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Abstract
In this paper, the workflow of the machine learning model development for the space weather forecast in the Earth’s
ionosphere is presented, as an ongoing project. The problem of space weather forecasting using traditional approaches
is discussed, as well as the advantages of using machine learning instead. In addition, the methods and approaches for
building a machine learning model are presented, together with challenges related to data and algorithms. The machine
learning workflow for the problem of space weather forecast is discussed from problem formulation and data acquisition,
data preparation and feature engineering, learning algorithms, to model training, evaluation and deployment. This paper
provides an overview of a machine learning project for space weather forecasting and discusses challenges and open issues.
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1. Introduction
Space weather describes conditions caused by the Sun
in the near-Earth space, i.e. magnetosphere, ionosphere
and thermosphere that can influence the performance
and reliability of space-borne and ground-based techno-
logical systems. It can produce major disturbances of
Earth’s magnetosphere known as geomagnetic storms.
Numerous effects of strong space weather on satellites,
power grids, aviation, communication and navigation
systems have already been observed and documented
with considerable economic losses [1, 2, 3, 4]. As soci-
ety increasingly relies on the services that these infras-
tructures provide, there is an urgent need to develop
advanced forecasting capabilities in order to be able to
mitigate a catastrophic failure of space- and ground-based
technological systems associated with this type of hazard
[5]. The impact of space weather on the Earth’s iono-
sphere and GNSS-based (Global Navigation Positioning
System) applications can be modelled by quantifying
the Vertical Total Electron Content (VTEC) within the
ionosphere. The ionosphere represents the ionized re-
gion of the upper atmosphere (from about 50 km up to
1,000 km or more from the Earth’s surface) that contains
free electrons and ions produced by solar radiation [6].
Free electrons in the ionosphere affect the propagation
of a microwave signal and induce a delay or advance
of the signal. VTEC is proportional to the relative iono-
spheric delay of GNSS signals, measured in TEC units
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(TECU), where 1 TECU = 1016 electrons/m2 [7]. During
severe space weather conditions, the variability in the
ionosphere can increase drastically in time and space.
These sudden intense variabilities are often difficult to
model with traditional mathematical approaches and to
properly minimize in positioning solutions leading to
degradation of positioning and navigation performance
[8, 9, 10]. Besides the space weather disturbances, the
Earth’s ionosphere exhibits considerable geographical
variations, which can be divided into high-latitude (be-
yond ±60° geomagnetic latitude), low-latitude (within
±20° of each side of the geomagnetic equator) and mid-
latitude zones (between the boundaries of the other two
zones) [11]. Other variations in the Earth’s ionosphere,
important to mention, depend on local time (daily vari-
ations), longitude, season and 11-year sunspot cycle. In
order to model and predict the space weather, a complex
chain of physical processes between the Sun, the inter-
planetary space, the Earth’s magnetic field and the iono-
sphere have to be taken into account. However, we have
limited understanding of these coupled processes and
often do not know the physical and/or mathematical re-
lationships to describe them properly. On the other hand,
there are numerous data from satellites and observatories
that monitor space weather processes between the Sun
and the Earth. Artificial Intelligence and Machine Learn-
ing (ML) offer a new possibility of learning from data,
in contrast to traditional programming, where programs
with detailed rules need to be written that explicitly in-
struct a computer how to execute steps (Figure 1). In
the case of space weather forecast, the traditional pro-
gramming approach would be to analyze space weather
properties, as well as typical and space weather-induced
variations in the ionosphere to detect patterns, then write
a forecasting algorithm consisting of list of rules for each
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of the noticed patterns, test the program and iterate these
steps until the model performance is satisfactory. How-
ever, the problem of space weather is highly complex and
our understanding of the underlying processes of space
weather is still limited to be able to properly describe
the physical and/or mathematical relations using tradi-
tional methods. On the other hand, the ML approach
offers the possibility of automatically learning rules from
the data that map inputs to outputs. The approach of
learning directly from the data can lead to discovering
the hidden knowledge of relationships within data and
to deepening our physical understanding [12]. These can
be achieved, for instance, by estimating the importance
of the input variables to the output(s) in a ML model, or
by finding structures and relationships within the data
through unsupervised learning etc. Furthermore, ML
can be used to estimate the nonlinear functions that de-
scribe the underlying space weather processes [12] based
on the data provided. Recently, there has been an in-
creasing interest in the ML applications for forecasting
space weather in the ionosphere using Deep Learning
(DL) methods such as Feed-forward Neural Network [13],
Autoregressive Neural Network [14], Long Short-Term
Memory (LSTM) [15]. Some studies used other ML algo-
rithms like Extreme Gradient Boosting (XGBoost) [16]
and Gaussian Process Regression [17]. The DL models
proved to be more accurate than traditional modelling
approaches such as AutoRegressive Integrated Moving
Average (ARIMA) and Empirical Orthogonal Functions
(EOF) [15, 13].

