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Abstract  
Automated interpretation of fundamental physiological signals like Electrocardiogram (ECG) 

plays an important role as part of smart healthcare ecosystem to build reliable and on-demand 

cardio-vascular diseases (CVD) screening system. Myocardial infarction is a life-threatening 

condition. Acute myocardial infarction leads to fatal condition commonly known as heart 

attack. It is medically established that myocardial infarction is often ignored initially, and 

treatment starts late. In this paper, we present an automated method of myocardial infarction 

detection from off-the-shelf single lead ECG signals so that early warning can be generated, 

and timely diagnosis can take place. We propose regularized deep neural network based model 

that is capable of classifying myocardial infarction condition from normal heart rhythm in 

single lead ECG signals. More precisely, we propose intensely regularized deep residual 

networks (ResNet) where both L2 (also known as Tikhonov regularization) and L1 (commonly 

known as Lasso) regularizations are used to construct a compact residual learning model. We 

demonstrate through empirical study on publicly available relevant ECG dataset from UCR 

timeseries archive that the proposed method demonstrates considerably superior performance 

over baseline methods and current state-of-the-art algorithms. We have also performed ablation 

study to depict the efficacy of the proposed intense regularization over only L2 or L1 

regularizations.   
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1. Introduction 

Electrocardiogram (ECG) is one of the 

fundamental markers for preliminary 

investigation of Cardio-Vascular Diseases 

(CVDs). Owing to the affordable availability of 

personal ECG Sensors like Alivecor [1], and 

wide-scale adoption of Internet of Things (IoT) 

infrastructure, remote diagnosis of critical CVD 

like myocardial infarction (commonly known 
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as heart attack) is envisaged in smart clinical 

management system. In this paper, we propose 

a deep neural network based ECG classification 

algorithm, which gets executed in a typical 

cloud platform and the inference on the test or 

on-field ECG recording is shared to the nearest 

medical facility for automated emergency 

services. While, the ECG gets recorded by the 

individual at the comfort of their home, the 

analysis requires engagement of trained 



 

 

cardiologists, which is likely to hinder the 

scalability and larger scale basic diagnosis of 

the heart condition. Computerized analysis and 

automated interpretation of ECG signal paves 

the way to substantially reduce the frequency of 

clinician intervention and provides quick 

assessment of the heart condition. The future 

smart infrastructure facility is invariably 

necessitating remote diagnosis capability. 

Future smart cities with IoT based applications 

and eco-system demand such automated 

clinical management system that ensures on-

demand diagnosis and quick response to the 

critical treatment requirements. In a general 

setup, patients interact with their smartphone 

applications to get associated in the smart 

healthcare systems and derive the benefit of 

remote assistance of healthcare facility with 

digital therapeutics. 

 

Figure 1: ECG analysis as a component of 
automated cardio-vascular management 
system. We depict the hierarchical relationship 
in smart infrastructure, which is an integral 
part of smart health care systems. 
 

Computational analysis using machine 

learning methods for automated interpretation 

of digital ECG signal has been in the research 

foray from quite a few years. ECG is a typical 

time series signal. ECG classification problem 

is often considered as a time series 

classification task and consequently, attempts 

were made to solve it in the light of time series 

classification-based model generation. 

Typically, training model is developed from the 

given training examples. The trained model is 

evaluated on the test dataset. Classically, 

distance-based metrics like one nearest 

neighbour (1-NN) dynamic time warping 

(DTW) is used to understand the characteristics 

of the different class of signals [2]. Test signal 

is inferred based on the rule of minimum DTW 

distance of the training signals set. In fact, 

similarity measure is often considered a good 

approach for classification particularly in the 

area of data mining. DTW-based elastic 

distance measurement and 1-NN based 

classification is the conventional choice of 

baseline time series classification algorithm [3]. 

Lately, machine learning algorithms tailored 

for time series signals are evolve [3]. Collective 

of transformation ensembles (COTE) is an 

ensemble classifier in the time, autocorrelation, 

power spectrum and shapelet domains [4]. 

