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Abstract
Search engines are normally not designed to support human learning intents and processes. The �eld of Search as Learning
(SAL) aims to investigate the characteristics of a successful Web search with a learning purpose. In this paper, we analyze the
impact of text complexity of Web pages on predicting knowledge gain during a search session. For this purpose, we conduct
an experimental case study and investigate the in�uence of several text-based features and classi�ers on the prediction
task. We build upon data from a study of related work, where 104 participants were given the task to learn about the
formation of lightning and thunder through Web search. We perform an extensive evaluation based on a state-of-the-art
approach and extend it with additional features related to textual complexity of Web pages. In contrast to prior work, we
perform a systematic search for optimal hyperparameters and show the possible in�uence of feature selection strategies on
the knowledge gain prediction. When using the new set of features, state-of-the-art results are noticeably improved. The
results indicate that text complexity of Web pages could be an important feature resource for knowledge gain prediction.
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1. Introduction
Conventional information retrieval systems are usually
designed to satisfy an information need. The research
area Search as Learning (SAL), on the other hand, deals
with the assumption that search sessions can also be
driven by a learning intention. Research in the area of
SAL is not only concerned with the ranking of search
results, but also with the detection or prediction of
the learning intention or even the knowledge state and
knowledge gain [1, 2].

Vakkari [3] presented a survey of features which indi-
cate the user’s knowledge and learning needs, but also
knowledge gain during the search process. More recently,
a wide variety of features were considered, including
resource-based (based on text or multimedia content)
or behavioral features. For example, Syed and Collins-
Thompson [4] have considered document retrieval fea-
tures to improve learning outcome for short- and long-
term vocabulary learning. Collins-Thompson et al. [5],
on the other hand, have studied di�erent query types
and found a correlation between the variety of intrinsic
query types and knowledge gain. Pardi et al. [6] further
examined the time spent on Web pages with primarily
textual or video content and learning outcome. One �nd-
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ing was that the time spent on text-based Web pages
had a greater impact on knowledge gain than time spent
on video-based Web pages. Gadiraju et al. [7] explored
the in�uence of behavioral features on the learning out-
come, and found a positive correlation between the av-
erage complexity of user queries and their knowledge
gain. Recently, some approaches have been suggested
that combine several types of features [8, 9]. For exam-
ple, Otto et al. [9] studied the e�ect on knowledge gain
prediction, when complexity and linguistic features are
complemented with multimedia features. They achieved
slight improvements by adding multimedia features, e.g.,
representing the amount of image and video data on the
screen or the image type (infographics, outdoor photog-
raphy, etc.).

A crucial aspect of learning is the appropriateness
of the text for the reader. In his survey, Collins-
Thompson [10] has summarized studies that deal with
the automatic assessment of the reading di�culty of
texts. Hancke [11] has previously analyzed lexical, syn-
tactic, and morphological features for German, while
Kurdi et al. [12] investigated features that allow for con-
clusions about the complexity of English texts.

In this paper, we investigate the in�uence of text com-
plexity of Web pages on knowledge gain prediction in a
comprehensive experimental case study. For this purpose,
we present a large set of text-based features of various
types and, furthermore, analyze the impact of di�erent
classi�ers and feature selection strategies on knowledge
gain prediction. First, the experimental results show that
state-of-the-art results [9] can be signi�cantly improved
and, second, that the textual complexity of Web pages can
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be a valuable predictor for the classi�cation of knowledge
gain. Our contributions can be summarized as follows:

• A large set of features describing textual complex-
ity of Web pages is presented.

• We conduct an extensive, systematic evaluation
including multiple classi�ers, hyperparameter
analysis and optimization, as well as feature se-
lection strategies and analyze their impact on
knowledge gain prediction.

• We demonstrate that the state-of-the-art-results
can be improved, even when only considering
textual complexity features.

The remainder of this paper is structured as follows: In
Section 2 the experimental setup and the process of ex-
traction is described. Experimental results are reported
in Section 3 and the impact of text complexity features is
analyzed. Finally, a summary of the main results and an
outlook is given in section 4.

