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Efficient Spatio-temporal Weather Forecasting Using U-Net
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Abstract

Weather forecast plays an essential role in multiple aspects of the daily life of human beings. Currently, physics based
numerical weather prediction is used to predict the weather and requires enormous amount of computational resources. In
recent years, deep learning based models have seen wide success in many weather-prediction related tasks. In this paper we
describe our experiments for the Weather4cast 2021 Challenge, where 8 hours of spatio-temporal weather data is predicted
based on an initial one hour of spatio-temporal data. We focus on SmaAt-UNet, an efficient U-Net based autoencoder. With
this model we achieve competent results whilst maintaining low computational resources. Furthermore, several approaches
and possible future work is discussed at the end of the paper.
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1. Introduction

Weather prediction is an art that can be traced back to
Ancient History. Around the year 650 B.C, the Babylo-
nians were already using clouds and haloes to predict
short-term weather variations. 2600 years later, weather
forecasting has changed substantially but it still plays an
active role in the development of our society, becoming
a valuable asset in many situations, such as the creation
of warnings prior to a severe storm [1] .

Most of these predictions are now generated through
Numerical Weather Prediction models (NWP) that pro-
vide estimates by means of various physical variables,
such as atmospheric pressure, temperature, etc. While
accurate, these models are often slow and require vast
amounts of computational power, making them inac-
cessible to the public and impractical when attempting
short-term forecasts [2].

In recent years, with the outbreak of Machine Learning
and the growing volume of increasing higher-resolution
information available, deep learning models have found
major success in this domain and have managed to even
rival the original NWP-based approaches [3][4]. These
deep learning models do not rely in the current physi-
cal state of the atmosphere but instead utilize historical
weather data to generate a future prediction.

In this paper we focus on a Convolutional Neural Net-
work (CNN) approach.

Convolutional Neural Networks, such as U-Net[5], are
a type of Artificial Neural Network (ANN) that is com-
monly used to process image data. They are based on
convolutions, a kernel operation that allows the model to
capture local invariant features in a given image. These
networks are used in a wide range of tasks, especially in
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object detection[6] and image classification[7] tasks.

The model employed in this work is a variant of U-Net
defined as SmaAt-UNet[8]. Both model and architecture
are further described throughout the text.

2. Weather4cast 2021 Challenge

Weather4cast 2021 Challenge [9] is a competition held
by the Institute of Advanced Research in Artificial Intel-
ligence (IARAI) [10] with the goal of generating a short-
term prediction of selected weather products based on
meteorological satellite data-products from different re-
gions of Europe. These data-products range from Febru-
ary 2019 to February 2021 and are obtained in collabora-
tion with AEMET [11] / NWC SAF [12]. This challenge
presents weather forecast as a video frame prediction
task, similarly to the Traffic4cast competitions at NeurIPS
in 2019 [13] and 2020 [14], hosted by the same institute.

The data consists of four target weather variables: tem-
perature (on accessible surface: top cloud or earth), con-
vective rainfall rate, probability of occurrence of tropopause
folding and cloud mask. The weather products are en-
coded as separate channels in the weather images. Each
weather image contains 256 x 256 pixels of a particular
region, in which each pixel corresponds to an area of
about 4 km x 4 km. The images are recorded at 15 minute
intervals throughout a year.

The goal is to predict the next 32 weather images (8
hours in 15 minute intervals) given 4 images (1 hour) of
each of the regions provided.

3. Methods

There are several ways to approach this challenge, such as
with ConvLSTMs [4], Graph Neural Networks (GNN) [15]
and U-Nets [16]. In other similar competitions of spatio-
temporal data, U-Net type architectures have shown the
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Model Backbone Parameters
U-Net with DSC 4 Millions
U-Net with CBAM and DSC (SmaAt-UNet) 4.1 Millions
U-Net++ Efficientnet-b0 [19] 6 Millions
U-Net++ Efficientnet-b1 9.1 Millions
U-Net++ Efficientnet-b2 10.4 Millions
U-Net++ Efficientnet-b3 13.6 Millions
U-Net 17.3 Millions
U-Net with CBAM 17.4 Millions
U-Net++ Efficientnet-b4 20.8 Millions
U-Net++ Efficientnet-b5 31.9 Millions
U-Net++ SE-Resnext50 32x4d 51 Millions