Another important time series classification 

algorithm is Bag of Symbolic Fourier 

Approximation (SFA) symbols (BOSS) [5]. 

BOSS considers a truncated Discrete Fourier 

Transform (DFT) in extracting features through 

sliding windowed time series. These algorithms 

namely, COTE and BOSS are dependent on the 

customized feature space development and 

specific pattern recognition.  

Recently Residual Network (ResNet) have 

been emerged to solve time series classification 

problem. In fact, ResNet based approach seems 

to be a promising one [6]. Similarly, we get 

inspired by the promise of the capability of deep 

residual network’s representation learning by 

residual mapping, we propose a regularized 

deep residual neural network with both L2 and 

L1 penalties such that a compact learned model 

can be constructed. We investigate on publicly 

available ECG datasets with normal rhythm and 

myocardial infarction labels and comparative 

study indicates superior performance of our 

proposed method over baseline algorithms and 

state-of-the-art methods. 

2. Proposed deep residual network 
architecture 

Myocardial infarction detection from ECG 

signal considers number of input ECG signals 

as part of the overall training space. We can 

represent each of them as: 𝒳 =
 [𝓍1, 𝓍2, 𝓍3, … , 𝓍𝑇]  ∈ ℝ𝑇 is an ordered set of 

real values 𝑇 number of time steps at each of 

the training samples. Each of the training 

samples is associated with a with class label 𝑦 ∈
[𝑁𝑅, 𝑀𝐼], where 𝑁𝑅 indicates normal sinus 

rhythm and  𝑀𝐼 indicates myocardial 

infarction. Thus, the training dataset consists of 

labeled ECG signals as Ω = {𝒳𝑛, 𝑦𝑛}, for 𝑛 =



 

 

1,2,3, … , 𝑁 with total 𝑁 number of training 

examples. 

Typically, normal sinus rhythm consists of 

regular ECG morphology while ECG signal of 

myocardial infarction patients have different 

morphology [7] as shown in Figure 2. 

 

 

Figure 2: Morphological differences in ECG 
signals for normal sinus rhythm and 
myocardial infarction. 

 

In order to extract the distinctive features 

from ECG signal to distinguish normal rhythm 

and myocardial infarction, we use deep residual 

network based representation learning [8].  

The immense success of deep residual 

networks for computer vision applications 

motivates us. In deep residual networks, the 

underlying layers fit a residual mapping instead 

of directly stacking layers to overcome learning 

degradation problem through layer-wise 

recursive learning using skip-connection [6]. 

Let us consider a deep neural network that 

consists of 𝐿 number of layers, where each of 

the layer implements a non-linear 

transformation ℋ𝑙(∙), where a layer is indexed 

by 𝑙. In accordance to the ResNet topology as 

shown in Figure 3, the residual mapping ℛ𝑙 of 

𝑙th layer is denoted as: 

ℛ𝑙 = ℛ𝑙−1 +  ℋ𝑙(ℛ𝑙−1) 

The main intuition of a residual network is 

that the skip connection or short-circuit 

connection provides direct path of input signal 

propagation and thus, it helps to prevent the 

phenomenon of propagation loss of signal 

characteristics. 

 

Figure 3: Topology and basic transformation 
and layer mapping in typical deep residual 
network model. 

 

We can conceptualize residual networks as 

micro-structures of residual blocks connected 

sequentially along with skip connection as 

shown in Figure 3.  

We construct a pretty deep residual neural 

network with total fifteen convolution layers. 

There are three residual blocks. First residual 

block consists of five convolution layers. There 

are eight convolution layers in second residual 

block, while third residual block consists of six 

convolution layers. Including the three skip 

connection layers, total twenty layers are 

present in the proposed deep learning model, 

with nineteen effective convolution layers.  

