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Abstract
Satellite-based Earth Observation (EO) is a key technology for applications like emergency management, civilian security,
and environment and resource monitoring. Demands on amount, type and quality of remote-sensing satellite data and
efficient methods for data analysis have increased sharply in recent years. However, the use of satellite-based image products
for scenarios which require very low-latencies, such as rapid meteorological and civil security applications, is still limited
by the bottleneck created by the classical EO data chain, which involves the acquisition, compression, and storage of sensor
data onboard the satellite, and its transfer to ground for further processing. Onboard processing offers a promising solution
to reduce the latencies between data acquisition and product delivery to the end user. The H2020 EU project EO-ALERT
(http://eo-alert-h2020.eu) implements this approach through the development of a next-generation EO data processing chain
that moves optimised key elements from the ground segment to onboard the satellite. In this article, the feasibility of the
concept is demonstrated using EO-ALERT’s extreme weather nowcasting product as an example. The system is able to detect
and track convective storms and Overshooting Tops, and to send the processed information to ground, within 5 minutes of
the observation.
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1. Introduction
In many EO scenarios including environment and re-
source monitoring, emergency management and civilian
security, EO products are only useful if available in a
very short time period. However, the use of satellite EO-
based image products for rapid meteorological and civil
security applications is still limited by the bottleneck cre-
ated by the classical EO data chain, which involves the
acquisition, compression, and storage of sensor data on-
board the satellite, and its transfer to ground for further
processing. This introduces long latencies until product
delivery to the end user.

The H2020 EU project EO-ALERT [1, 2] (http://eo-alert-
h2020.eu) a collaboration of several partner organizations
(DEIMOS Space (Leader), DLR, OHB Italy, Politecnico
di Torino, TU-GRAZ), addresses this problem through
the development of a next-generation EO data process-
ing chain that moves optimised key elements from the
ground segment to onboard the satellite. Applying opti-
mised Machine Learning (ML) methods, EO products are
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generated directly onboard the spacecraft and transmit-
ted to ground and to the End User with very low latency.

While the EO-ALERT concept and architecture enables
a wide range of low-latency earth observation products,
two use-case scenarios are developed to proof the feasibil-
ity of the approach: Ship detection and extreme weather
nowcasting. The ship detection scenario is motivated
by the European Maritime Safety Agency’s (EMSA) ves-
sel detection service and offers possible applications for
monitorization of illegal fishing, illegal immigration, and
in search and rescue missions.

In this work, the second application, meteorological
nowcasting for early warnings of convective storms, is
used to demonstrate the capabilities of the EO-ALERT
product and its novel data processing chain in a realistic
scenario. The article is organized as follows: Section 2
gives an overview of the state of convective storm now-
casting. In Section 3, the EO-ALERT processing chain is
presented as a solution for low latency storm nowcast-
ing. Sections 4 and 5 present the design and results of the
detection algorithms for convective storm and Overshoot-
ing Top (OT) detection. Section 6 briefly summarizes the
conclusion of this work.

2. Background
Deep moist convection processes cause damaging effects
like heavy rainfall and large hail, strong wind gusts, wind
shear, lightning, tornadoes, etc. Those, in turn, produce
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negative effects like flash floods, power cuts, damaged
crops, etc. which can negatively affect human lives as
well as produce high economic losses [3]. Overshooting
tops (OTs) are deep convective storm updrafts able to rise
above the storms’ equilibrium level in the tropopause
region. OTs are directly related to hazardous weather
at the Earth’s surface such as heavy rainfall, damaging
winds, large hail, and tornadoes [4]. An early detection
of these kinds of phenomena is beneficial in many senses.

Meteorological forecasters use non-hydrostatic nu-
merical prediction models (NWP) to forecast convective
storm occurrence some days in advance, but the accu-
racy these NWP provide does not allow to know their
exact location, time and intensity level. For this reason,
nowcasting tasks are crucial in these cases. Nowcast-
ing systems of the national meteorological services are
mainly fed by remote sensing data like radar and satellite
images, and derived products.

The international meteorological community is con-
tinuously putting a great deal of effort into the under-
standing of convective phenomena and the improvement
of nowcasting tools. To that purpose, EUMETSAT has a
dedicated Satellite Application Facility (SAF) to provide
nowcasting tools (NWCSAF). In particular, the NWCSAF
Rapid Developing Thunderstorms – Convection Warning
(RDT-CW) product is devoted to the detection, tracking
and forecasting of intense convective systems and rapidly
developing convective cells [5].

