
Spatiotemporal Swin-Transformer Network for Short Time
Weather Forecasting
Alabi Bojesomo, Hasan Al-Marzouqi and Panos Liatsis

Electrical Engineering and Computer Science Department, Khalifa University, Abu Dhabi, UAE.

Abstract
Earth Observatory is a growing research area that is using AI for short time forecasting, a Now-casting scenario. In this
work, we tackle the challenge of weather forecasting using the video transformer network. In recent times, many variants
of the vision transformer were explored, with major constraints being the computational complexity of Attention and the
data hungry training. We explore the use of Video Swin-Transformer together with a carefully crafted augmentation scheme
to tackle the data hungry transformer network. In addition, we use a gradual spatial reduction on the encoder side and
cross-attention on the decoder. The proposed network is tested on the Weather4Cast2021 weather forecasting challenge
data, which requires the prediction of 8 hours ahead future frames (4 per hour) from an hour weather product sequence. The
model results in a highly competitive performance on both the validation and test datasets. The code is available online at
https://github.com/bojesomo/Weather4cast2021-SwinEncoderDecoder .
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1. Introduction
Weather forecasting is an important requirement in au-
tonomous vehicles and food production [1], owing to
the relationship between successful implementation of
these applications and accurate weather prediction. For
instance, knowledge of the weather is an important as-
pect of the location context, when designing autonomous
navigation and collision avoidance systems. In food pro-
duction, weather forecasting has already proven to be
an important factor for crop yield management and ad-
equate soil nutrient replenishment. Deep learning has
been widely used in short time weather forcasting includ-
ing long short-time memory (LSTM) [2, 3], Autoencoders
[4, 5], CNN [6, 7, 3] and deeply connected neural net-
works [8].

Due to the success of attention based networks in nat-
ural language processing (NLP), many researchers have
recently shifted their attention in exploring their use in
computer vision, including image classification, object
detection and semantic segmentation [9, 10, 11, 12]. A pi-
oneering work in this area, which uses patch based image
encoding, is the vision transformer [10]. Dosovitskiy et.
al. [10], which carefully laid down the techniques for en-
coding image patches similar to word embedding in NLP,
followed by one-to-one use of a transformer network
as proposed by Vaswani et. al. [9]. Many researchers
explored this direction by proposing highly efficient at-
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tention networks, external attention, and pyramid vision
transformer among others. Dense prediction, including
semantic segmentation, has been also investigated using
vision transformer as backbone [12, 11].

Swin Transformer is among the promising Vision
transformer architectures, which explore a carefully
crafted patch information mixing using the shift window
attention technique (hence the name Swin) [13]. The
method resulted in high performing image recognition
models using the vision transformer. In order to lever-
age its success in classification, researchers explored the
Swin transformer as backbone for dense prediction. Cao
et. al. used Swin transformer blocks in the encoder, bot-
tleneck and decoder branch of a UNet structure [14]. The
work also introduced the patch expanding layer, i.e., the
opposite of the patch merging layer, used in the pyramid
vision transformer [14]. The 3-dimensional (3D) variant
of the Swin transformer (Video Swin transformer) was
proposed by Liu et. al. [15]. This paper used 3D patch
embedding, 3D shifted window multi-head self attention
as well as patch merging, and the proposed approach
led to a parameter efficient network with strong perfor-
mance in a variety of datasets (Kinetics-400, kinetic-600,
and Something-Something v2) [15].

In this research, we propose a number of improve-
ments in the video Swin transformer [15], including 3D
patch expanding, and using cross attention block in the
decoder, as well as a carefully designed data augmenta-
tion process, which removes the need for pre-training the
network on a large dataset. The proposed architecture
and layers are given in Section 2, while the experimen-
tal results of the proposed solution in weather4cast2021
stage-1 challenge is presented in Section 3.
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2. Methods

2.1. Model Architecture
Weather forecasting can be viewed as a sequence-to-
sequence task. To this end, we employed transformer
models, which were used in NLP with very promising
results. The proposed model uses multiple stages for
gradual spatial dimensional reduction in the encoder.
This dimensional reduction is important so as to capture
salient representations of global features. While the en-
coder uses self attention, the decoder uses self attention
for its main input and merges the skip connected input
from the encoder using mixed attention [9]. The atten-
tion layer used in this research is the shifted window
attention proposed in [15].

As shown in Fig 1, the input goes through a 3D patch
embedding layer, which forms the token provided to the
transformer architecture. Output tokens are expanded
and projected back to the original format. The model
includes three encoder-decoder blocks, each having four
3D transformer layers (encoder/decoder). We limited
the number of blocks to three to better handle the data
demanding nature of transformers as we do not pre-train
our model on any other dataset [13, 15, 10, 12]. Likewise,
we used equal number of transformer layers per block
for simplicity (four in our case).

The building blocks of our model shown in fig. (1a)
are detailed below.

2.2. Swin Transformer Block
The transformer layer proposed by Vaswani et. al. for
NLP includes standard multi-head self attention (MSA),
followed by a feed-forward network (MLP). Each of these
layers is preceded by Layer Normalization (LN) in Vision
transformer [10], as opposed to post normalization used
in NLP [9]. In this research, 3D shifted window MSA
is employed, owing to the spatiotemporal nature of the
input. The Swin transformer uses an interchange of slid-
ing windows, as shown in Fig (1b and c) with a window
(local) attention, followed by another local but shifted
window attention. With such a setup, any two layers of
attention follow (1):

𝑧𝑙 = W-MSA(LN(𝑧𝑙−1)) + 𝑧𝑙−1

𝑧𝑙 = MLP(LN(𝑧𝑙)) + 𝑧𝑙

𝑧𝑙+1 = SW-MSA(LN(𝑧𝑙)) + 𝑧𝑙

𝑧𝑙+1 = MLP(LN(𝑧𝑙+1)) + 𝑧𝑙+1

(1)

where LN, MLP, W-MSA and SW-MSA represent layer
normalization [16], multilayer perceptron, windowed
multi-head self-attention and shifted window multi-head
self-attention, respectively. The main difference between

W-MSA and SW-MSA is the shift in window positioning,
prior to computing local attention within the windowed
blocks. Also, relative position bias is used in both W-MSA
and SW-MSA [13, 15]. Following the work of Li et. al.,
we used a window size of (1, 7, 7), shift size of 2 in our
implementation of the 3D Swin transformer block [15].
For the MLP, we used two fully-connected layers with a
ratio of four for the hidden features (eqn. 2).