2. Experimental Setup and
Text-based Features

We use data from a study [13] in which participants were
asked to acquire knowledge about the formation of thun-
der and lightning. The topic has already proven useful in
previous work [14, 15]. It is a phenomenon that is gen-
erally known and requires both factual and procedural
knowledge. On the Web, many sources exist on the sub-
ject, explaining it in diverse ways (texts, graphics, videos,
etc.). The participants were asked to do a Web search for
a maximum of 30 minutes; but were allowed to end the
search earlier if they felt they had learned everything im-
portant. We could use data from 𝑁 = 104 participants
(88 female, 16 male, average age of 22.7± 2.7 years), for
which the visited Web pages were downloaded during
the experiment. The participants were recruited over
a local recruitment portal composed of students from
the University of Tübingen. Students were compensated
with 16e per person for participating in the study. None
of the participants had former expertise in meteorology.

2.1. Technical Setup of the Study
While plenty of data were collected during the study
(data sources such as eye and mouse tracking informa-
tion), here, we focus on the text content of the visited Web
pages. During the Web search, all visited Web pages of
the participants were tracked and recorded via the "Scrap-
bookX" (1.5.14)1 and "ScrapbookXAutosave" (1.4.3)2 plu-
gins.

1https://github.com/danny0838/�refox-scrapbook
2https://github.com/danny0838/�refox-scrapbook-autosave

2.2. Knowledge Gain Measurement
To measure knowledge gain, the participants were asked
to solve a 10-item multiple choice test one week be-
fore (t1) and immediately after (t2) the Web search. The
knowledge gain is subsequently de�ned as the di�erence
between the numbers of correct answers of t2 and t1. The
potential range of values for the knowledge gain is there-
fore [−10, 10]. The average value in t1 was 5.24± 1.80
respectively 7.46± 1.43 in t2. The average knowledge
gain was 2.22± 1.78 and lies in the range of [−3, 6].

2.3. Feature Extraction
In the study, the participants performed free Web
searches, such that realistic search and browsing behav-
ior could be recorded. Since we focus on the textual
complexity of the visited pages, other page types like
search engine result pages and video-based contents are
�ltered. For this purpose, we used a keyword-based ap-
proach and omitted pages which contained the following
keyterms in their URL: "google.", "youtu", "ecosia", "RDSIn-
dex","universitaetsbibliothek", "meteoros", "webcam" and
"learningsnacks". For all remaining pages, we extracted
all displayed text without further processing. This can
lead to the fact that e.g., tables or advertisements are
in the analyzed texts. We decided against any further
preprocessing in order to minimize the bias in the data
set.

2.4. Website Features
To assess the complexity of text on Web pages, we extract
eight di�erent types of features:

• syntactical features
• readability scores
• part of speech (POS) density
• lexical richness
• lexical variation
• lexical sophistication
• syntactic constituents features
• connectives

Since the study was conducted in German, we mainly rely
on the Common Text Analysis Platform (CTAP) tool [16],
which currently provides 218 di�erent complexity fea-
tures for the German language. In total, we extract 248
features from each Web page. Below we give a short de-
scription of each feature group. For a complete overview
consider the appendix3.

The syntactic features group consists of basic text
statistics such as the number of letters, syllables, words,
and sentences. Moreover, the average length of each

3https://github.com/molpood/IWILDS_Complexity_Feature_List/
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element is considered, like sentence length in letters or
word length in syllables, as well as the standard deviation.
In addition, we calculate the average reading time of the
Web pages by assuming 180 words per minute [17].

The second group of features consists of well-known
readability scores that aim to estimate the skills a reader
must have to understand the text. The features are based
on combinations of the syntactic features (automated
readability index (ARI), Coleman-Liau index, Flesch-
Kincaid grade, Flesch reading ease) and partly on di�cult
or complex words. They are given either by a list (Dale-
Chall readability score, Gunning fog) or by words with
three or more syllables (SMOG index). For example, the
formula for ARI is as follows:

ARI = 4.71 · |characters|
|words| + 0.5 · |words|

|sentences| − 21.43

In the case of the ARI, the result is a human-interpretable
numerical value on a scale of 1-14 (1: Kindergarten, 14:
Professor).

The POS density group re�ects the density of di�erent
word types like adjectives or verbs in the website text. It
is based on the tokenization of the text and calculates the
di�erent number of word types (e.g., adjectives or verbs)
in relation to all tokens, e.g.,

densityadjectives =
|adjectives|
|tokens|

The fourth group lexical richness is very similar. Here,
the number of non-duplicated tokens is set in relation to
all tokens. In addition to the fraction types

tokens , various vari-
ations such as the logarithm or square root are applied
to the numerator and denominator.

