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Abstract
This paper presents the neural network model that was used by the author in the Weather4cast 2021 Challenge Stage 1,
where the objective was to predict the time evolution of satellite-based weather data images. The network is based on an
encoder-forecaster architecture making use of gated recurrent units (GRU), residual blocks and a contracting/expanding
architecture with shortcuts similar to U-Net. A GRU variant utilizing residual blocks in place of convolutions is also introduced.
Example predictions and evaluation metrics for the model are presented. These demonstrate that the model can retain
sharp features of the input for the first predictions, while the later predictions become more blurred to reflect the increasing
uncertainty.
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1. Introduction
Weather forecasting requires the prediction of spatiotem-
poral changes in atmospheric fields. Most commonly, this
prediction is carried out using numerical weather predic-
tion (NWP, e.g. [1]), which models the evolution of the
atmosphere by computationally evaluating approximate
physical laws, such as forward-integrating the partial
differential equations of fluid dynamics.

Although the NWP approach to forecasting is firmly
grounded in first principles, NWP models are compu-
tationally expensive: state-of-the-art models are run on
powerful supercomputers and yet take a significant amount
of time to complete a model run, which limits their use-
fulness in short-term predictions. These issues have
motivated considerable research on using artificial in-
telligence (AI) and machine learning (ML) methods for
weather prediction, particularly after the prominent progress
in convolutional neural networks (ConvNets) in the last
decade. ConvNets can learn to recognize complex spatial
structures, which make them well-suited for modeling
atmospheric fields. They have been used as components
of weather models, for example, to speed up computa-
tionally expensive modules of NWP codes. Recurrent
neural networks have also been used to model the time
evolution of atmospheric fields. Numerous applications
and potential uses of ML/AI in weather in climate sci-
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ences have been discussed by, e.g., [2, 3, 4, 5]. Thus, there
is considerable interest in further developing ML model
architectures for these applications.

To support the development of ML/AI for weather pre-
diction, the Weather4cast 2021 Challenge had the objec-
tive to predict the time evolution of atmospheric satellite
data products using machine-learning methods. This
paper presents the ML solution submitted by the author.

2. Challenge Data and Objectives
The Weather4cast 2021 Challenge Stage 1 presented the
competitors with a data problem of predicting the time
evolution of satellite-based measurements of four differ-
ent atmospheric fields: temperature, representing either
the surface temperature (where no cloud is present) or the
cloud top temperature (in cloudy areas); convective rain-
fall rate (crr_intensity); probability of tropopause folding
(asii_turb_trop_prob); and cloud mask (cma). These are
data products created by the Nowcasting Satellite Appli-
cation Facility (NWC SAF) processing from satellite data
from the EUMETSAT-operated MeteoSat satellites. The
products were given for six regions (numbered R1–R6)
in Europe, Northern Africa and the Middle East, each
256× 256 pixels of approximately 4 km× 4 km each. A
few other variables also were available such as cloud type,
as well as static data with the elevation of the terrain, the
latitude and the longitude.

The goal of the challenge was to predict, in each area,
the next 32 frames of a sequence given the previous 4
frames, with frames separated by 15 min. Training and
validation datasets, with complete 4+32-frame samples,
as well as a test dataset with only the 4-frame inputs,
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Figure 1: Illustration of the network architecture.

were provided for regions R1–R3, constituting the “Core”
competition. Meanwhile, R4–R6 only had test data avail-
able, meaning that they had to be evaluated using models
trained on R1–R3; this was called the “Transfer Learn-
ing” competition. Furthermore, all regions had a set of
“held-out” data which were made available only during
the final week of the competition; the final results were
based on the performance with these data.

The performance of the models was evaluated using
the mean-square error (MSE) for each variable. How-
ever, some adjustments were made to the MSE to ac-
count for the particular needs of each variable, except for
crr_intensity. First, the loss for temperature was modified
to account for varying amounts of missing data in each
region. Second, asii_turb_trop_prob is a probabilistic vari-
able and the output of the model was passed through
a truncated and normalized logit transform before the
evaluation of the MSE. Third, although cma is techni-
cally evaluated using the MSE, the variable in the output
data file is required to be quantized such that the value
is either 0 or 1; therefore, model output values < 0.5 are
rounded to 0 and outputs ≥ 0.5 are rounded to 1 before
evaluation. The details of the metrics can be found in [6].

