble (from 71% to 80%) regardless of the changes of the
proportion of the training data. On the other hand, incor-
porating LOF and KNN_ distance varies fraud detection
results significantly with the changes of the training data
proportion. Note that precision rates are stable and high(
87.5%∼100%) but the recall rates vary significantly (1.49%
to 70.59%). Because KNN_distance and LOF profiles an
account’s overall behavior (or the modus operandi for
a fraudster), we can examine whether the patterns of
modus operandi change in the training and the testing
period by checking whether KNN_distance (or LOF) from

the training and the testing period are drawn from the
same distribution. We use Kolmogorov–Smirnov test (K-
S test) to check for distribution similarity by calculating
the likelihood of two realized distributions of samples
being drawn from the same distribution.

The null hypothesis is "the two distributions are drawn
from the same distribution" and we reject the null hypoth-
esis to adopt the alternative one – the two distributions
are different– if the 𝑝-value is small11. It can be observed
that while the distributions of KNN_distance of legal ac-
counts stays relatively coherent in training and testing pe-
riods (i.e., the 𝑝-values are high), the distributions of both
KNN_distance and LOF of fraudulent accounts change
drastically represented by very small p-values. This vary-
ing distribution phenomenon implies that the modus
operandi changes over time. It can also be observed that
the increment of the 𝑝-values of KNN_distance and LOF
of fraudulent accounts also increase the recall rate– the
likelihood to detect fraudulent accounts. Besides, the
𝑝-value of LOF of legal accounts also vary mildly, im-
plying that the behaviors of legal accounts also change
with time but not as severe as fraudulent accounts. The
precision value even drops to 87.5% at the extreme case
(𝑝-value=0.003% when the training set accounts for 70%
of data).

To confirm the aforementioned argument, we con-
struct the training and the testing set by randomly sam-
pling 60% and 40% of the aggregated transaction data,
respectively, instead of separating the training/testing
data chronologically. Unlike the results in Table 6, the ex-

11The null hypothesis is rejected with 99% confidence interval
if 𝑝 < 0.01.



Table 4
Features Proposed in Past Literature(Others)

Feature Description
Sensitive single amount count Counts the number of times an account’s

trans-action amount is abnormal, which is
defined asan amount larger than the Maxi-
mum transac-tion amount minus the max-
imum quick-transferamoun.

Sensitive daily total amount count Counts the number of times a client’s sin-
gle transaction amount over a single day
is larger than the maximum daily transac-
tion amount minus the maximum quick-
transfer amount.

Sensitive test amount count Counts the number of times the account
has
conducted exploratory tradings whose
transaction amount is lower than the
smallest quick-transfer amount.

Large amount count Counts the number of times the account
has made transactions of large amount.
Large amount is defined as the amount
larger 95% of all transaction amounts

Untrusted frequent trade count Counts the number of times the account
traded frequently (more than 4 times a
day) to untrusted accounts (labeled by the
bank).

Big one-time deal count Counts the number of times large one-
time transactions which transfers all the
savings in the account.

Amount over month Average transaction amount over the past
30 days.

Average daily over month Average daily transaction amount over the
past 30 days.

Average over 2 months Average weekly transaction amount over
the past 60 days.

Amount Transaction object over month Average daily transaction amount with a
specificcounter party over the 30 day pe-
riod.

Number Transaction object over month Total number of transactions with same
counterparty over the 30 day period.

Amount Transaction object over 2 months Average weekly transaction amount with
a specific counter party over the 60 day pe-
riod.

Max Amount same day Maximum daily transaction amount of the
account.

Max Number same day Maximum number of transactions in the
same day of the account.

Mahalanobis_Anomaly Identify whether an account’s attributes’
Mahalanobis distance exceeds a given
threshold, says the 97.5% quantile of the
chi-squared distribution by setting the de-
grees of freedom as the number of features

KNN_distance Average distance for an account to each of
its k closest neighbors.

LOF Average density around the k nearest
neighbors divided by the density around
the observation itself. It is considered
anomaly if the ratio is above 1.

Isolation_Forest Taking an ensemble of isolation trees that
isolate each observation as quickly as pos-
sible. The final score is the average of the
standardized path length (i.e. number of
splits to isolate the observation) over all
trees.

Fits_Benford Judge whether the transaction amount’s
first leading digit fits Newcomb-Benford
law’s distribution.

Zscore_Outlier_count Calculate Z-score separately for each
account’s transactions amount and
count the number of times a transaction
amount’s Z-score is larger than 3.

Feature Description
MAD Median Absolute Deviation of each ac-

count’s transaction amount.
Consecutive_transact_type_count Count the number of times consecutive

transaction type’s being conducted.
Consecutive_transact_type_amount Sum of the amount of consecutive trans-

action type being conducted.
Zero_Digit_Freq Average number of the digit ‘0’ in the

transaction amounts.
Total Amount Total transaction amount.
24hr_Transaction Number of transactions over the last 24

hours.
Average_Transaction_Interval Average length of period to perform a

transaction.
Least_Frequent_Transaction_Type The least frequently conducted transac-

tion type (ie. Withdraw, Transfer etc.) of
all transaction types that the account have
conducted

Most_Frequent_Transaction_Type The most frequently conducted transac-
tion type (ie. Withdraw, Transfer etc.) of
all transaction types that the account have
conducted.