The lexical variation group examines the subset of lex-
ical words (LW) consisting of nouns, verbs, adjectives
and adverbs. The class puts the number of individual
components in relation to the number of lexical words,
e.g., the lexical variation lv_adjectives for adjectives:

lv_adjectives =
|adjectives|

|LW|

The group of lexical sophistication features is based on dif-
ferent frequency lists [18, 19]. All words of the Web page
text are assigned to sets of all words AW, lexical words
LW (as mentioned before consisting of nouns, verbs, ad-
jectives and adverbs) and functional words FW (i.e., not
LW). The logarithmic or absolute frequency in the fre-
quency lists (per million words) of AW, LW and FW is
consequently used as a feature. Furthermore, the Karls-
ruhe Childrens Text (KCT) [20] list is used to determine
the average and minimum age of active use of AW, LW
and FW.

The group of syntactic constituents consists of features
that determine the number of di�erent syntactic con-
stituents, like noun phrases, relative clauses or T-units.

Additionally, ratios to each other are calculated, e.g., noun
phrases per T-unit, but also words per T-unit or noun
phrases per sentence. Moreover, we consider the tenses
in the text based on Kurdi [12]’s observation that there
may be a connection between more di�cult texts and
more complex tenses. To extract the tenses, we use the
tool of Dönicke [21].

The last group Connectives (according to
Breindl et al. [22]) examines units of the German
language that express semantic relations between
sentences. The connectives form a class consisting of
subsets of de�ned parts of speech like conjunctions
(and, or, etc.) or adverbs (in contrast, therefore, etc.).
The absolute number of connectives, as well as ratios,
such as multi-word connectives divided by single-word
connectives, are calculated as features.

The eight groups consist of a total of 248 features that
are calculated for each Web page visited during the search
sessions. Since the participants accessed a di�erent num-
ber of Web pages, we compute the average, the minimum
and the maximum for each feature for each participant.
As a result, we obtain a total of 3 · 248 = 744 features
for knowledge gain prediction.

3. Experimental Results
In this section, we report results for knowledge gain
prediction using features for text complexity. For a fair
comparison, we use the same evaluation setting including
hyperparameter optimization for all experiments. In the
same way, we replicate the results of Otto et al. [9]4 with
our evaluation procedure.

3.1. Knowledge Gain Definition
To categorize the measured knowledge gain, we use the
common approach [7, 8, 9] to assign each search session
to one of three classes 𝐶 = {𝐿𝑜𝑤,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,𝐻𝑖𝑔ℎ}
based on the Standard Deviation Classi�cation approach.
For this purpose, the knowledge gain 𝑋𝑖 of participant 𝑖
is z-normalized (𝑋𝑖) according to equation 1.

𝑋𝑖 =
𝑋𝑖 − 𝜇

𝜎
(1)

Here, 𝜇 is the mean and 𝜎 is the standard deviation
of all knowledge gain measures 𝑋 . Then, for every z-
normalized knowledge gain 𝑋𝑖 the class is assigned as
follows:

𝐶(𝑋𝑖) :=

⎧⎨⎩
Low, if 𝑋𝑖 < − 1

2

Moderate, if − 1
2
≤ 𝑋𝑖 ≤ 1

2

High, if 𝑋𝑖 >
1
2

4Otto et al. [9] analyzed features for 113 participants. Technical issues with
logging led to missing HTML data for nine participants which were crawled at a
later date. We rely on the data crawled during the original experiment, leading to
𝑁 = 104 records for our analysis.
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Figure 1: Overview of our evaluation method. A 5-fold cross-
validation is performed and for each split the features are
first normalized, optionally selected/reduced and the hyper-
parameters of the respective classifier are optimized on the
80% train/validation data. The test data are scaled with the
minimum and maximum of the train/validation data and op-
tionally the features are filtered. Finally, the classifier opti-
mized on the train and validation data is used to predict the
knowledge gain on the test data set.

This yields the following class distribution: |XLow|=40,
|XModerate|=39, |XHigh|=25.