2. Machine learning model
development

This section presents learning algorithms, data chal-
lenges, planned methodologies and approaches to be used
in this study. The ML model development workflow for
space weather forecast can be summarized into four main
phases (Figure 2):

1. Problem formulation and data acquisition
2. Data exploration and feature engineering
3. Model training and cross-validation
4. Model final evaluation (test phase) and deploy-

ment of the model.

2.1. Problem formulation and data
acquisition

Tim Mitchell [18] proposed a definition of a well-posed
ML problem: "A computer program is said to learn from
experience E with respect to task T and a performance
measure P, if its performance on T, as measured by
P improves with experience E". In the context of this

Figure 1: Comparison of the traditional programming ap-
proach and ML. Top: Traditional programming approach,
where the computer is supplied with input data and an ex-
plicitly specified extensive list of rules. Bottom: ML approach,
where in the training phase, the computer is supplied with
prepared examples of inputs and outputs (training data) and
rules are learned from the data. In the next step of the model
prediction (test data and model deployment phase), new in-
put data (unseen during the training phase) is fed into the
ML model that contains already learned ruled. Results are
predicted values, in this case, the forecast of the VTEC in the
ionosphere.

study, the ML problem is defined with the task of
VTEC forecast, where the experiences are provided in
a form of training data and a performance measure
is chosen as root mean square error (RMSE) and
correlation coefficient. The task of predicting space
weather manifestation in the ionosphere is defined via
forecasting VTEC in the ionosphere. The problem is
formulated in such a way that it can be solved with
supervised learning. Supervised learning can be seen
as a function approximation or predictive learning
problem [19]. Using a training sample of the input
(predictors, features or the independent variables) and
output (response or the dependent variable) vector, the
goal is to obtain an approximation of the function that
optimally describes the relationship between input and
output. This is achieved by minimizing a certain loss
function over the joint distribution of all values. For this
study, data of solar activity, solar wind, geomagnetic
field are collected from NASA/GSFC through OMNI-
Web (https://omniweb.gsfc.nasa.gov/form/dx1.html)
[20]. The VTEC values are extracted for high-
, mid- and low-latitude points from the GIM
(Global Ionosphere Map) provided by the CODE



Figure 2: Machine learning model development workflow for
the space weather forecast as an iterative process. It starts
with the initial data selection, feature extraction and the se-
lection of learning algorithm for model training. Based on the
error diagnostic, (hyper-)parameters of the learning algorithm
are modified. Since the ML model “learns” from the data, they
are modified iteratively until the most suitable features are
found that can provide optimal cross-validation results. When
the process of the feature selection, algorithm selection and
model training phase is complete, the model can be evaluated
on previously unseen test data.

(https://cddis.nasa.gov/archive/gnss/products/ionex)
[21].

2.2. Data exploration and feature
engineering

The goal of this step is to identify the relevant predictors
and prepare a dataset (preprocessed and cleaned up) that
will be useful for the learning task. It is crucial that the
training set represents the ultimate task of the model,
contains multiple cases and accurately represents the op-
eration data that may be encountered in practice. Feature
engineering [22] refers to the process of transforming
raw data into suitable features that can better represent
the underlying problem, here space weather forecast. It
includes various steps such as feature selection, feature
extraction, feature scaling, feature transformation etc.
However, it can be a challengeable task to select repre-
sentative dataset and features that can describe all the
cases that can occur in practice. This is an iterative pro-
cess, where an initial dataset is used in the first attempt
and according to the performance of the model, the data
are iteratively improved (Figure 2). Events of the highest
interest are geomagnetic storms. The occurrence of space
weather events was analyzed during solar cycle 24 (from
2009 to 2019), using the geomagnetic activity index Kp

Figure 3: Overview of the geomagnetic activity for the solar
cycle 24 (2009 – 2019), based on the geomagnetic index Kp. Top:
number of all 3-hour Kp data, bottom: number of 3-hour Kp
5 data that indicate a geomagnetic storm and the maximum
values of the sunspot number (R) and the solar radio flux F10.7
as indicators of solar activity.