The RDT-CW is a mainly satellite-based product that
provides information on the storm location, size, speed,
followed and future trajectory, cloud top cooling rate and
severity information, among many other useful descrip-
tive parameters. RDT-CW also performs OT detection.
To compute all this information, RDT-CW uses, besides
satellite imagery at different times, NWP fields, light-
ning information and other NWCSAF product outputs.
RDT-CW has been both calibrated and validated against
lightning information, and needs between three and nine
minutes to be processed (depending on the region pro-
cessing size and the number of NWCSAF products used
as input), once raw data has been downloaded to ground,
image generation has reached Level 1.5 and its radiances
are available.

3. EO-ALERT Processing chain for
rapid civil alerts

The low latencies required for early warnings of convec-
tive storms obtained from meteorological nowcasting and
very short-range forecasting are limited by the classical
EO data chain, which involves the acquisition, compres-
sion, and storage of sensor data onboard the satellite,
and its transfer to ground for further processing by prod-
ucts like the RDT-CW. The EO-ALERT project proposes

to move EO data processing elements from the ground
segment to the satellite and execute image processing
and machine learning algorithms onboard (O/B). Relying
solely on image data acquired O/B, processing can be
started as soon as a cloud cell is visible in the acquired
image (Figure 1). By applying AI-based image process-
ing, storms can thus be detected before they are seen in
radar data on ground. Alerts for detected convective cells
are then sent to ground on-the-fly before the actual raw
data is transmitted. The alert information can trigger and
complement further analysis done on ground by other
existing solutions.

Figure 1: Data availability for forecasting and nowcasting at
different stages of storm evolution.

The proposed novel satellite processing chain opti-
mises the classical EO processing chain in a number
of critical aspects and has implications on several tech-
nological areas, including high-speed avionics, Flight
Segment/Ground Segment (FS/GS) communications, O/B
compression and data handling and O/B image genera-
tion and processing (Figure 2). In contrast to the classical
EO data processing chain this approach does not rely
on the transfer of raw data to ground and thus greatly
reduces the amount of data transmitted. Together with
the EO-ALERT onboard data compression and high data
rate communication links, this allows for very low la-
tency product delivery. EO-ALERT has a goal latency of
less than 1 min and requires a maximum latency below 5
min for both Synthetic Aperture Radar (SAR) and opti-
cal image products, including those from LEO and GEO
satellites.

The Hardware (HW) design is implemented as a hy-
brid solution that uses both Commercial Off-The-Shelf
(COTS) and space-qualified components [6, 7]. COTS
are used in conjunction with mitigation techniques to
increase robustness of the design against radiation ef-
fects, whereas space-qualified components are used for
the critical functions. This choice allows keeping weight,
volume and cost of the Payload Data Processing Unit
(PDPU) low with respect to an all space-grade design and
it takes advantage of the state-of-the-art technology and
processing power of the latest COTS components. Pro-
cessing boards are based on the Xilinx Zynq US+ ZU19EG
MPSoC featuring a quad core ARM processor and a large
Field-Programmable Gate Array (FPGA).



Figure 2: EO-ALERT’s next generation satellite processing
chain for rapid civil alerts modifies the classical data chain
(black, top) based on raw data compression and transfer, by
new innovative key elements and data flows (red, bottom).

The proposed processing chain is verified and evalu-
ated for the Ship detection and Extreme Weather scenario,
using relevant EO sensor data. The Extreme Weather sce-
nario will be described in detail in the following.

4. Convective storm detection

4.1. Data
A key prerequisite for the development of AI/ML algo-
rithms for the O/B processing chain is the availability of
data sets representative of the data to be used onboard
(generally uncompressed L0, L1). Optical image genera-
tion from raw data is performed by the O/B processing
chain and tested for the ship scenario. The EO-ALERT
dataset for the extreme weather (EW) scenario has been
created from MSG High Rate SEVIRI Level 1.5 data, which
is obtained from the EUMETSAT Data Centre and cor-
responds to 164 days in 62 periods of one or more con-
secutive days between 2016 and 2018. Images have size
1192pxl x 639pxl with a ground sampling distance of 3
km/px, covering a total area of 6.855.192 km² contain-
ing the European continent. Of the 12 available SEVIRI

channels, 5 are used for the generation of the data set:
Ch05 (WV 6.2µm), Ch06 (WV 7.3µm), Ch07 (IR Window
channel 8.7µm), Ch09 (IR10.8µm), Ch10 (IR12.0µm).

Figure 3: Ground Truth data generation from OPERA radar
data.