Table 1

Model sizes and parameters sorted by increasing complexity. It it worth noting that transforming the original convolutions
in U-Net into depthwise-separable convolutions reduces the size of the model from 17.4 Million parameters to 4.1 Million
parameters and how the addition of the CBAM component only increases the amount of parameters by 0.1 Million

best results. For that reason we mainly base our work on
U-nets, specially on efficient U-Nets. The neural network
architecture used in our work is a recent state of the art
model called SmaAt-UNet [8] (See Section 3.1). Some
preliminary tests were done on the U-Net++[17], a U-
Net based model with nested dense convolutional blocks,
and different backbones. Table 1 shows the size and
the number of parameters of each model. These larger
autoencoders were not used as they reported virtually
the same results while requiring larger training time. In
contrast, SmaAt-UNet is a much smaller and efficient
model. As a result, all further experiments were done
with the SmaAt-UNet model.

3.1. SmaAt-UNet

SmaAt-UNet is a novel model that extends the origi-
nal encoder-decoder structure proposed in the U-Net
architecture[5]. The architecture can be seen in Figure
1. There are two major differences when compared to its
forerunner:

Firstly, the encoder contains a Convolutional Block
Attention Module (CBAM)[18]. This module combines a
channel attention module and a spatial attention module
that enhance a given feature map.

Secondly, all the regular convolutions present in the

original U-Net version are replaced by Depthwise-Separable

Convolutions (DSC), allowing the model to reduce sig-
nificantly the number of parameters, hence making it
lightweight in comparison to the original version.

This combination improves the performance of U-Net
while significantly reducing the computational cost of the
model (=17 Million parameters of U-Net versus the ~4
Million parameters of its SmaAt counterpart, see Table 1),
allowing us to obtain reasonable results in our resource-
restricted environment.

4. Experiments and Results

Following the objective of the Weather4cast Core Com-
petition, we trained and experimented with our models
on regions R1 (Nile region), R2 (Eastern Europe) and R3
(South West Europe) to obtain an efficient and competent
model for spatio-temporal weather forecast.

4.1. Data

We employed the four data elements defined in Section 2
(temperature, convective rainfall rate, probability of oc-
currence of tropopause folding and cloud mask) and 3 ad-
ditional static variables (latitude, longitude and elevation)
provided by the organiser, adding up to 7 dimensions.

We also modified the data structure. The original mod-
els would generate one single prediction given 4 input
variables and a lead-time component. This lead-time
component would then be used as an index to extract
the 32 individual images from the output prediction. Our
models avoid using a lead-time component and instead
generate the 32 individual predictions directly from the
4 input variables.

4.2. Experimental Settings

Models were trained for 10 epochs using MSE loss and
Adam [20] optimizer, with a learning rate of 0.001 and
Cosine Annealing with Warm Restarts schedule. [21].
The experiments were run through a Colab Pro sub-
scription, which provides a single restricted Tesla P100
or restricted Tesla V100, and Pytorch v1.9 [22]. This plat-
form limits its usage to a 24h time frame, after which any
running code is abruptly terminated. This time frame is
reduced if overused, which caused many disruptions in
our training pipeline and required active monitoring.
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Figure 1: An example of an input fed through our proposed SmaAt-UNet (best viewed in color). Each bar represents a
multi-channel feature map. The numbers above each bar display the amount of channels; the vertical numbers on the left side

correspond to the x-y-size. Extracted from [8].

We also used 16-bit precision operations for a faster
training speed instead of the default 32-bit precision op-
erations.

