
FORCE on Nextflow: Scalable Analysis of Earth Observation
Data on Commodity Clusters
Fabian Lehmann1, David Frantz1, Sören Becker2, Ulf Leser1 and Patrick Hostert1

1Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
2Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Abstract
Modern Earth Observation (EO) often analyses hundreds of gigabytes of data from thousands of satellite images. This data
usually is processed with hand-made scripts combining several tools implementing the various steps within such an analysis.
A fair amount of geographers’ work goes into optimization, tuning, and parallelization in such a setting. Development
becomes even more complicated when compute clusters become necessary, introducing issues like scheduling, remote data
access, and generally a greatly increased infrastructure complexity. Furthermore, tailor-made systems are often optimized to
one specific system and cannot easily be adapted to other infrastructures. Data Analysis Workflow engines promise to relieve
the workflow developer from finding custom solutions to these issues and thereby improve scalability, reproducibility, and
reusability of workflows while reducing development cost at the infrastructure side. On the other hand, they require the
workflow to be programmed in a particular language, to obey certain principles of distributed processing, and to properly
configure and tune the execution stack, which puts additional burden to data scientists.

Here, we study this trade-off using a concrete EO workflow for long-term vegetation dynamics in the Mediterranean. The
original workflow was programmed with FORCE, a custom-made framework for assembling and executing EO workflows on
stand-alone servers. We ported it to the scientific workflow system Nextflow, which is capable of seamlessly orchestrating
workflows over a large variety of infrastructures. We discuss the pitfalls we faced while porting the workflow, advantages and
disadvantages of such an approach, and compare in detail the efficiency of both implementations on various infrastructures.
We quantify the overhead in execution time incurred by the workflow engine and give hints on how to deal with heterogeneous
tasks. Overall, our Nextflow implementation shows promising behavior in terms of reusability and scalability, though this
does not apply to all workflow stages.

Keywords
FORCE, Nextflow, Workflow porting, Scaleability, Reproducibility, Earth observation, Landsat

1. Introduction
Developing, modifying, and executing workflows is the
daily business of many EO scientists. Those workflows
typically deal with large amounts of input data passed
through a sequence of different tools transforming and
extracting valuable insights from the data. Due to the
sheer amount of data and the complexity of some of the
processing steps, EO workflows are rather resource hun-
gry; at the same time, the tools involved exhibit very
heterogeneous requirements in key factors such as mem-
ory, I/O performance, or compute power.

Building infrastructures for designing and executing
such workflows is demanding. It requires a deep un-
derstanding of parallelization strategies, tool synchro-
nization, scheduling, and data transport mechanisms.

CDCEO 2021: 1st Workshop on Complex Data Challenges in Earth
Observation, November 1, 2021, Virtual Event, QLD, Australia.
" fabian.lehmann@informatik.hu-berlin.de (F. Lehmann);
david.frantz@uni-trier.de (D. Frantz); soeren.becker@tu-berlin.de
(S. Becker); leser@informatik.hu-berlin.de (U. Leser);
patrick.hostert@geo.hu-berlin.de (P. Hostert)
� 0000-0003-0520-0792 (F. Lehmann); 0000-0002-9292-3931
(D. Frantz); 0000-0001-6487-1268 (S. Becker); 0000-0003-2166-9582
(U. Leser); 0000-0002-5730-5484 (P. Hostert)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Things get even more complex when a shared-nothing
distributed system should be used. Although custom-
made systems are still very popular, they face the addi-
tional challenge that they are often optimized for a spe-
cific environment and accordingly not or only with large
effort portable to other systems. This impedes reusability
and reproducibility [1, 2].

Data Analysis Workflow (DAW) engines like Next-
flow [3], Airflow [4], or Pegasus [5] promise to reduce
the complexity by providing automatic parallelization,
distribution, and scalability over large clusters, improved
reproducibility and reusability, and generally reduced
development cost. However, they require a steep learning
curve, which might look rather unattractive for a domain
scientist interested in analyzing only a concrete data set.
In this paper, we study the trade-off between the effort
necessary to port an EO workflow from a custom solution
to a DAW engine and the benefits one can harvest once
the port is done. Thereby, we do not change the software
used. We report typical problems one faces in such a
transformation and analyze the behavior of the different
approaches on different infrastructures in detail.

Although the choice of infrastructure for running
DAWs over large scientific data sets is a decision with
long-lasting impact, there are comparably few works that

mailto:fabian.lehmann@informatik.hu-berlin.de
mailto:david.frantz@uni-trier.de
mailto:soeren.becker@tu-berlin.de
mailto:leser@informatik.hu-berlin.de
mailto:patrick.hostert@geo.hu-berlin.de
https://orcid.org/0000-0003-0520-0792
https://orcid.org/0000-0002-9292-3931
https://orcid.org/0000-0001-6487-1268
https://orcid.org/0000-0003-2166-9582
https://orcid.org/0000-0002-5730-5484
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

provide guidance and benchmarks [2, 6, 7, 8, 9]. Such
comparisons also quickly become outdated as infrastruc-
tures and systems evolve. Here, we want to contribute to
closing this gap for the particular case of EO workflows.

Our paper is structured as follows: Section 2 presents
FORCE and the original workflow. Section 3 describes
Nextflow, and Section 4 discusses important design de-
cisions that had to be taken for porting the workflow.
In Section 5, we outline our experiments and Section 6
presents a quantitative evaluation of both approaches.
Our findings are discussed in Section 7. The original and
the ported workflow can be found at GitHub1.