3.2. Metrics
To evaluate the classi�cation results, we use precision,
recall, 𝐹1 score, and accuracy. These are de�ned as fol-
lows:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 score = 2 · precision · recall
precision + recall

(4)

accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP are the values correctly classi�ed as positive,
TN are the values correctly classi�ed as negative, and FP
are the values incorrectly classi�ed as positive and FN
are the values incorrectly classi�ed as negative.

3.3. Experimental Setup
Cross-validation is a good way to evaluate the classi�ca-
tion result, since every feature vector acts as a test sample
in one fold. We thus choose a 5-fold cross-validation with
80% train/validation and 20% test set split. This results
in �ve elements per class in each test set in each iteration
of the cross-validation.

We use min-max normalization to normalize each fea-
ture of the 80% to the interval [0, 1]. This is an essen-
tial step for some of the classi�ers, e.g., Support Vector
Machine. The 20% test set is then normalized by the
minimum and maximum of the 80% for evaluation. It is
possible that the values lie outside the interval of [0, 1].
However, we decide against clipping in order to not lose
any information due to normalization. Figure 1 provides
an overview of our proposed evaluation. In our evalua-
tion we use the implementation of Scikit-learn [23].

3.3.1. Hyperparameter Optimization

The performance of classi�cation algorithms strongly
depends on the chosen hyperparameters. However, since
the training, validation and test data change in each itera-
tion due to cross-validation, these cannot be determined
once and used for the entire evaluation. Therefore, to
obtain valid results, we perform an optimization of the
hyperparameters in each of the �ve iterations. We utilize
Optuna [24] for an Bayesian search to e�ciently �nd a
good con�guration and limit the number of runs to 500
to reduce the computational cost. From the 80% of the
data coming from the 80:20 split of the cross-validation,
another 80:20 split is performed, where 80% is training
data and 20% is validation data. We set the maximization
of the weighted F1 score as the optimization objective.
This is to prevent the class imbalance from making the
underrepresented class High less important, as it would
be, for example, with overall accuracy.

3.3.2. Feature Selection

The classi�cation results may also depend on the number
of input features (more is not always better). For example,
in the Random Forest algorithm, a subset of the features
is selected several times to create weak classi�ers and
there is no guarantee that "good features" will prevail.
For this reason, we want to reduce the number of fea-
tures while trying to preserve valuable features. Again,
it is important to separate the feature selection from the
test data, which changes in each iteration. As with hy-
perparameter optimization, we use the further split into
training and validation data to do this. It follows that the
selected features may change in each iteration. For the
selection of the features to be used for this evaluation,
we rely on two strategies:

1. 𝜒2-based Feature Selection: This method ex-
amines whether a feature has a statistically signif-
icant relationship to knowledge gain. While one
feature is analyzed for a relationship, all other
features are ignored. The features with the 𝑁
highest values based on the 𝜒2-test are selected.

2. Tree-based Feature Selection: Features with-
out a direct correlation to the knowledge gain



Table 1
Results of the Knowledge gain classification for the classes Low, Moderate and High respectively for the classifiers (clf) Ad-
aboost (Ada), Decision Tree (DT), K-Nearest Neighbors (KNN),Multi-layer Perceptron (MLP), Random Forest (RF) and Support
Vector Machine (SVM) and for weighted guessing (WG). For the reported results of Otto et al. [9] (Otto*) and reproduced
(Otto), respectively, our results (our) and the combination of Otto et al. ’s [9] and our features (Otto+our), precision (pre),
recall (rec), F1 score (f1) and overall accuracy (accu) are reported.

Low Moderate High macro scores
clf pre rec f1 pre rec f1 pre rec f1 pre rec f1 accu

WG 38.4 38.6 38.4 37.4 37.3 37.2 24.0 24.0 23.8 33.3 33.3 33.1 34.6

O
tt
o* RF 41.5 52.0 46.1 39.1 40.0 39.5 28.4 14.8 19.1 36.4 35.6 34.9 38.7

O
tt
o

Ada 42.1 40.0 41.0 35.4 43.6 39.1 16.7 12.0 14.0 31.4 31.9 31.4 34.6
DT 40.0 50.0 44.4 40.5 38.5 39.5 23.5 16.0 19.0 34.7 34.8 34.3 37.5
KNN 26.7 20.0 22.9 38.1 41.0 39.5 18.8 24.0 21.1 27.8 28.3 27.8 28.8
MLP 41.2 35.0 37.8 46.3 48.7 47.5 34.5 40.0 37.0 40.7 41.2 40.8 41.3
RF 30.2 40.0 34.4 32.6 35.9 34.1 12.5 4.0 6.1 25.1 26.6 24.9 29.8
SVM 38.6 42.5 40.5 45.5 38.5 41.7 33.3 36.0 34.6 39.1 39.0 38.9 39.4