Ground truth data for training and testing of the ML
algorithm is generated from OPERA weather radar net-
work maximum reflectivity data [8]. First, radar images
corresponding to cloud-free days are used for the cre-
ation of a clutter map. Radar echoes with an intensity
less than that locally defined by the clutter map are clas-
sified as spurious echoes caused by EM interferences and
removed from radar images. The algorithm described in
Steiner et al. [9] is then applied to detect mature con-
vective cells in each radar image. After re-projecting
OPERA images to the MSG grid, convective labels are
assigned based on the spatial overlap between OPERA
convective cells and EO-ALERT candidate cells detected
in SEVIRI IR10.8µm images (see 4.2). Only cells within
the OPERA radar network’s coverage (Figure 3 top left)
and a latitude below 55∘0′N are included. The ground
truth Phase of Life (PoL; Convective Initiation, Mature,
Decaying) is assigned to each candidate cell based on the
temporal evolution of radar reflectivity, as illustrated in
Figure 4: A cell which is convective in the radar image
stays ‘Mature’ until radar reflectivity decreases below
a threshold (𝑡ℎ𝑑𝑒𝑐 = 35𝑑𝐵𝑍), after which it is consid-
ered ‘Decaying’. Analogously, going backward in time,
the PoL changes from ‘Mature’ to ‘Convection Initiation’
when passing below a fixed threshold (𝑡ℎ𝑝𝑟𝑒 = 35𝑑𝐵𝑍).
Cells which are not discriminated as convective in the
radar image at any step of their evolution are considered
non-convective, while cells at any PoL are considered
convective.

The data set is split into train, validation and test set.
A summary of the number of dates, images, detected



Figure 4: Classification schemes: Labels assigned for Phase
of Life (CI=1, Mature=2, Decaying=3) and Convective Dis-
crimination (Convective=1). Non-convective=0 in both cases.

Table 1
EO-ALERT EW data set information

Set Days Images Cells % Conv

Total 164 8358 2289822 26

Train 123 6369 1719448 25
Val. 17 910 275859 30
Test 24 1079 294515 27

candidate cells and the ratio of convective cells is shown
in Table 1.

4.2. Image processing algorithm
Image processing and cell discrimination follows a multi-
step algorithmic approach (Figure 5) inspired by the RDT-
CW product. The processing steps are:

1) Candidate Cell Extraction: Radiances from SE-
VIRI IR10.8µm images are converted to brightness tem-
perature images. Temperature minima with a temper-
ature difference between cell top and cell base greater
than 6∘𝐶 are detected, the cell boundaries corresponding
to each minimum are found, and the candidate mask is
created.

2) Candidate Cell Tracking: In order to gather in-
formation on the evolution and movement of cells, their
trajectory is followed over subsequent acquisition times.
Cells are matched to those found in the previous image
based on spatial overlap in subsequent candidate maps.
Ambiguities (splitting, merging of cells) as well as the
disappearance and formation of cells are handled.

3) Candidate Cell Discrimination: Each cell is char-
acterized by its corresponding brightness temperatures
in 5 infrared channels in SEVIRI imagery and their re-
spective evolution over time, and cell features for ML
classification are created from historical information
from up to 4 past and the present acquisition times
(𝑇𝐻 = −60,−45,−30,−15, 0 min), combining:

• Cell area (in the candidate mask)
• Statistics on the Brightness Temperatures (BT) in

5 Channels (Minimum, Maximum, Mean)

• Intra-channel differences between different
acquisition times (e.g., min(𝐵𝑇 𝐼𝑅10.8

0𝑚𝑖𝑛 ) −
min(𝐵𝑇 𝐼𝑅10.8

−15𝑚𝑖𝑛))
• Inter-channel differences for same acquisition

times (e.g., min(𝐵𝑇 𝐼𝑅10.8
0𝑚𝑖𝑛 )−min(𝐵𝑇𝑊𝑉 6.2

0𝑚𝑖𝑛 )).

Depending on the historical information available for a
cell, this results in a total number of 47, 108, 184, 275 or
381 features.

Gradient Boosting Decision Tree (GBDT) ensemble
classifiers are used for discrimination of convective/non-
convective cells, Phase-of-Life-classification and Over-
shooting Top detection. For convective discrimination
and PoL, separate GBDT models were trained for each
configuration of available historical information. PoL-
classification is performed using a one-vs-rest scheme
only on those cells which have previously been discrimi-
nated as ‘convective’.

4) Alert Generation: Finally, alerts are created for
cells which have been classified as convective. These
alert messages, which contain the comprehensive charac-
terization details of the detected storms, are transferred
to ground where they can then be evaluated by the end-
user.

Figure 5: Extreme weather processing steps: Top left: SEVIRI
IR10.8µm image. Top right: Candidate mask. Bottom left:
Cell tracking. Bottom right: Cell discrimination.

4.3. Results
For performance and latency evaluation the extreme
weather algorithm was executed on the EO-ALERT EW
test set, setting a 366pxl x 366pxl region of interest
(ROI) covering approximately 1, 2 x 106𝑘𝑚2 centered
on the Iberian Peninsula. Results are presented for
convective/non-convective discrimination.



Table 2
Extreme weather convective discrimination results on SEVIRI-
OPERA test set.