2. FORCE and the EO workflow
FORCE2 (Framework for Operational Radiometric Correc-
tion for Environmental monitoring [10]) is an all-in-one
solution for the analysis of large volumes of medium-
resolution EO data. FORCE was initially developed as a
means to reduce the entry barrier of large-scale EO analy-
ses by providing a rich and integrated toolset that may be
linked with operational monitoring systems [11]. FORCE
consists of various tools that can be assembled into com-
plex EO workflows, including methods for data download,
image preprocessing, data aggregation/reduction, and
analyses techniques based on machine learning or time
series analysis. FORCE workflows are configured via pa-
rameter files to define processing options, input/output
locations, parallelization parameters, etc.

Long-term vegetation dynamics on Crete
In this paper, we focus on a specific workflow to re-assess
the widespread rangeland degradation in the Mediter-
ranean as reported 20 years ago with limited input
data [12, 13]. With the unlimited data access of today,
our analysis shows that total vegetation on the island
of Crete, Greece, did rather increase. Yet, we still can-
not dispel that vegetation degradation occurred as most
increase in vegetation cover was found in the woody
vegetation, which potentially represents a degradation
process related to the increase of impalatable species.

Data: For the analysis in this paper, we used 304GB of
input data covering the island of Crete. We leveraged
multispectral data from the Landsat mission, which ob-
serves the land surface at 30m spatial resolution each
8–16 days. In total, 2,794 images were retrieved3 (300GB).
We downloaded all available L1TP/T1 data from Landsat
4, 5, and 7 for the years 1984 – 2006 with a cloud coverage
of less than 70%.

1https://github.com/CRC-FONDA/FORCE2NXF-Rangeland
2https://github.com/davidfrantz/force
3https : / / console.cloud.google.com / storage / browser / gcp -

public-data-landsat

generateAnalysis-
Mask generateTile-

AllowList

Preprocess

processHigherLevel

processPyramid

processMosaic

P
re

p
ro

ce
ss

in
g

H
ig

h
er

 L
ev

el

P
ro

ce
ss

in
g

P
o

st
p

ro
ce

ss
in

g

(a) FORCE workflow DAG

generate-
AnalysisMask (1)

generateTile-
AllowList (1)

Preprocess
(2,794)

mergeBOA (88) mergeQAI (88)

processHigherLevel
(28)

processPyramid
(280)

processMosaic
(10)

checkResults (1)

Stage: Preprocess

Stage: Higher level processing

Stage: Merge

Stage: Prepare

(b) NextFlow workflow DAG

Figure 1: DAGs: Boxes represent processes and arrows their
execution order (a) or mutual dependencies (b). Solid arrows
mean that all parent tasks/the parent process must finish
completely before dependent task can start, whereas dashed
arrows indicate that a dependent task can start as soon as
its parent task has been processed. Solid boxed mark CPU-,
dashed boxes IO-bound tasks. Numbers in brackets represent
the number of executions.

The 1-arcsecond SRTM Digital Elevation Model (DEM:
1GB) was used for preprocessing. Gaps were filled
using the ASTER DEM. A pre-compiled water vapor
database [14, 15] was used for correcting gaseous ab-
sorption during atmospheric correction (3GB).

Original workflow
The original workflow consists of multiple sequential
processing stages (Figure 1a). Processing within stages
is parallelized. All tools involved are executed in Docker
containers orchestrated through a Bash script.

1) Preprocessing. All input images are converted to
Level 2 Analysis Ready Data (ARD [10]) with corrections
for atmospheric, topographic, adjacency, and BRDF ef-
fects, as well as cloud/shadow detection [16, 17, 18, 19,
20, 21]. Corrected images are reprojected to a shared pro-
jection (EPSG:3035) and split into image chips according
to a regular 30km x 30km reference grid, thus forming
a tiled data cube structure. FORCE processes multiple
input images in parallel.

2) Higher Level Processing. For each ARD image,
fractional vegetation cover is derived [22, 23], followed
by noise-based [24] outlier detection and inlier restora-
tion, as well as temporal interpolation [25]. Phenolog-
ical metrics are acquired [26] to decompose the time
series into woody and herbaceous vegetation cover, fol-
lowed by a change and trend analysis [27]. As higher
level processing is often I/O-bound and memory limi-
tations might occur, FORCE sequentially processes the
tiles with a nested multithreading parallelization strat-
egy (OpenMP), wherein image blocks are processed in

https://github.com/CRC-FONDA/FORCE2NXF-Rangeland
https://github.com/davidfrantz/force
https://console.cloud.google.com/storage/browser/gcp-public-data-landsat
https://console.cloud.google.com/storage/browser/gcp-public-data-landsat

sequential order with three threading pools taking care
of input, compute, and output, respectively.

3) Postprocessing. To facilitate and accelerate visual
interaction, the last stage of the workflow generates im-
age pyramids and virtual mosaics for each output image.

The workflow produces in total 29GB of output,
which includes images of interpolated time series, polar-
transformed time series, time series of phenological met-
rics, change and trend parameter images - along with
corresponding image pyramids and virtual mosaics.

After running the workflow, we performed a classifi-
cation of change and trend parameters into broad land
change categories. Area statistics of this map were used
for testing reproducibility during our porting.