ou
r

Ada 42.1 40.0 41.0 41.9 46.2 43.9 34.8 32.0 33.3 39.6 39.4 39.4 40.4
DT 39.0 40.0 39.5 41.7 38.5 40.0 29.6 32.0 30.8 36.8 36.8 36.8 37.5
KNN 21.7 12.5 15.9 45.0 46.2 45.6 26.8 44.0 33.3 31.2 34.2 31.6 32.7
MLP 38.9 35.0 36.8 55.9 48.7 52.1 26.5 36.0 30.5 40.4 39.9 39.8 40.4
RF 40.5 42.5 41.5 51.3 51.3 51.3 34.8 32.0 33.3 42.2 41.9 42.0 43.3
SVM 40.6 32.5 36.1 54.3 48.7 51.4 27.0 40.0 32.3 40.6 40.4 39.9 40.4

O
tt
o+

ou
r

Ada 42.3 55.0 47.8 54.8 43.6 48.6 42.9 36.0 39.1 46.7 44.9 45.2 46.2
DT 53.1 42.5 47.2 42.9 38.5 40.5 27.0 40.0 32.3 41.0 40.3 40.0 40.4
KNN 20.0 12.5 15.4 45.0 46.2 45.6 25.6 40.0 31.2 30.2 32.9 30.7 31.7
MLP 25.0 12.5 16.7 41.3 66.7 51.0 28.6 24.0 26.1 31.6 34.4 31.2 35.6
RF 37.5 45.0 40.9 45.0 46.2 45.6 37.5 24.0 29.3 40.0 38.4 38.6 40.4
SVM 22.7 12.5 16.1 41.7 38.5 40.0 30.4 56.0 39.4 31.6 35.7 31.9 32.7

can be important predictors in combination with
other features. For this reason, we employ a tree-
based approach using a Random Forest classi�er.
This is �tted to the training data and then ana-
lyzed to see which features were most heavily
used in the decision. The 𝑁 values with the high-
est importance are selected. The goal is to select
valuable features for the classi�cation even with-
out direct correlation.

3.3.3. Classifiers

Otto et al. [9] limit their evaluation to a Random For-
est [25] classi�er. In addition to that, we explore several
alternative classi�ers: Adaboost [26], Decision Tree [27],
K-Nearest Neighbors [28], Multi-layer Perceptron [29],
and Support Vector Machine [30]. The objective is to ex-
perimentally determine the best con�guration in order
to �nd the maximum potential for knowledge gain pre-
diction, given the set of features.

3.4. Classifier Performance
In Table 1, we compare the performance for all classi�ers.
As baselines, we list the results for weighted guessing
(WG), which is the mean of each metric for 10,000 ran-
domly generated vectors consisting of class labels with
respect to the class distribution, and the original reported
results from Otto et al. [9] (Otto*). For a fair compari-
son with our features, we reproduced the results using
the features from Otto et al. [9] with our pipeline (Otto).
Furthermore, to analyze the performance for a feature
set as diverse as possible, we combined the features of
Otto et al. [9], and our proposed feature set for evalua-
tion (Otto+our). For the cumulative predictions for all
�ve iterations of cross-validation, the precision, recall,
and F1 score are calculated for each class (Low, Moderate,
and High), as well as the average of these metrics over
all classes, and the overall accuracy.

First, it is notable that the reproduced results of
Otto et al. [9] (Otto) are better compared to their reported
result (Otto*). The results of the Multi-layer Perceptron
(MLP) provide a 5.9% higher F1 score (34.9% compared
to 40.8%). However, in direct comparison to the repro-



duced result with a Random Forest (RF), the original
results are better. It is striking, that the improved out-
come stems mainly from better predictions from the class
High. A closer look reveals that the recall scores for the
tree-based classi�ers Adaboost (Ada), Decision Tree (DT)
and Random Forest (RF) are comparatively low. These
algorithms seem to preferentially predict the more repre-
sented classes for the features of Otto et al. [9] and accept
a worse result for the underrepresented class High. This
impression is enforced by the fact that for all feature
sets the F1 score (f1) for the three classi�ers is signi�-
cantly worse for the class High than for the classes Low
and Moderate. This is not the case for any of the other
classi�ers.