Code and experiments are publicly available and can
be found in our GitHub repository. *

4.3. Quantitative results

An extract of our results can be seen in Table 2, with
several baseline models that we used to compare our
findings:

The Persistence model uses the last image of the se-
quence as the prediction image under the assumption
that the weather will not vary significantly from a given
time point t to t+1. By running this approach we obtain
a baseline MSE of 1.0 . The U-Net model is a pretrained
model provided by IARAI This model performs with an
MSE of 0.669. Next is a single SmaAt-UNet, that already
reduces the U-Net MSE down to 0.612, demonstrating
the power of this lightweight architecture. By adding
a Cosine Annealing scheduler with Warm Restarts[21],
the model performs considerably better in comparison
to the scheduler-free version. Finally, the best result was

!github.com/Dauriel/weather4cast2021/

Model MSE
Persistence 1.000

U-Net 0.669
SmaAt-UNet 0.612
SmaAt-UNet with CAWRS 0.597
Best Ensemble SmaAt-UNet  0.572

Table 2

Test MSE. In this table we indicate the MSE obtained on the
test leaderboard of the competition. CAWRS stands for Cosine
Annealing with Warm Restarts schedule

obtained through an ensemble of several SmaAt-UNet
models, obtaining an MSE of 0.572 over the testing set.

Our methods obtain a significantly lower MSE than the
baseline models while keeping a low resource demand.

4.4. Qualitative results

In Figure 3 we visualize a prediction of cloud coverage
obtained from one of the test sets, in particular for March
16th 2020. Due to the uncertainty of the future, the model
does not really predict future positions of cloud coverage
and instead regresses to the mean for all the possible
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Figure 3: Predicted results from our best performing model for December 25th on Region R1 (Nile Region)

values.

5. Future Work

In this section, we discuss some important considerations
to be taken into account towards future work.

5.1. U-Net

As we have seen in our experiments, and in other sim-
ilar competitions of spatio-temporal data, U-Net type
architectures have shown the best results when dealing
with this type of datasets. This is due to the capability of
U-Net to model spatial characteristics of the data. How-
ever temporal characteristics are not captured correctly
by this architecture (See Figure 2 vs Figure 3). Over an
increasing time frame, U-Net is not able to capture the



temporality of the data and predictions become consid-
erably homogeneous in comparison to the ground truth.
This condition is present in all of our predictions.

Including some kind of "memory", that is, the use of
Recurrent Neural Networks (LSTM [23], ConvLSTM [24],
etc) could allow the model to handle these temporal char-
acteristics, improving the results substantially at the ex-
pense of a considerable increase in the computational
resources required.

5.2. MSE loss

Another problem is that of the use of the MSE loss. The
MSE loss computes the average of the pixel values so
that the error is minimized for any possible real predic-
tion value. For this specific task, a better loss function
that does not result on averaging possible pixel values
would perform significantly better. Some researchers
have tried addressing this problem by including new loss
functions like the adversarial loss and the perceptual
loss [25], which works well for images (e.g. ImageNet).
However, these losses would probably perform poorly
for these spatio-temporal physical variables. Moreover,
modifying these loss functions comes at the expense of
higher and more expensive training times.

5.3. Invertible Neural Networks

Given our main focus of creating efficient low resource
neural networks, we also studied the realm of Invertible
Neural Networks (INN) [26].

INNs enable memory-efficient training by re-computing
intermediate activations in the backward pass, rather
than storing them in memory during the forward pass
[27]. This enables efficient large-scale generative mod-
eling [28] and high-resolution medical image analysis
[29].

However, these were proven to be difficult to train
and showed very notable checkerboard artifacts yielding
very bad predictions. These results are inline with other
papers about INN in literature [30].

5.4. Wind data as an optical flow

Optical flow models are gaining a lot of interest in recent
video based tasks, such as video object detection [31]
and video action recognition [32]. In fact, they are used
in some of the state of the art models for video action
recognition [33].

An approach could be the computation of the opti-
cal flows between each time step of the spatio-temporal
images using these optical flow neural networks. How-
ever, the wind speed magnitude and wind direction of
the provided data could already be considered optical
flow, removing the need to artificially compute it. Using

these two variables as an optical flow could boost the
prediction score significantly and should be considered
in further competitions.

6. Conclusion

In this paper we display the findings obtained during our
participation in the Weather4cast 2021 Competition. Our
experiments show that the SmaAt-UNet model is a better
alternative than the classical U-Net, as it improves the
quality of the prediction and requires less resources to
train than the original architecture. We achieved the best
results by generating an ensembled prediction of several
training checkpoints. We also discuss various improve-
ments in the Future Work Section (see Section 5). These
ideas will be further developed for future competitions.
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