3. Nextflow workflow engine
When executing a workflow, FORCE directly manages
task parallelism and scheduling. Execution is expected
to run on a single server, meaning that tasks may share
memory and write to the same disk. In a workflow system
like Nextflow, the situation is rather different. Resources
on remote machines, as well as remote data access, must
be carefully managed, and a scheduler must decide which
tasks to put on which compute node. In our installation
of Nextflow, these duties are shared among three differ-
ent independent software systems: we use Kubernetes
for distributed resource management, Nextflow for or-
chestrating and scheduling task executions, and Ceph as
a distributed file system. We briefly describe Nextflow in
the next paragraphs and refer the reader to the Kuber-
netes documentation4 and [28] for details on Ceph.

Nextflow5 is a rather recent, domain-agnostic DAW
engine consisting of a workflow language, the workflow
engine, and a set of connectors to run workflows on differ-
ent infrastructures, including Kubernetes [3]. It emerged
from Bioinformatics applications but also finds increas-
ing uptake in other scientific domains and in industry.

Nextflow workflows consist of channels (for data ex-
change) and processes (for task execution). Processes
may wrap any command-line tool, offering the option to
include tasks implemented in different languages into the
same workflow. Channels define dependencies between
processes by means of provider/consumer relationships
at the file level. Files are passed into the according output
channel if a process’ output matches a specified pattern.
Once all output channels that serve as input channels
for a subsequent process are filled, the respective task
is ready for execution and gets scheduled by the work-
flow engine. As a result, Nextflow automatically executes
tasks in parallel and in a distributed manner.

4https://kubernetes.io/docs/home/
5https://www.nextflow.io/

In Kubernetes, Nextflow first starts a driver pod which
spawns pods for each workflow task. All pods mount the
same, POSIX compatible, shared file system (Ceph) for
storing and exchanging data. Each pod executes its task
in a local, temporary directory and copies the output to
the shared file system only upon completion.

4. Bringing FORCE into Nextflow
Porting the FORCE EO workflow (Section 2) to our Next-
flow installation was mostly straight-forward. Tools from
FORCE are wrapped as processes in Nextflow processing
only one task at a time, while the dependency structure
of the workflow is modeled with channels between tasks.
The resulting Nextflow workflow comprises nine tasks
(Figure 1b). However, the distributed execution environ-
ment brings a number of (sometimes subtle) incompati-
bilities that required adaptation of the FORCE logic.

Synchronized file access: To reduce data redundancy,
FORCE, during preprocessing, merges files representing
parts of the same observation. Specifically, FORCE re-
places two images by their average in case of reflectances
or by the latest for quality images. Since images are
compressed, they first must be read and then written.
To avoid data loss or corruption, the access is coordi-
nated through lock files. This, however, is impossible in a
shared-nothing distributed setting as access may happen
on different machines.

In the Nextflow workflow, we changed this pattern
to make tasks independent - and thus parallelizable -
from each other (see tasks in the same horizontal level
in Figure 1b). To retain the original functionality, we
subsequently group all images by their tile, date, and
satellite, and then merge every group in a separate, newly
introduced process (see merge step in Figure 1b). This
procedure improves scalability and flexibility regarding
the execution environment but also generates more I/O
since files potentially have to be moved to different nodes.

This change, however, created a new issue. When im-
plementing each merge step as an individual task, we
observed very inefficient workflow execution. The rea-
son is that each of these tasks requires only a few seconds
but must be started and configured anew by Nextflow for
every execution, leading to start-up times being higher
than execution times. As this task is executed thou-
sands of times, performance degraded considerably. As a
workaround, we decided to execute batches of size 100
as a single process in Nextflow, reducing the cumulative
start-up times accordingly. This batch size is another
trade-off in the new system: larger batches reduce par-
allelism but also wastage through process start-ups. We
grouped these tasks by tile since all images of the same
tile are processed in the same succeeding task.

Working around relative file structures: A signifi-

https://kubernetes.io/docs/home/
https://www.nextflow.io/

cant difference between FORCE and Nextflow is the way
they deal with directory hierarchies. In FORCE, the data
are structured in directories such that observation time
and the observing satellite are encoded in the filename,
whereas location is encoded in the directory name (as
tile ID). In contrast, Nextflow only works on the file level
and cannot easily cope with directories. As a remedy, we
rename the output images of the preprocessing task by
prefixing them with the tile ID. We clip this prefix for the
higher level process in a custom wrapper and create a
directory as expected by the task. Clearly, such tricks do
not make a workflow easier to understand.

5. Evaluation setup
We performed two types of experiments to investigate
whether the ported workflow scales as expected and to
detect potential bottlenecks. We first ran the original
workflow in its original environment to obtain confirmed
results and ensured that all other configurations produce
the same results. We subtracted the runtime of the check-
result task in the Nextflow workflow from the overall
execution time, to achieve comparable results.

Experiments were repeated three times; we report the
median of the measured runtimes. We measure wall-
clock execution times. For the distributed setting, we
also report on efficiency of task executions, defined as
the theoretical time obtained by dividing single node ex-
ecution time through the number of nodes, divided by
the observed runtime. Thus, an efficiency of 1 means
perfect scaling, while 0.5 means that the distributed run-
time is only half as good as theoretically possible. We
utilized Nextflow version 21.04.0-edge with bugfixes67

in the cluster with Kubernetes version 1.19.3 and Ceph
version 15.2.8, and Nextflow version 20.10.0 locally.