3. Solution

3.1. Models
The model presented here is a neural network combining
recurrent-convolutional layers and shortcut connections
in an encoder-forecaster architecture. The architecture
is presented in Fig. 1. It is based on that developed in [7]
for precipitation nowcasting and adopted by [8], as well
as similar to that of [9], with some differences that are

described below.
The encoder section consists of four recurrent down-

sampling stages. Each stage first passes the sequence
through a residual block [10], with each frame processed
using the same convolutional filters. A strided convo-
lution in the residual block is used to downsample the
input by a factor of 2. Then, the sequence is processed by
a gated recurrent unit (GRU) layer [11]; a tensor of zeros
is passed as the initial state of the GRU. The number of
channels in the convolutions is increased with increasing
depth in the encoder.

The forecaster section is approximately a mirror image
of the encoder section. Each stage consists of a GRU layer
which is followed by bilinear upsampling and a residual
block. A shortcut similar to U-Net [12] is utilized: The
final state of each GRU in the encoder is passed through
a convolution and then used as the initial state of the
GRU of corresponding depth in the forecaster. This al-
lows the high-resolution features of the recent frames to
be passed through, preventing the first predictions from
being blurry. A final projection and a sigmoid activa-
tion produce the output as a single variable constrained
between 0 and 1.

The main difference of the architecture presented here
to that of [7] is that the use of Trajectory GRU (Traj-
GRU) is rejected as TrajGRU was found to cause training
instability. Two variants are considered instead. The
first utilizes the Convolutional GRU (ConvGRU) layer
adopted by e.g. [9, 13, 14]. In the second variant, the
convolution in the ConvGRU is replaced by a residual
block modified to be used for this purpose. The use of
the residual block increases the depth of the operations
in the GRU and is thus expected to allow it to better pro-
cess nonlinear transformations and also to increase the



distance at which pixels can influence each other at each
step of the ConvGRU. The latter effect may recover some
of the advantages of TrajGRU over ConvGRU that [7]
found. The author is unaware of previously published
instances of a residual layer being used in place of the
convolution in GRU. In this paper, this variant is called
“ResGRU”, although the same abbreviation was used for a
different combination of GRUs and residual connections
in [15].

The models were implemented using TensorFlow/Keras
[16] version 2.4. The source code and the pre-trained
models can be found through the links in Appendix A.

3.2. Training
Since the scores for the target variables were evaluated
independently from each other, a separate instance of
the model was trained for each target variable, but using
all variables as inputs for each model. The models were
trained on the training dataset of R1–R3 such that every
available gapless sequence of 36 frames was used for
training, resulting in 72192 different sequences (albeit
with considerable overlap). The training was performed
with combined data from all regions R1–R3 in order to
increase the training dataset size and improve the ability
of the model to generalize; specializing the model to sin-
gle regions was not attempted. The static data (latitude,
longitude and elevation) were also used for training. Data
augmentation by random rotation in 90° increments as
well as random top-down and left-right mirroring was
used to further increase the effective number of training
samples. The model for asii_turb_trop_prob was trained
using a custom logit loss corresponding to the metric
specified in [6], while the other variables were trained
using the standard MSE loss. The Adam optimizer [17]
was used to train the models with a batch size of 32.