Second_Most_Frequent_Act The second-most frequently conducted
transaction type (ie. Withdraw, Transfer
etc.) of all transaction types that the ac-
count have conducted.

Withdrawal_Stdev The standard deviation of withdrawal
amounts.

Deposit_Stdev The standard deviation of deposit
amounts.

Suspicious_Amount_Check Count the number of times an account
have conducted transactions with ”sus-
picious amounts”, like the maximum
cross/inter-bank transaction amounts and
the quick-transfer amounts defined on
ATM machines.

Note_Not_Empty_Count The number of times an account’s transac-
tions had attached addition text message.

BranchID The Branch to which the account belongs.

perimental results illustrated in Table 9 suggest that the
presence of LOF and KNN_ distance do not interfere the
performance of XGBoost. Specifically, the F1-score is 86%
for "XGBoost with Others+Ours" and 80% for "XGBoost
with Others", even outperforming their counterpart mod-
els that remove LOF and KNN_ distance. This is because
randomly sampling the training and testing set data from
the same time span makes the KNN_distance (or LOF)
distributions of the training and the testing set the same.
This further implies that the model could foresee the
change of future modus operandi beforehand, which is
impractical in practice. Given the fast changing modus
operandi, we conclude that it is inappropriate to examine
a fraud detection model by random sampling.

6. Conclusion
This research constructs fraudulent detection features
based on financial expertise and the characteristics of
both fraudulent and non-fraudulent accounts. We iden-
tify the time-varying properties of the features that dete-
riorate detection performance. We show that combining
XGBoost with our features provides very good detec-
tion performance and interpretability. The value of our
feature constructions can be verified by showing that
they occupy three out of the five most important features
under the ranking procedure proposed in a premium
financial journal [21].
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Table 5
Feature Categories

Feature Categories Proposed in Bart Baesens (2021)

Recency Frequency Monetary
Features based on (unsupervised) [t]

anomaly detection techniques [b]
24hr_Transaction Average_Transaction_Interval Withdrawal_Stdev Mahalanobis_Anomaly

Amount_over_month Least_Frequent_Transaction_Type Deposit_Stdev KNN_distance
Average_daily_over_month Most_Frequent_Transaction_Type Suspicious_Amount_Count LOF

Amount_Transaction_object_over_month Second_Most_Frequent_Act Total Amount Isolation_Tree
Average_over_2_months Most_Frequent_Object_Count Consecutive_transact_type_amount Zscore_Outlier_count

Amount_Transaction_object_over_2_months MAD Fits_Benford
Zero_Digit_Freq
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untrusted_frequent_trade_count LATM_Count Sensitive_test_amount_count

ATM_Transaction Suspicious_Branch Large_amount_count
Immediate_Withdraw Big_onetime_deal_count

Internet
LT_Count

Voice Black: Others. Features used only by other researches
Suspicious_Score Red: Ours. Features used only by ours

Last_Withdrawal_Larger_Than_Savings

Table 6
Fraudulent Detection Performances with Different Learning Models and Input Data with Chronologically separated Training
(60%) and Testing (40%) Data
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XGBoost with Others+Ours 99.60% 100.00% 1.49% 2.94% XGBoost with Others+Ours without LOF&KNN_distance 99.83% 91.30% 62.69% 74.34%

BayesPoint with Others+Ours 1.49% 0.39% 97.01% 0.79% BayesPoint with Others+Ours without LOF&KNN_distance 13.11% 0.46% 100.00% 0.92%
RandomForest with Others+Ours 99.20% 30.12% 74.63% 42.92% RandomForest with Others+Ours without LOF&KNN_distance 97.09% 10.71% 85.07% 19.03%

SVM with Others+Ours 99.67% 57.32% 70.15% 63.09% SVM with Others+Ours without LOF&KNN_distance 99.67% 57.32% 70.15% 63.09%
NN with Others+Ours 15.46% 0.43% 91.04% 0.86% NN with Others+Ours without LOF&KNN_distance 0.73% 0.38% 94.03% 0.76%

Logistic with Others+Ours 99.60% 0.00% 0.00% 0.00% Logistic with Others+Ours without LOF&KNN_distance 91.12% 1.45% 31.34% 2.76%
LGBM with Others+Ours 99.60% 100.00% 1.49% 2.94% LGBM with Others+Ours without LOF&KNN_distance 99.77% 79.59% 58.21% 67.24%