Experiment 1 (Single server performance): As the
original workflow is optimized for a specific High-
Performance Server (HPS), we first ran FORCE and
the Nextflow port on this machine, a Linux server
with an Intel Xeon Platinum 8176M CPU (56/112
cores/hyperthreads, 2.10GHz), 750GB main memory, and
98TB disc space (RAID6, ext4). Running the Nextflow
workflow on this machine allows measuring the effects of
our changes to the workflow and the computational over-
head imposed by the more complex parallelizing strategy.

Experiment 2 (Cluster performance): To analyze the
scalability of the Nextflow workflow, we ran it on a lo-
cal cluster consisting of 27 homogeneous nodes, each
equipped with an Intel Xeon E3-1230 V2 CPU (Quad-Core,
3.30Ghz), 16GB main memory, and three 1TB hard disks.
Nodes are connected with a 1Gbit/s network link. Note

6https://github.com/nextflow-io/nextflow/pull/2182
7https://github.com/nextflow-io/nextflow/pull/2174

that this is a somewhat outdated hardware, as clusters
today typically have much faster network (e.g. 10GBit/s)
and more memory per node (e.g. 128GB). Slow networks
impede I/O hungry tasks, whereas small main memory
reduces the degree-of-parallelism for memory-hungry
tasks. Ceph was configured to use two 1TB hard drives
per node as block storage, resulting in 12TB raw storage
capacity on six nodes. In order to improve I/O operations,
two 1Gbit/s network interfaces of the nodes are utilized
to segment Ceph management and storage traffic. We
ran the workflow using 1, 3, 5, 10, 14, 15, 20, and 21 com-
pute nodes. Note that the 14 node setup offers the same
number of cores and threads as the HPS.

6. Results
Results are summarised in Figure 2. The X-axis in all
graphics determines the number of nodes used; the run-
time of the HPS setup is drawn at x=14, in addition to
the runtimes of the 14 node cluster. We first describe the
overall results of Experiment 1 and 2 and then provide a
detailed analysis of individual workflow stages. We pub-
lished all logs, additional plots, a tabular preparation of
results, and the analysis script in our GitHub repository.

Experiment 1: HPS: We first run FORCE on HPS, where
it finishes after 358min. Running the Nextflow workflow
on the same machine requires 384min. The 7.5% increase
in runtime is expected as a system like Nextflow for a
single server only adds overhead without offering any
performance benefits.

Experiment 2: Cluster: We can only measure the Next-
flow workflow on the cluster as FORCE does not support
execution on Kubernetes. Running the Nextflow work-
flow on a single node of the cluster took 4,883min, which
decreased to 315min when using all 21 nodes (Figure
2d). This implies a reduction of a factor of 15.5, which is
considerably less than the ideal factor of 21, hinting at
problems in the parallelization. Using 21 nodes is thus
13.4% faster than using the HPS despite the slow network.
On HPS, on the other hand, the Nextflow workflow re-
quired only 11.0% less time than on a cluster with 14
nodes (i.e., an equal number of cores), meaning that the
overhead of managing tasks and files in a distributed
setting is surprisingly low.

Preprocessing and merging: Preprocessing took
4,338min on one cluster node; using 21 nodes decreased
runtime to 225min, i.e., a 19.2-fold improvement with an
efficiency of 91.6% (Figure 2a). On HPS, it took 337min
and 339min in our cluster with 14 nodes. The preprocess-
ing is CPU bound; accordingly, the cumulative runtime
is constant over all experiments (Figure 2c). The HPS
shows a 46.4% higher cumulative runtime, which is likely
due to a different CPU architecture. As the preprocessing

https://github.com/nextflow-io/nextflow/pull/2182
https://github.com/nextflow-io/nextflow/pull/2174

1 3 5 10 1414 15 20 21
of nodes

0%

20%

40%

60%

80%

100%
ef

fic
ie

nc
y

Preprocessing
Preprocessing HPS
Merging
Merging HPS
Preprocessing + Merging

Preprocessing + Merging HPS
Preprocessing + Merging HPS Original
Higher Level
Higher Level HPS
Higher Level HPS Original

(a) Efficiency of of the stages

1 3 5 10 1414 15 20 21
of nodes

50%

100%

150%

200%

av
g.

 c
pu

 u
sa

ge

Minimum
Minimum HPS
Median
Median HPS

Average
Average HPS
Maximum
Maximum HPS

(b) CPU usage in higher level processing

1 3 5 10 1414 15 20 21
of nodes

100%

150%

200%

250%

cu
m

ul
at

ed
 ru

nt
im

e

Preprocessing
Preprocessing HPS
Merging
Merging HPS
Higher Level
Higher Level HPS

(c) Cumulated runtime of the stages

1 3 5 10 1414 15 20 21
of nodes

0%

20%

40%

60%

80%

100%

to
ta

l r
un

tim
e

Total Runtime
Total Runtime HPS
Total Runtime HPS Original
Optimal Scaling

(d) Total Runtime

Figure 2: Experiment’s results: All data points are the median for the measured values over all three executions. HPS is the
high-performance server with 56 cores, respectively comparable to 14 nodes with four cores. The runtime on one node serves
as a baseline to calculate the relative duration for all stages, and their efficiency; efficiency is the proportion a perfect scaling
would have.

scales quite favorably, we conclude that our uncoupling
as described in Section 4 works well. Only in the stage’s
beginning, all tasks read 80 – 204MB simultaneously,
which might decrease the efficiency when more nodes
are used than available here.