We have used Batch Normalization (BN) 

and Rectified Linear Unit (ReLU) as the 

activation layer. After the last convolution 

layer, we use Global Average Pooling, which 

acts a structural regularizer. In fact, it natively 

prevents overfitting for the overall structure 

with added advantage of no need for hyper-

parameter optimization [9]. Softmax activation 

function is used at the output layer for the 

classification purpose along with cross-entropy 

as the loss function. We depict the proposed 

model in Figure 4. 



 

 

 

Figure 4: Deep residual network model for ECG 
classification. 
  

It is understood that ECG signal annotation 

is an expensive process and it is likely to have 

scarce number of training examples. While the 

proposed deep neural network has a 

sophisticated capability of representation 

learning over the training space, there exists 

higher chance of overfitted model generation. 

In order to eliminate the risk of overfitting to 

the training examples, we regularize the model 

using 𝐿2  and 𝐿1 regularizations [10]. The 

regularized cost function 𝐽∗ with network 

parameters 𝜃 is: 

𝐽∗(𝜃) = 𝐽(𝜃) + 𝜆𝐽𝑝𝑒𝑛(𝜃) 

Where, 𝐽𝑝𝑒𝑛(𝜃) is the penalty function and 

𝜆 is the regularization co-efficient, with 𝜆 ∈
[0, ∞]. The 𝐿2  or Tikhonov regularization is 

expressed as: 

𝐽𝐿2
∗ (𝜃) = 𝐽(𝜃) + 𝜆2

𝜃Τ𝜃

2
 

Where,  𝐽𝑝𝑒𝑛(𝜃) =  
𝜃Τ𝜃

2
. 

Where, the network parameter gradient is: 

Similarly, the Lasso or 𝐿1 regularization is 

defined as: 

𝐽𝐿1
∗ (𝜃) = 𝐽(𝜃) + 𝜆1‖𝜃‖1 

Where, 𝜆2 and 𝜆1 are 𝐿2 regularization and 

𝐿1 regularization factors respectively. 

 

Our proposed cost function is: 

𝐽𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑
∗ (𝜃) = 𝐽(𝜃) + 𝜆2

𝜃Τ𝜃

2
+ 𝜆1‖𝜃‖1 

 

We intend to emphasize that regularization 

impacts on network parameters for 𝐿2  and 

𝐿1 regularizations are different. With or 

𝐿1 regularization, we have sparser parameter 

matrix while 𝐿2 regularization clips the values 

of the parameters. Thus, a sparser yet controlled 

network parameter space model is constructed.  

 

3. Experimental Analysis and 
Results 

We consider relevant dataset ECG200 from 

publicly available UCR time series archive 

[11]. The intent is to construct a classification 

model that demonstrates better performance 

accuracy than state-of-the-art algorithms like 

DTW_R1_1NN [2], BOSS [5], ResNet [6], 

HIVE-COTE [4]. From UCR time series 

archive, the representative dataset ECG 200 is 

considered. ECG200 dataset is binary-labelled 

with normal heartbeat and myocardial 

infarction classes. There are distinct 100 

instances for training and 100 instances for 

testing purposes.  

For this experimentation purpose, we 

consider the hyperparameters as described in 

Table 1.  

 

 

 



 

 

Table 1 
Hyperparameter description. 
 

Parameter Brief explanation Value/ Type 

Epoch Number of 
training iterations  

60 

Optimizer Learning rate 
optimization 

Adam 

Batch size Number of 
training samples 

in each of the 
pass 

𝑚𝑖𝑛 (|
𝑇

10
| , 16)

where 𝑇 is 
the number 

of time steps 
at each 
instant 

Number of 
residual 
blocks 

Total number of 
residual blocks 

3 

Number of 
convolution 

layers at 
each of the 

residual 
blocks 

Residual block #1 5 

Residual block #2 8 

Residual block #3 6 

Kernel size Residual block #1 {15,12, 8, 5, 
3} 

Residual block #2 {15,10,8,7, 6, 
5, 4, 3} 

Residual block #3 {15,10,8,7,5,3
} 

Number of 
filters 

Residual block #1 {64, 64, 
64,64,64} 

Residual block #2 {128, 128, 
128, 128, 

128,128,128, 
128} 

Residual block #3 {128, 128, 
128, 

128,128,128} 

𝜆1 𝐿1 regularization 
factor 

0.01 

𝜆2 𝐿2 regularization 
factor 

0.10 

 

In Table 2, we illustrate the performance 

efficacy of the proposed regularized deep 

residual network over ECG200 dataset in 

comparison with the baseline methods and 

state-of-the-art algorithms. depict the 

experimental results of our proposed method. 