History (min) POD FAR F1

0, -15, -30, -45, -60 0.82 0.14 0.84
0, -15, -30, -45 0.70 0.21 0.74

0, -15, -30 0.66 0.23 0.71
0, -15 0.59 0.25 0.66

0 0.47 0.29 0.57

Combined 0.68 0.20 0.73

RDT v2018 (OPERA) 0.43 0.28 0.54
RDT v2011 0.74 0.34 -

Table 3
Elapsed processing time for optical IP on the target hardware

Time (s)

Preprocessing 1.9s
Candidate Extraction 1.1s
Tracking 0.4s
Discrimination 0.9s

Total Elapsed Time 4.3s

Detection performance. Results in terms of Proba-
bility of Detection (POD), False Alarm Ratio (FAR) and
F1-score are shown in Table 2. Performance improves
(i.e., POD increases, FAR decreases) with each additional
time step available, reaching POD=0.82 and FAR=0.14 for
cells with fully available history. When combining the re-
sults for all history configurations (POD=0.68, FAR=0.20),
performance is still compatible with the operational RDT
product. The result for “RDT v2018 (OPERA)” is ob-
tained by validating RDT convective cells versus the
OPERA-derived ground truth. This is not the data RDT-
CW is originally calibrated on. Due to these differences
in the ground truth data and the classification strategy
[5, 10, 11] the comparison should be considered as qualita-
tive. Results shown for the RDT v2011 correspond to the
official RDT validation campaign for the verification set-
ting “Moderate Lightning Hypothesis, Statistical element
trajectory” [11]. This setting is similar but not identical
to the EO-ALERT “Discrimination” scheme, and values
are also reported for purpose of qualitative comparison.
The results suggest that for convective discrimination,
the EO-ALERT EW prototype product is compatible and
can compete with the RDT-CW operational product.

Latencies. Processing is performed in a dual-board
scheme on only one processing board. Table 3 shows the
time elapsed for candidate cell extraction, tracking and
discrimination. Assuming additional transfer delays and
management tasks, it is possible to have the products
ready to be sent to ground in 6 seconds.

Table 4
Extreme weather Overshooting Top detection

POD FAR F1

0.501 0.448 0.525

5. Overshooting Top Detection

5.1. Data
The dataset used for overshooting top (OT) classification
is the one described in [12]. This dataset consists of two
days, 20th June 2013 and 29th July 2013. The first date
contains 1365, the second 446 OTs.

The dataset has been divided into 3 sets for training,
validation and testing. Training is performed over the
data from the entire June 20th, validation over the data
from July 29th before 16:10 and testing over the data from
July 29th after 16:10.

5.2. Algorithm
Overshooting Top detection is based on the work by
Kim et al. [13]. Feature extraction is performed over the
IR Ch09 (10.8µm) from the candidate regions (extracted
from step 3 of the convective storm detection algorithm
presented in Section 4.2) where within a region of pixels
a standard deviation filter and a center pixel difference
filter are applied. With these two filters and a subtraction
between Ch05 (6.2µm) and Ch09 (10.8µm), Ch07 (8.7µm)
and Ch09 (10.8µm), and Ch10 (12.0µm) and Ch09 (10.8µm),
classification is carried out using a GBDT classifier. A
non-maximum suppression algorithm is applied to group
close regions where the same OT has been detected.

5.3. Results
OT detection is illustrated in Figure 6. In the left picture
the ground truth of [12] can be found, and in the right
one, the prediction from the EO-ALERT OT detection
algorithm. True positives are represented in green, false
positives in red and false negatives in orange.

Figure 6: OT detection algorithm results.

Detection performance results from areas containing
an OT which have been obtained over all detected candi-
date cells are shown in Table 4. The complete discrimi-



nation result, including convection and OT detection, is
illustrated in Figure 7.

Figure 7: Illustration of final detection result. Green: Non-
convective cells. Red: Convective cells. Green boxes: Over-
shooting Top; green lines link the OT to the center of the cell.
Arrows: Direction of cell movement.

6. Conclusions
This paper provides a detailed overview of the EO-ALERT
EW Scenario as a realistic application example of the
EO-ALERT data processing and communication pipeline,
which provides low-latency nowcasting of convective
storms by performing machine learning-based EO satel-
lite image analysis directly O/B the satellite. The modu-
lar storm detection system consisting of candidate con-
vective cell extraction, tracking and ML-based discrim-
ination of convective storms and overshooting tops ob-
tains promising qualitative (comparison with the RDT-
CW product) and quantitative (validation against OPERA
radar data and CWG OT database) results. Results from
hardware testing show that the demanding objective of
providing EO products with a latency below 5 min from
data acquisition to product delivery, including data han-
dling, processing and transmission to ground, can be
achieved and global EO product latencies below 1 min
are feasible in realistic scenarios.
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