The merging stage scales slightly inferiorly. The ef-
ficiency decreases by around 2.5% per additional node,
resulting in a drop in the cumulative runtime when 20
or more nodes are used. We assume this is because the
merge task is I/O-bound and thus heavily limited by the
slow network. With more nodes, the load is fairly dis-
tributed, and the individual connections are relieved.

The workflow reaches an efficiency of 90.0% for the
aggregated preprocessing and merging stage when using
14 nodes (56 cores). This setup is slightly slower than
the FORCE workflow on HPS (same number of cores);
it surpasses FORCE from 16 nodes on, finishing 24.5%
earlier than FORCE on HPS when using all 21 nodes.

Higher Level Processing: The higher level processing
stage scales considerably worse because it is very I/O
intensive, which turns the slow network into a major bot-
tleneck (see the decrease of average CPU usage in Figure
2b). This stage takes 319min on one node, which is only
4.7 times longer than using 21 nodes. The cumulative
runtime increased significantly (Figure 2c), growing to
245.4% for 20 nodes as the I/O times rise for each task.

The I/O problems in this stage also become apparent
when comparing HPS with the cluster. Using 14 nodes,
the Nextflow workflow had an efficiency of 33.4% (Fig-
ure 2a). Running the Nextflow workflow on the HPS
with the same number of cores, efficiency was 96.6%. The
throughput increased through (a) Linux’s caching capabil-
ities combined with the large memory, and (b) the RAID6

configuration. The original setup is not able to benefit
as much of these features, reaching only 75.6% efficiency
on HPS, because it is not optimized for the case where
the preprocessing directly runs before and data is still in
the cache. Thus, FORCE optimizes the read patterns in
the higher level processing. Therefore, it already reads
the following image blocks while processing the current
ones (see Section 2) to reduce I/O wait times, leading to
less idle CPUs. The tiles, in turn, are processed in sequen-
tial order, using all available cores via shared memory
parallelization, which also adds some synchronization
overhead. In Nextflow, multiple tiles are processed in par-
allel leading to parallel reads. In the distributed setting
this overloads the network switch, resulting in high I/O
wait times and hence longer runtime (Figure 2c). On HPS,
many of these parallel reads are avoided by exploiting
the large caching capacities, leading to lower runtime for
Nextflow than for FORCE.

7. Discussion and Conclusion
Overall, our experiments show that a workflow engine
like Nextflow can help to make EO workflows more scal-
able and to ease their reuse on different infrastructures.
The benefits should especially pay off when using larger
clusters for larger input data sets which should be possi-
ble without any changes to the workflow. Besides scalabil-
ity concerns, the initial price one has to pay for learning
the specificities of a workflow engine and the peculiari-
ties of a distributed execution is notable; this investment,
on the other hand, should pay off quickly when more
and more workflows are to be implemented or truly large
analysis tasks, exceeding the capabilities of stand-alone

servers, are approached. In the following, we discuss
a number of further and more detailed conclusions we
draw from our experiments.

Scalability of stages
Overall, our Nextflow workflow scaled quite well, reach-
ing an efficiency of 73.7%. Nextflow’s distribution and
parallelization techniques offer a comparable perfor-
mance to manual ones, outperforming them in excep-
tional cases. The scalability, however, is not equal be-
tween the different stages. While preprocessing and
merging scale very well, higher level processing suf-
fers a lot from the distributed data access and slow net-
work. This should be taken into account when groups
focus their research on only one of these aspects. The
preprocessing step is more and more transitioning into
the hands of institutional data providers through the
widespread emergence of ARD (see e.g. [29]), thus data
providers would benefit largely from using a workflow
management system. End users, however, increasingly
start from existing ARD and thus focus on higher level
analyses, which at least in our setup, did not benefit as
much from the workflow porting. We are, however, con-
fident that also this stage can be adapted better for a
distributed execution, for instance, by using some com-
pute nodes as storage nodes or by using a location-aware
scheduler to reduce data movement and better explicit op-
eration system caching. Besides, we would already expect
a quite different behavior when running the workflow
on a cluster with more up-to-date network bandwidth.

The scalability of other higher-level EO workflows
might also differ. For example, more compute-heavy
workflows with machine learning-based components (e.g.
[30]) require much more computational power and thus
outweigh the I/O time as the limiting factor. However,
these workflows usually include a feature generation task
with a similar resource requirement as the higher-level
workflow used in this paper.

Developing EO workflows with Nextflow
Scientific workflow systems like Nextflow promise addi-
tional benefits besides scalability. We give a short account
on our experiences during porting.

First, Nextflow achieves automatic parallelization, ad-
equate distributed scheduling, and distributed file han-
dling. For scheduling and parallelization, each task in
Nextflow is defined with its required memory and CPU,
wherein FORCE explicitly defines the level of parallelism.
Not having to implement these features oneself is a con-
siderable benefit. On the other hand, designing work-
flows with Nextflow requires “distributed thinking” and
prevents many tricks that are possible in local machines.
For smaller analysis tasks, this probably is an overhead;

for larger analysis tasks, reusing such preexisting dis-
tributed software infrastructures seems inevitable.

Second, programming a workflow in Nextflow requires
more code than in a Bash script. Tasks must be wrapped,
and their inputs, outputs, and parameters defined. This
creates boilerplate code which can make a workflow more
difficult to read and debug. These effects occur especially
when existing code is ported into a workflow system;
they are probably less of an issue when workflows are
designed ab-initio for such a distributed system.