(Figure 3).
As can be seen, the state in the geomagnetic field is

quiet to moderate the most of the time. Most of the storm
events occurred in the years after the maximum of the
solar cycle (in April 2014). Thus, the initial periods for
training and cross-validation are selected to be 2015 and
2016, while the test year is 2017. The selection of useful
features for the model is currently in progress. Explana-
tory data analysis is applied to understand the data by
inspecting its distribution, statistical properties, relation-
ships, correlations etc. Figure 4 shows the distribution
of VTEC from the training data for three ionospheric
points corresponding to the high-, mid- and low-latitude
ionosphere. The distribution peak is around 10 TECU
for all three studied regions, but the distribution extends
further into the higher values than into the lower values.

Based on the result of the analysis, an important aspect
to consider is how to deal with an imbalanced dataset,
where cases of space weather appear rarely compared to
the quiet period. However, these cases are important as
they can produce irregular variations in the ionosphere.
An imbalance case can present a difficulty for a learning
algorithm, which can lead to a biased model towards the
majority of cases [23]. Possible solutions of dealing with
imbalance cases may include analyses of the individual



Figure 4: Overview of the distribution of the VTEC training
data (2015 – 2016). Gaussian kernel density plot, black curve
corresponds to the normal distribution. Top left: VTEC 10°E
70°N, top right: VTEC 10°E 40°N, bottom: VTEC 10°E 10°N.

properties of rare examples in order to distinguish be-
tween minority samples and noisy samples, selection of
an appropriate learning algorithms and optimal features
to enhance learning of rare VTEC signatures, training on
the entire and under-sampled datasets, as well as devel-
opment of cost-sensitive solutions that are able to adapt
the penalty with respect to the degree of importance
assigned to the minority case.

Another issue with the data is the different temporal
and spatial resolution. The temporal resolution of the
data covers daily samples (for the solar activity indices
R and F10.7), 3-hour data for the geomagnetic index Kp,
and hourly to 1-minute samples for other data describing
space weather and climate. Data describing solar and ge-
omagnetic activity are given as a function of time, while
ionosphere VTEC data are temporally and spatially de-
pendent. VTEC data from the GIM CODE are provided
with a temporal resolution of 2 hours until the year 2015
and 1 hour onwards, while spatial sampling is 2.5° x 5°
in latitude and longitude. It is important to take into
account that GNSS stations used to estimate the GIM are
unevenly distributed globally with the current lack of
GNSS ground receivers, particularly over the oceans and
in the southern hemisphere, among other regions, where
most part of the provided VTEC information is based
on interpolation, which may result in lower accuracy in
these regions.

2.3. Model training
The next step in the ML model development for VTEC
forecast is to decide which algorithms, hyperparameters
(parameters of learning algorithm) and model architec-
ture should be used. This is done by training an initial
model and performing model diagnostic through error