Nevertheless, Random Forest (RF) and Adaboost (Ada)
perform best for the other feature sets (our and Otto+our).
The RF using the features of textual complexity (our)
yields a slightly better macro F1 score (42.0%) than the
MLP using the features of Otto (41.2%). In addition, the
RF achieves an overall accuracy of 43.3% while the MLP
only achieves 40.6%. The best result is obtained by the
Adaboost classi�er for Otto+our with 45.2% macro F1

score and 46.2% overall accuracy. Examining the results
for the Random Forest algorithm for all three feature sets,
we notice that the F1 scores of all three classes for the
combination of features are strictly between the F1 scores
of the individual feature sets. At the same time, the F1

scores for the combination of features are all better than
for the individual sets for Adaboost. We assume that
the Random Forest algorithm is a�ected by too many
(diverse) features. Adaboost can weight the features dif-
ferently and thus utilize the strengths of both feature
sets.

Another observation is that the F1 scores of all feature
sets for the K-Nearest Neighbors (KNN) algorithm are
signi�cantly higher for the class Moderate than for the
classes Low and High. Therefore, we suspect that search
strategies with Low (or High) knowledge gain di�er much
more. Furthermore, we can observe that the F1 score for
the class Moderate of our features is high compared to
the classes Low and High, independent of the classi�er.
On closer inspection, we found that often instances of
the class Low are classi�ed as High and vice versa. If
we put the classi�cation result for the classes Low and
High together, i.e., a new class Not Moderate, we would
get 74.1%, 70.8% and 73.1% F1 score for the classi�ers
MLP, RF and SVM, respectively, for this new class. It
seems like the complexity features are useful to detect if
someone does not have a Moderate increase in knowledge
gain. We plan to investigate this interesting aspect in the
future.

For our textual complexity features, the best result was
obtained with the Random Forest classi�er. In each itera-
tion of the 5-fold cross-validation, an independent hyper-
parameter optimization was performed. The optimized

Table 2
The optimized hyperparameters per fold 𝐹1, ...𝐹5 for the
Random Forest classifier for our features.

𝐹1 𝐹2 𝐹3 𝐹4 𝐹5

estimators 242 299 154 150 223
max_depth 22 17 8 17 17
max_features sqrt log2 sqrt log2 sqrt
criterion entr. gini sqrt entr. gini
min_n_split 6 3 7 7 4
min_n_leaf 5 8 3 8 7

hyperparameters for each fold 𝐹1, ..., 𝐹5 are shown in
Table 2. No pattern can be discovered in the parameters,
they are very di�erent in shape. This could possibly be
related to the heterogeneity of the data and the weakness
of the features for prediction.

3.5. Feature Selection
In Table 1, it is observable that the classi�cation result
for the Random Forest classi�er (RF) performs worse
for the combination of features (Otto+our) than for the
complexity-only features (our). It seems that consid-
ering more features does not necessarily improve the
classi�cation quality. The result for the Random Forest
classi�er (RF) for the textual complexity (our) features
for 𝑁 ∈ {1, 3, 5, ..., 99} is shown in Figure 2. It can
be seen, that the classi�cation result is achieved with
fewer features, regardless of the feature selection strat-
egy. With the 𝜒2-based selection method, the result is
also achieved with fewer features, but later than with
the tree-based method. This makes sense in so far as the
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Figure 2: Average F1 scores of the Random Forest classifier
using 𝑁 ∈ {1, 3, 5, ..., 99} of our features for the 𝜒2-based
(chi2) and the tree-based (tree) Feature Selection strategy.
The result for all features is indicated with the dotted line.