Third, while Nextflow supports multiple resource man-
agers, it is partially impossible to reuse the same parame-
ters in different systems. For example, the memory usage
varies on other machines even for the same task/input
combination since I/O speed differs and tool-internal
caching gets more heavily used. This could also hap-
pen within a heterogeneous cluster. We plan to develop
automatic, accurate, and in particular input-dependent
resource predictions for future work [31, 32].

Fourth, Nextflow (and Kubernetes) are under contin-
uous development. There are a number of features one
could imagine to make their application easier and their
executions even more scalable. For instance, task ag-
gregation [33] to tune the start-up/runtime ratio (see
Section 4) is a known technique from high performance
computing that did not yet make it into the workflow
world. Handling directories could be improved to offer a
more powerful file management (see Section 4). Offering
a shared-memory and/or streaming interface between
tasks could help to reduce intermediate I/O, although it
must be carefully designed to also work smoothly in a
distributed setting since it creates additional constraints.

Finally, Nextflow also offers a number of features we
did not further discuss here. For instance, it is capable to
resume workflow execution after a stop or crash, which
avoids a lot of unnecessary computation and comes in
very handy during workflow development. However, we
faced problems with the resume functionality when read-
ing input files through the GDAL API in the higher level
processing, thus disabling Nextflow’s resume capability.
Moreover, Nextflow offers comfortable monitoring fea-
tures while running a workflow and extensive logging to
perform runtime profiling, analysis, and tuning. Finally,
it offers the Nextflow Tower8 for managing and adminis-
tering entire repositories of workflows, which becomes
important when organizations grow larger.

To compare Nextflow with other workflow engines, we
also work on porting the workflow to Apache Airflow9.
Nevertheless, while porting the workflow, Nextflow was
very intuitive and helped us in understanding the work-
flow and tasks’ dependencies due to its simple DSL.

8https://tower.nf/
9https://airflow.apache.org/

https://tower.nf/
https://airflow.apache.org/

Acknowledgments
Landsat data courtesy of the U.S. Geological Survey. We
thank Google for openly mirroring Landsat collection
1 on the Google Cloud Platform. We thank the two
anonymous reviewers for their valuable feedback on our
manuscript. This work was funded by the German Re-
search Foundation (DFG), CRC 1404: "FONDA: Founda-
tions of Workflows for Large-Scale Scientific Data Anal-
ysis".

References
[1] S. Cohen-Boulakia, K. Belhajjame, O. Collin,

J. Chopard, C. Froidevaux, A. Gaignard, K. Hin-
sen, P. Larmande, Y. L. Bras, F. Lemoine, F. Mareuil,
H. Ménager, C. Pradal, C. Blanchet, Scientific work-
flows for computational reproducibility in the life
sciences: Status, challenges and opportunities, Fu-
ture Generation Computer Systems 75 (2017) 284–
298. doi:10.1016/j.future.2017.01.012.

[2] C. Schiefer, M. Bux, J. Brandt, C. Messerschmidt,
K. Reinert, D. Beule, U. Leser, Portability of Sci-
entific Workflows in NGS Data Analysis: A Case
Study, 2020. arXiv:2006.03104.

[3] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P.
Barja, E. Palumbo, C. Notredame, Nextflow enables
reproducible computational workflows, Nature
Biotechnology 35 (2017) 316–319. doi:10.1038/
nbt.3820.

[4] M. Beauchemin, Airflow: a workflow management
platform, 2015. URL: https://medium.com/airbnb-
engineering/airflow- a- workflow- management-
platform-46318b977fd8.

[5] E. Deelman, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, S. Patil, M.-H. Su, K. Vahi, M. Livny, Pe-
gasus: Mapping Scientific Workflows onto the Grid,
in: D. Hutchison, T. Kanade, J. Kittler, J. M. Klein-
berg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
M. D. Dikaiakos (Eds.), Grid Computing, volume
3165, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004, pp. 11–20. doi:10.1007/978-3-540-
28642-4_2, series Title: Lecture Notes in Com-
puter Science.

[6] A. Siretskiy, T. Sundqvist, M. Voznesenskiy,
O. Spjuth, A quantitative assessment of the
Hadoop framework for analyzing massively par-
allel DNA sequencing data, GigaScience 4 (2015)
26. doi:10.1186/s13742-015-0058-5.

[7] B. Balis, K. Figiela, K. Jopek, M. Malawski, M. Paw-
lik, Porting HPC applications to the cloud: A
multi-frontal solver case study, Journal of Com-

putational Science 18 (2017) 106–116. doi:10.1016/
j.jocs.2016.09.006.

[8] J. Cała, E. Marei, Y. Xu, K. Takeda, P. Missier, Scal-
able and efficient whole-exome data processing us-
ing workflows on the cloud, Future Generation
Computer Systems 65 (2016) 153–168. doi:10.1016/
j.future.2016.01.001.

[9] J. Ossyra, A. Sedova, A. Tharrington, F. Noé,
C. Clementi, J. C. Smith, Porting Adaptive Ensem-
ble Molecular Dynamics Workflows to the Sum-
mit Supercomputer, in: M. Weiland, G. Juckeland,
S. Alam, H. Jagode (Eds.), High Performance Com-
puting, volume 11887, Springer International Pub-
lishing, Cham, 2019, pp. 397–417. doi:10.1007/
978-3-030-34356-9_30, series Title: Lecture
Notes in Computer Science.