analysis. This approach provides insights into the models’
performance and gives guidance on how to improve the
model. Time series cross-validation [17] is used to evalu-
ate model performance preserving the temporal structure
of time series, and to diagnose the bias/variance prob-
lem. Overfitting (high variance) lead to very low training
errors, but high validation and test errors, while underfit-
ting (high bias) leads to high errors in all the datasets. The
aim of this step is to identify the right complexity for a
model in order to avoid both underfitting and overfitting.
The complexity of the model is changed by altering vari-
ous hyperparameters of the learning algorithm, increas-
ing/decreasing regularization, getting more training data,
adding or removing features, etc. [18]. Which step should
be taken depends on what we want to fix: bias (to increase
complexity) or variance (to decrease complexity) of the
model. One way to diagnose this problem is to plot the
learning curves for training and cross-validation datasets.
Another important issues to address are interpretability
and explanability. ML models based on ensemble learn-
ing such as Random forest [24] and Boosting [25] provide
a possibility to inspect which predictors have been used
most often by a learning algorithm. This information can
be useful in interpreting the model and understanding
the problem of space weather forecasting. In addition, en-
semble learning is recognized as method that can provide
a significant improvement in robustness to skewed dis-
tribution and good predictive power [23]. On the other
hand, Artificial Neural Networks (ANN), a core of DL
and state-of-the art techniques for many applications
nowadays, are often difficult to explain. They require
many parameters, which consequently needs careful de-
sign in order to not overfit the data [26]. Modelling of
spatial-temporal dependencies is another important task
in space weather forecasting. DL provides opportunity to
automatically extract features in the spatial domain (e.g.
Convolutional Neural Networks) and in the temporal do-
main (e.g. Recurrent Neural Networks), therefore some
researchers propose their combination to learn spatial-
temporal features ([27, 28, 29]. Other approaches such
as decomposing time series into components that cap-
ture trend and seasonality [30] and detrending the time
series [31] may be a suitable adaptation for other ML /
DL algorithms. In Figure 5, time information consisting
of the hour of day and day of year are used as inputs
to be able to model daily and seasonal VTEC variations.
The next important issue to focus on is estimation of the
uncertainty associated with predictions. Uncertainty can
be quantified, for instance, by learning the probability
distribution over weights in the ANN [32].



Figure 5: RMSE (left) and correlation coefficients (right) for
1-day forecast for quiet (Kp<3), moderate (3Kp<5) and storm
(Kp5) periods during test year 2017 for Decision Tree (DT), Ran-
dom Forest (RF), AdaBoost (AB), Optimized Gradient Boosting
(XGBoost) and Voting Regressor (combines RF, AB and XG-
Boost). Top: VTEC 10°E 70°N, middle: VTEC 10°E 40°N, bottom:
VTEC 10°E 10°N.

2.4. Model final evaluation and model
deployment

The generalization error is estimated using a test dataset
to show how accurately the model can predict outcome
values for previously unseen data. Figure 5 shows the
experimental results for the 24-hour forecast with the de-
cision tree and ensemble learning for the quite, moderate
and storm periods of the year 2017, based on data of solar
activity, solar wind, geomagnetic field, time information
(hour of day and day of year) and ionosphere VTEC [33].
The RMSE for the storm period is up to two times higher
than for the quiet period, while the correlation coefficient
decreases as the Kp index increases. Ensemble learning
methods achieve better accuracy than a single decision
tree, where combining multiple ensembles gives the most
optimal results.

Further exploration of the data and algorithms will be
carried out to improve learning during the storm and to
address the questions raised in Section 2.2 and Section
2.3. The ultimate goal is to build a model that generalizes
the problem well and fits the data reasonably well. In
the model deployment phase (application of the model in
practice) important components will be monitoring and
maintaining the model by tracking various metrics.

3. Conclusion
Many complex physical problems, such as space weather
forecasting, have challenges to be predicted accurately
and over a longer term. One of the great challenges for
space weather are the variable dynamical processes be-
tween the Sun and the Earth for which there is still not
enough understanding of all underlying processes and
relationships. Accurate forecasting and early-warning
systems are urgently needed for today’s society, which
relies on space- and ground-based technological infras-
tructures, which are particularly vulnerable to extreme
space weather events and not adequately protected. The
ML approach has the possibility to find nonlinear func-
tions to approximate space weather processes and fore-
cast their manifestation in the Earth’s magnetic field and
in the ionosphere. This paper introduces the workflow
of ML model development for the forecasting of space
weather in the ionosphere. The study is still in progress.
The models are data-driven, gaining knowledge from
data, which describe solar activity, solar wind speed, ge-
omagnetic field and the ionosphere. To get the most out
of ML, it is required to find and prepare relevant data
and useful features that can enhance learning, especially
during space weather events. When facing an imbalance
dataset, an intelligent system must be developed that is
able to overcome such bias. In addition, the uncertainty
of the weather forecast should be provided. It is also
important to understand and be able to explain what
the model has learned and whether it is biased in any
way. Inspecting what the ML model has learned can also
help us to discover hidden patterns and to gain a better
understanding of the problem.
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