The progress of the training was evaluated using the
provided validation dataset for R1–R3. After each train-
ing epoch, the evaluation metric was computed on the
validation set and then:

1. If the metric improved upon the best evaluation
result, the model weights were saved.

2. If the metric had not improved in 3 epochs, the
learning rate was reduced by a factor of 5.

3. If the metric had not improved in 10 epochs, the
training was stopped early.

In practice, condition 3 was never activated as the model
continued to achieve marginal gains on the validation
data at least every few epochs until the maximum train-
ing time of 12 h or 24 h (depending on the training run)
was reached. This suggests that the model did not suffer
significantly from overfitting, which typically causes the
validation loss to start increasing even as the training loss
keeps decreasing. This is perhaps due to the relatively

modest number of weights in the models by standards of
modern ConvNets, approximately 12.1 million weights
in the ConvGRU variant and 18.6 million in the ResGRU
variant. The loss over the validation set was used as the
metric for each variable except cma for which a rounded
MSE that takes the 0, 1 quantization into account was
used.

A parallel setup of eight Nvidia Tesla V100 GPUs was
used to train the models. Training for one epoch took
approximately 20 minutes with this hardware. The eight
parallel GPUs only provided a speedup of a factor of
approximately 3 compared to training on a single GPU,
suggesting that single-GPU training of the models should
be feasible, although the batch size would likely have to
be reduced as the models require rather large amounts
of GPU memory.

4. Results
Both the ConvGRU and ResGRU variants of the model
were trained for each target variable. The evaluation
results for the validation dataset are shown in Table 1.
Comparisons to TrajGRU were found impractical as the
models using TrajGRU would not converge properly due
to the training instability mentioned in Sect. 3.1.

Based on the evaluation results, three submissions
were made to the final leaderboards of Weather4cast
Stage 1: one using the ConvGRU variant for all variables
(codenamed V4c), another using ResGRU (V4rc), and a
third using the best model for each variable based on the
validation metrics (V4pc). It was indeed this last model
that produced the best results also on the leaderboards
for both the Core and Transfer Learning competitions,
as shown in Table 2.

Figures 2–5 show examples of the predictions using
the validation dataset. These are all shown for the same
scene except for Fig. 3, where a different scene was cho-
sen because the one used for the others did not contain
precipitation. It is clear that the predictions start rel-
atively sharp and get blurrier over time, reflecting the
increasing uncertainty. The blurriness is likely exacer-
bated by the use of the MSE metric, specified in the data
challenge, which is prone to regression to the mean. Es-
pecially in Fig. 4, one can also see that the model can
predict the motion of features in the images.

5. Conclusions
The model presented here reached the top of the final
leaderboards in both the Core and the Transfer Learning
categories of the Weather4cast 2021 Challenge Stage 1.
It is a versatile solution to the problem of predicting the
evolution of atmospheric fields, producing sharp predic-
tions for the near term and increasing the uncertainty for



Table 1
Evaluation metrics for the validation dataset.

temperature crr_intensity asii_turb_trop_prob cma
ConvGRU 0.004564 0.0001259 0.002250 0.1393
ResGRU 0.004356 0.0001278 0.002161 0.1376
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Figure 2: An example of predictions for the temperature variable. The frames on the left correspond to past temperature,
while the frames on the right show the real future temperature (top row) and the predicted temperature (bottom row). The 𝑇
coordinate refers to the index of the frame in the sequence, with 𝑇 = 0 represents the last input data point and 𝑇 = 1 the
first prediction. The model output normalized to the range (0, 1) is shown.
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Figure 3: As Fig. 2, but for crr_intensity. A different case is shown as the case of Fig. 2 does not contain precipitation.
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Figure 4: As Fig. 2, but for asii_turb_trop_prob.
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Figure 5: As Fig. 2, but for cma. The white contours in the predictions indicate 0.5, the threshold of the cloud mask in the
output.

Table 2
Evaluation metrics for the held-out test dataset, as com-
puted by the Weather4cast website (https://www.iarai.ac.at/
weather4cast/).

Core Transfer learning
ConvGRU 0.5051 0.4658
ResGRU 0.5014 0.4626

Best combination 0.4987 0.4607

longer lead times. The architecture can be easily adapted
to other tasks such as probabilistic predictions or outputs
that are different from the inputs. Further research is
needed to handle, for instance, different spatial and tem-
poral resolutions of inputs and data available for future
time steps.
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