[10] D. Frantz, FORCE—Landsat + Sentinel-2 Analysis
Ready Data and Beyond, Remote Sensing 11 (2019)
1124. doi:10.3390/rs11091124.

[11] D. Frantz, Generation of Higher Level Earth Obser-
vation Satellite Products for Regional Environmen-
tal Monitoring, Phd dissertation, Universität Trier,
2017. doi:10.25353/ubtr-xxxx-a477-6262.

[12] P. Hostert, A. Röder, J. Hill, Coupling Spec-
tral Unmixing and Trend Analysis for Monitoring
of Long-Term Vegetation Dynamics in Mediter-
ranean Rangelands, Remote Sensing of Envi-
ronment 87 (2003) 183–197. doi:10.1016/S0034-
4257(03)00145-7.

[13] P. Hostert, A. Röder, J. Hill, T. Udelhoven,
G. Tsiourlis, Retrospective studies of grazing-
induced land degradation: A case study in cen-
tral Crete, Greece, International Journal of Re-
mote Sensing 24 (2003) 4019–4034. doi:10.1080/
0143116031000103844.

[14] D. Frantz, M. Stellmes, S. Ernst, Water vapor
database for atmospheric correction of Landsat im-
agery, 2021. doi:10.5281/zenodo.4468701.

[15] D. Frantz, M. Stellmes, P. Hostert, A Global
MODIS Water Vapor Database for the Operational
Atmospheric Correction of Historic and Recent
Landsat Imagery, Remote Sensing 11 (2019) 257.
doi:10.3390/rs11030257.

[16] Z. Zhu, C. E. Woodcock, Object-Based Cloud and
Cloud Shadow Detection in Landsat Imagery, Re-
mote Sensing of Environment 118 (2012) 83–94.
doi:10.1016/j.rse.2011.10.028.

[17] Z. Zhu, S. Wang, C. E. Woodcock, Improvement
and Expansion of the Fmask Algorithm: Cloud,
Cloud Shadow, and Snow Detection for Landsats
4–7, 8, and Sentinel 2 Images, Remote Sensing
of Environment 159 (2015) 269–277. doi:10.1016/
j.rse.2014.12.014.

[18] D. Frantz, A. Röder, T. Udelhoven, M. Schmidt, En-
hancing the Detectability of Clouds and Their Shad-

http://dx.doi.org/10.1016/j.future.2017.01.012
http://arxiv.org/abs/2006.03104
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1038/nbt.3820
https://medium.com/airbnb-engineering/airflow-a-workflow-management-platform-46318b977fd8
https://medium.com/airbnb-engineering/airflow-a-workflow-management-platform-46318b977fd8
https://medium.com/airbnb-engineering/airflow-a-workflow-management-platform-46318b977fd8
http://dx.doi.org/10.1007/978-3-540-28642-4_2
http://dx.doi.org/10.1007/978-3-540-28642-4_2
http://dx.doi.org/10.1186/s13742-015-0058-5
http://dx.doi.org/10.1016/j.jocs.2016.09.006
http://dx.doi.org/10.1016/j.jocs.2016.09.006
http://dx.doi.org/10.1016/j.future.2016.01.001
http://dx.doi.org/10.1016/j.future.2016.01.001
http://dx.doi.org/10.1007/978-3-030-34356-9_30
http://dx.doi.org/10.1007/978-3-030-34356-9_30
http://dx.doi.org/10.3390/rs11091124
http://dx.doi.org/10.25353/ubtr-xxxx-a477-6262
http://dx.doi.org/10.1016/S0034-4257(03)00145-7
http://dx.doi.org/10.1016/S0034-4257(03)00145-7
http://dx.doi.org/10.1080/0143116031000103844
http://dx.doi.org/10.1080/0143116031000103844
http://dx.doi.org/10.5281/zenodo.4468701
http://dx.doi.org/10.3390/rs11030257
http://dx.doi.org/10.1016/j.rse.2011.10.028
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.1016/j.rse.2014.12.014

ows in Multitemporal Dryland Landsat Imagery:
Extending Fmask, IEEE Geoscience and Remote
Sensing Letters 12 (2015) 1242–1246. doi:10.1109/
lgrs.2015.2390673.

[19] D. Frantz, A. Röder, M. Stellmes, J. Hill, An
Operational Radiometric Landsat Preprocessing
Framework for Large-Area Time Series Applica-
tions, IEEE Transactions on Geoscience and Re-
mote Sensing 54 (2016) 3928–3943. doi:10.1109/
TGRS.2016.2530856.

[20] J. Buchner, H. Yin, D. Frantz, T. Kuem-
merle, E. Askerov, T. Bakuradze, B. Bleyhl,
N. Elizbarashvili, A. Komarova, K. E. Lewińska,
A. Rizayeva, H. Sayadyan, B. Tan, G. Tepanosyan,
N. Zazanashvili, V. C. Radeloff, Land-cover change
in the Caucasus Mountains since 1987 based on the
topographic correction of multi-temporal Landsat
composites, Remote Sensing of Environment 248
(2020) 111967. doi:10.1016/j.rse.2020.111967.

[21] D. P. Roy, H. K. Zhang, J. Ju, J. L. Gomez-Dans, P. E.
Lewis, C. B. Schaaf, Q. Sun, J. Li, H. Huang, V. Koval-
skyy, A General Method to Normalize Landsat Re-
flectance Data to Nadir BRDF Adjusted Reflectance,
Remote Sensing of Environment 176 (2016) 255–271.
doi:10.1016/j.rse.2016.01.023.