First the model is generated with the provided 

training dataset and subsequently, the trained 

model is used to predict the classification of the 

test dataset. The proposed model performs 

better than the baseline and outperforms the 

state-of-the-art algorithms. Currently, BOSS 

[5] is the benchmark algorithm, and our 

proposed method shows 2% test accuracy gain 

ver BOSS [5] and 4% test accuracy gain over 

ResNet [6]. In fact, our method demonstrates 

substantial performance gain with similar type 

of deep learning model- ResNet [6]. 

 

Table 2 
Performance comparison of our proposed 
method and related state-of-the-art 
classification algorithms in terms of test 
accuracy metric over ECG200 dataset from 
UCR time series archive. 
 

Algorithm  Test accuracy 
DTW_R1_1NN [2] 0.77 

HIVE-COTE [4] 0.85 
ResNET [6] 0.87 

BOSS [5] 0.89 
Our method 0.91 

 

In Table 3, we demonstrate ablation study 

results when L2 or L1 regularizations are 

performed, i.e. when  
𝐽∗(𝜃) = 𝐽𝐿2

∗ (𝜃) or 𝐽∗(𝜃) = 𝐽𝐿1
∗ (𝜃), whereas our 

proposed ResNet has cost function as:   
𝐽∗(𝜃) = 𝐽𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

∗ (𝜃). 

 

Table 3 
Ablation study to depict the efficacy of the 
proposed method, showing that L1 and L2 

regularization is more effective than L1 or L2 

regularizations.  
 

Regularization   Test accuracy 

L1 0.80 

L2  0.86 

Our method (L1 and L2) 0.91 

4. Plausible Deployment 
Architecture 

We illustrate a plausible deployment 

architecture of remote diagnosis of myocardial 

infarction (CVDs in larger scope) in Figure 5. 

The proposed ECG analysis algorithm is 

supposed to be hosted over cloud and a 

smartphone-based application interacts with the 

user to send the captured ECG signal to the 

cloud. For ECG signal capturing purpose, off-

the-shelf sensors like Alivecor can be used. The 

cloud server responds the inference result to the 

user through the same smartphone application 



 

 

as well as alerts nearby medical facilities if 

abnormal cardiac activity is detected and 

myocardial infarction is suspected. Thus, a 

complete diagnosis eco-system can be built 

using the proposed method, which will have 

immense benefit in providing early-warning 

alarms to initiate necessary medical attention. 

However, it is imperative to mention that 

physiological signals like ECG consists of 

potential sensitive information and appropriate 

trust [13, 15], data security [14, 17] and data 

privacy [12, 16, 17] mechanisms are to be 

implemented in order to ensure wide-scale 

acceptability in the public domain. 

 

 
 
Figure 5: Smart healthcare ecosystem, with 
plausible deployment architecture that 
integrates the ECG analytics with user and 
medical facilities for automated CVD 
detection. 

 

5. Conclusion 

In this paper, our focus is to develop a 

classification algorithm to reliably detect 

myocardial infarction or heart attack condition 

using ECG signal. The performance of the 

proposed model is superior than the currently 

available relevant methods. We are confident 

that ECG analytics as part of a smart healthcare 

ecosystem will ensure the necessary impetus 

for human-centered purpose in contributing 

better quality of life through the development 

of technology-driven early detection and 

treatment for life-threatening CVDs like 

myocardial infarction.  
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