Table 3
Features selected at least three out of five times during cross-validation by the tree-based selection strategy.

type feature aggregation count

POS Density Feature Subordinating Conjunction min 4
Lexical Sophistication Feature SUBTLEX Word Frequency (LW Token) min 4
Syntactic Complexity Feature Mean Length of Verb Cluster min 3

𝜒2-based method considers the features independently
of each other, and only measures the individual correla-
tion of a feature with knowledge gain. In contrast, the
tree-based strategy selects features based on their impor-
tance for an upstream Random Forest. Thus, the baseline
level can already be reached with 𝑁 = 19 features.

Cross-validation is used for evaluation as described
above (Section 3.3.1). Similarly, feature selection is per-
formed �ve times. However, this implies that the features
chosen in each iteration of the cross-validation may di�er,
which complicates the analysis of which features most
in�uence the classi�cation result. We therefore propose
to highlight the features that were selected in at least
three out of �ve iterations. Since the classi�cation result
of the Random Forest was already achieved with 𝑁 = 17
features, we report the features based on this con�gu-
ration. The features and their frequencies are shown in
Table 3. Three features were selected at least three times,
but none were selected in every iteration of the cross-
validation. All three were aggregated by the minimum,
indicating that the Web page with the lowest textual
complexity is most important for the classi�cation result.
This strengthens the impression that the features or the
aggregations (Minimum, Maximum and Average) are too
weak to provide a strong prediction of the knowledge
gain. In the future, we aim to include more features and
�nd aggregations that are more suitable to re�ect search
patterns.

In the last section, it was observed that the F1 score
for the class High is signi�cantly below the values for
the classes Low and Moderate, regardless of the feature
set. We performed feature selection before hyperpa-
rameter optimization and repeated the evaluation with
𝑁 ∈ {1, 3, 5, ..., 79} features. Figure 3 shows how the
F1 score for the class High changes with a subset of the
features of Otto et al. [9]. The green curve describes the
F1 scores based on the tree-based feature selection strat-
egy, which tries to select the most important features
for classi�cation. It is noticeable that almost any tested
subset would have been more suitable than using the full
feature set. Moreover, the curve does not change from
𝑁 = 65 onward (same observation for the classes Low
and Moderate), which suggests that the tree-based fea-
ture selection strategy does not consider many features
at all.
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Figure 3: F1 scores for the class High for the features of
Otto et al. [9] for 𝑁 ∈ {1, 3, 5, ..., 79} features for the
𝜒2-based (chi2) and the tree-based (tree) Feature Selection
strategy. The result for all features is indicated with the dot-
ted line.

4. Conclusions
In this paper, we have investigated the impact of textual
complexity of Web pages on knowledge gain during a
Web search. The experimental results demonstrated that
the state of the art can be improved by only considering
the textual complexity of Web pages. The results also
showed that a systematic assessment of di�erent hyper-
parameter settings, feature selection, and several classi-
�ers is important – in particular, since the correlations
between features and the target outcome are relatively
weak. During the evaluation, it became apparent that
as little as 17 features per iteration of cross-validation
would have been su�cient to achieve the result. Further-
more, we found that a moderate knowledge gain can be
predicted relatively well, but, interestingly, the distinc-
tion between successful and unsuccessful Web search
does not work well (in terms of knowledge gain). The
reasons for this e�ect have to be investigated in more
detail.

Although we have obtained state-of-the-art results,
there are some limitations. In this case study, we ana-
lyzed only the data of a study on knowledge acquisition
about a speci�c science topic, the formation of thunder-



storms. Consequently, limited conclusions can be drawn
about general Web searches and the results need to be
con�rmed or extended by future studies. In this sense,
the reported results need to be reproduced for (a) di�er-
ent types of learning tasks (e.g., procedural knowledge)
and (b) conceptual learning tasks in other domains (e.g.,
non-science topics).

In the future, we would like to deepen our understand-
ing of what behavioral patterns characterize e�ective
Web searches, for instance, by examining how the se-
quence of Web pages (and their characteristics) in�uence
learning success. An intuitive assumption is, for exam-
ple, that a successful learning session consists of Web
pages of increasing complexity. Furthermore, we have
considered the textual complexity of the entire Web page,
but not in every case is the Web page content read in its
entirety. In future work we would like to focus more on
the actual seen during Web search.

Lastly, we focused on text-based Web pages in this
case study. However, many of the Web searches were
not unimodal but multimodal. Consequently, further
investigations will need to include further complexity
measures such as visual complexity of the Web pages or
videos.
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