[22] D. A. Roberts, J. B. Adams, M. O. Smith, Pre-
dicted distribution of visible and near-infrared ra-
diant flux above and below a transmittant leaf,
Remote Sensing of Environment 34 (1990) 1–17.
doi:10.1016/0034-4257(90)90080-6.

[23] R. Bro, S. De Jong, A fast non-negativity-
constrained least squares algorithm, Journal of
Chemometrics 11 (1997) 393–401. doi:10.1002/
(SICI)1099- 128X(199709/10)11:5<393::
AID-CEM483>3.0.CO;2-L.

[24] E. Vermote, C. O. Justice, F. M. Breon, To-
wards a Generalized Approach for Correction
of the BRDF Effect in MODIS Directional Re-
flectances, Geoscience and Remote Sensing, IEEE
Transactions on 47 (2009) 898–908. doi:10.1109/
tgrs.2008.2005977.

[25] M. Schwieder, P. J. Leitão, M. M. da Cunha Busta-
mante, L. G. Ferreira, A. Rabe, P. Hostert, Mapping
Brazilian savanna vegetation gradients with Land-
sat time series, International Journal of Applied
Earth Observation and Geoinformation 52 (2016)
361–370. doi:10.1016/j.jag.2016.06.019.

[26] B.-G. J. Brooks, D. C. Lee, L. Y. Pomara, W. W. Har-
grove, Monitoring Broadscale Vegetational Diver-
sity and Change across North American Landscapes
Using Land Surface Phenology, Forests 11 (2020).
doi:10.3390/f11060606.

[27] J. N. Hird, G. Castilla, G. J. McDermid, I. T. Bueno,
A Simple Transformation for Visualizing Non-
seasonal Landscape Change From Dense Time Se-

ries of Satellite Data, IEEE Journal of Selected
Topics in Applied Earth Observations and Re-
mote Sensing 9 (2016) 3372–3383. doi:10.1109/
jstars.2015.2419594.

[28] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
C. Maltzahn, Ceph: A scalable, high-performance
distributed file system, in: Proceedings of the 7th
Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, USENIX Association, USA,
2006, p. 307–320.

[29] J. Dwyer, D. Roy, B. Sauer, C. Jenkerson, H. Zhang,
L. Lymburner, Analysis Ready Data: Enabling Anal-
ysis of the Landsat Archive, Remote Sensing 10
(2018) 1363. doi:10.3390/rs10091363.

[30] J. Rosentreter, R. Hagensieker, B. Waske, Towards
large-scale mapping of local climate zones using
multitemporal Sentinel 2 data and convolutional
neural networks, Remote Sensing of Environ-
ment 237 (2020) 111472. doi:https://doi.org/
10.1016/j.rse.2019.111472.

[31] C. Witt, M. Bux, W. Gusew, U. Leser, Predictive
Performance Modeling for Distributed Computing
using Black-Box Monitoring and Machine Learning,
Information Systems 82 (2019) 33–52. doi:10.1016/
j.is.2019.01.006.

[32] C. Witt, J. van Santen, U. Leser, Learning Low-
Wastage Memory Allocations for Scientific Work-
flows at IceCube, in: 2019 International Confer-
ence on High Performance Computing & Simula-
tion (HPCS), IEEE, Dublin, Ireland, 2019, pp. 233–
240. doi:10.1109/HPCS48598.2019.9188126.

[33] A. E. Helal, A. M. Aji, M. L. Chu, B. M. Beck-
mann, W.-c. Feng, Adaptive Task Aggregation
for High-Performance Sparse Solvers on GPUs,
in: 2019 28th International Conference on Par-
allel Architectures and Compilation Techniques
(PACT), IEEE, Seattle, WA, USA, 2019, pp. 324–336.
doi:10.1109/PACT.2019.00033.

http://dx.doi.org/10.1109/lgrs.2015.2390673
http://dx.doi.org/10.1109/lgrs.2015.2390673
http://dx.doi.org/10.1109/TGRS.2016.2530856
http://dx.doi.org/10.1109/TGRS.2016.2530856
http://dx.doi.org/10.1016/j.rse.2020.111967
http://dx.doi.org/10.1016/j.rse.2016.01.023
http://dx.doi.org/10.1016/0034-4257(90)90080-6
http://dx.doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
http://dx.doi.org/10.1109/tgrs.2008.2005977
http://dx.doi.org/10.1109/tgrs.2008.2005977
http://dx.doi.org/10.1016/j.jag.2016.06.019
http://dx.doi.org/10.3390/f11060606
http://dx.doi.org/10.1109/jstars.2015.2419594
http://dx.doi.org/10.1109/jstars.2015.2419594
http://dx.doi.org/10.3390/rs10091363
http://dx.doi.org/https://doi.org/10.1016/j.rse.2019.111472
http://dx.doi.org/https://doi.org/10.1016/j.rse.2019.111472
http://dx.doi.org/10.1016/j.is.2019.01.006
http://dx.doi.org/10.1016/j.is.2019.01.006
http://dx.doi.org/10.1109/HPCS48598.2019.9188126
http://dx.doi.org/10.1109/PACT.2019.00033

	1 Introduction
	2 FORCE and the EO workflow
	3 Nextflow workflow engine
	4 Bringing FORCE into Nextflow
	5 Evaluation setup
	6 Results
	7 Discussion and Conclusion