XGBoost with Ours 99.81% 84.62% 65.67% 73.95% XGBoost with Others without LOF&KNN_distance 99.78% 82.98% 58.21% 68.42%
BayesPoint with Ours 8.33% 0.44% 100.00% 0.87% BayesPoint with Others without LOF&KNN_distance 11.43% 0.45% 100.00% 0.90%
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Table 7
Training XGBoost with Different Proportion of Training Data

(a) Training and testing sets sampled chronologically. Feature set used: Others and Ours

Training
set ratio to
all data

Accuracy Precision Recall F1-Score Fraudulent
Account
KNN_distance
KS-test p-value

Fraudulent
Account LOF
KS-test p-value

Legal Account
KNN_distance
KS-test p-value

Legal Account
LOF KS-test
p-value

50% 99.68% 100.00% 20.48% 34.00% 7.91E-46 1.88E-25 1 0.306120444
60% 99.60% 100.00% 1.49% 2.94% 9.61E-57 1.81E-31 1 0.992635613
70% 99.74% 87.50% 42.00% 56.76% 2.72E-33 1.90E-16 1 0.00359492
80% 99.81% 90.91% 58.82% 71.43% 1.07E-17 1.03E-09 1 0.490359292
90% 99.88% 100.00% 70.59% 82.76% 3.31E-07 0.000551005 1 0.027677963

(b) Training and testing sets sampled chronologically
Feature set used: Others and Ours without KNN_distance and LOF

Training
set ratio to
all data

Accuracy Precision Recall F1-Score

50% 99.78% 74.03% 68.67% 71.25%
60% 99.81% 79.66% 70.15% 74.60%
70% 99.80% 82.05% 64.00% 71.91%
80% 99.80% 86.96% 58.82% 70.18%
90% 99.86% 92.31% 70.59% 80.00%

Table 9
Fraudulent Detection Performances with Different Learning Models and Input Data with Randomly Sampled 60% Training
and 40% Testing Data

Model Accuracy Precision Recall F1-Score Model Accuracy Precision Recall F1-Score
XGBoost with Others+Ours 99.90% 98.00% 76.60% 86.00% XGBoost with Others and Ours without LOF&KNN_distance 99.90% 97.60% 64.10% 77.40%

BayesPoint with Others+Ours 1.30% 0.40% 96.90% 0.80% BayesPoint with Others and Ours without LOF&KNN_distance 33.30% 0.60% 96.90% 1.10%
RandomForest with Others+Ours 97.40% 12.10% 89.10% 21.30% RandomForest with Others and Ours without LOF&KNN_distance 96.00% 7.80% 85.90% 14.40%

SVM with Others+Ours 99.70% 58.80% 73.40% 65.30% SVM with Others and Ours without LOF&KNN_distance 99.60% 47.30% 67.20% 55.50%
NN with Others+Ours 2.90% 0.40% 100.00% 0.80% NN with Others and Ours without LOF&KNN_distance 99.60% 0.00% 0.00% 0.00%

Logistic with Others+Ours 99.60% 0.00% 0.00% 0.00% Logistic with Others and Ours without LOF&KNN_distance 94.30% 5.80% 89.10% 10.80%
LGBM with Others+Ours 99.90% 92.30% 75.00% 82.80% LGBM with Others and Ours without LOF&KNN_distance 99.70% 68.50% 57.80% 62.70%

XGBoost with Ours 99.80% 84.80% 60.90% 70.90% XGBoost with Others without LOF&KNN_distance 99.80% 81.80% 56.30% 66.70%
BayesPoint with Ours 64.00% 1.10% 98.40% 2.10% BayesPoint with Others without LOF&KNN_distance 17.70% 0.50% 96.90% 0.90%

RandomForest with Ours 91.00% 3.40% 81.30% 6.60% RandomForest with Others without LOF&KNN_distance 93.10% 4.70% 85.90% 8.90%
SVM with Ours 96.90% 7.90% 64.10% 14.00% SVM with Others without LOF&KNN_distance 97.50% 10.20% 70.30% 17.80%
NN with Ours 91.50% 3.70% 82.80% 7.10% NN with Others without LOF&KNN_distance 94.50% 5.80% 85.90% 10.90%

Logistic with Ours 91.40% 3.70% 84.40% 7.10% Logistic with Others without LOF&KNN_distance 92.00% 4.30% 92.20% 8.20%
LGBM with Ours 99.70% 75.00% 51.60% 61.10% LGBM with Others without LOF&KNN_distance 99.70% 70.60% 56.30% 62.60%

XGBoost with Others 99.90% 95.70% 68.80% 80.00%
BayesPoint with Others 1.30% 0.40% 96.90% 0.80%

RandomForest with Others 94.20% 5.50% 85.90% 10.40%
SVM with Others 97.20% 9.30% 71.90% 16.50%
NN with Others 8.10% 0.40% 84.40% 0.70%

Logistic with Others 99.60% 0.00% 0.00% 0.00%
LGBM with Others 99.80% 89.80% 68.80% 77.90%
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