MLP(𝑋) = (𝑋𝑊1)𝑊2 (2)

where 𝑋 ∈ ℜ... x 𝑑 is the input, 𝑊1 ∈ ℜ𝑑 x 4𝑑 is the
weight matrix of the first (hidden) fully-connected layer
and 𝑊2 ∈ ℜ4𝑑 x 𝑑 is the weight matrix of the second
(output) fully-connected layer.

2.3. Patch merging layer
This layer concatenates the features of each group of 2
× 2 neighboring patches, and applies a fully-connected
layer on the 4C-dimensional concatenated features to get
2C-dimensional output [13, 15]. This results in a learned
down-sampling operation.

2.4. Patch expanding layer
Contrary to the patch merging layer introduced in the
Swin tranformer [13, 15], we used a fully connected layer
to scale up the dimension of the incoming data. This
results in a learned up-sampling operation.

2.5. Cross Attention
For the decoding blocks of the architecture, we used an
attention block to merge the skip-connection of the en-
coder to the decoding input. The skip-connected input is
used as the key and value parameters, while the decoding
input form the query.

2.6. Encoder
The encoder backbone network in our model includes
a multi-stage Video Swin transformer. Specifically, we
use three stages, each having four 3D transformer blocks,
followed by a patch merging layer [13, 15]. The atten-
tion layer used here is the multi-head self attention as
explained in section (2.2) [15].

2.7. Decoder
Here, we replaced the self attention in the encoder with
a cross attention layer for feature mixing. The skip con-
nection from the encoder serves as the key parameter K,
and value parameter V , while the continuing input from
the patch expanding layer serves as the query parameter
Q in the attention block (fig 1a).



Figure 1: Details of the proposed Spatiotemporal Encoder-Decoder architecture. The network, shown in (a), has three
transformer blocks and decoder blocks, respectively. Each of the encoder blocks has a Patch Merging unit, followed by a
number of Swin-Transformers except for the first encoder, which has linear embedding. In (b), the stacking of two concurrent
self-attention blocks used in the encoder is illustrated, where windowed attention always follows shifted window attention.
In (c), the cross-attention used in the decoder is displayed. The input from the skip connection and the decoding input are
merged in a cross-attention layer, instead of applying concatenation, which is commonly used in UNet architectures.



2.8. Neck
Although not considered in Fig (1a), our proposed model
considered the possibility of linking the encoder to the
decoder via a neck block. When considered, We use two
Transformer blocks without a preceding patch merging
layer as the neck [14]. Table (1) shows some models
where we either use a neck or not in our experiments.

2.9. Prediction Head
This is used to project the output of the last decoder block
(final output) to the expected dimensions and format. We
employed a patch expanding layer for possible recovering
of the spatial dimension that may have been updated by
the multi-stage encoder-decoder network. Finally, a fully
connected layer is used to project the features into the
final dimension.

3. Experimental Results
Data Description : We used the datasets in the
Weather4Cast2021 "stage-1" challenge for evaluation pur-
poses [17]. This competition has two challenges:

• Core Challenge: data contain the training, vali-
dation, and test sets for three regions {R1 – Nile
region (covering Cairo), R2 – Eastern Europe (cov-
ering Moscow), and R3 – South West Europe (cov-
ering Madrid and Barcelona)}

• Transfer Challenge: data contain only the test
set for three additional regions {R4 – Central
Maghreb (Timimoun), R5 – South Mediterranean
(covering Tripoli and Tunis), and R6 – Central
Europe (covering Berlin),}

Weather parameters including temperature (on acces-
sible surfaces: top cloud or earth), convective rainfall
rate, probability of occurrence of tropopause folding, and
cloud mask are selected as target variables for the com-
petition. Each weather image contains 256 x 256 pixels,
with each pixel corresponding to an area of about 4 km x
4 km. The images were recorded at 15 minute intervals
throughout the year.

Model Training : The model described in Fig. 1 was
implemented in Pytorch. The mean squared error (MSE)
was used as the loss function, with the Adam optimizer
[18]. The learning rate was initially set to 1e-4 and was
manually reduced to 1e-7, when performance plateaued
on the validation set. Our model was trained with care-
fully considered data augmentation for segmentation
purposes. Specifically, we use RandomHorizontalFlip and
RandomVerticalFlip, which ensures that we can leverage
data augmentation without making any change in the

data presented except flipping. This is important as we
train a single model with data from the three provided
regions (R1, R2, R3), while we tested the model on all
available regions (R1-R6) to account for the transfer learn-
ing challenge.

As shown in Table (2), the proposed model resulted
in an MSE of 0.5337 and 0.4959, for the core and transfer
challenges, respectively, with only 688,080 parameters.
Moreover, this is the first instance of using vision trans-
formers in spatiotemporal forecasting. As shown in Table
(1) , we equally trained another model with an embed-
ding dimension of 32 but this could not be tested on the
leaderboard due to restriction on number of model that
can be submitted. We considered the use of a neck in our
UNet-like model resulting in a conclusion that this does
not help our model to improve (Table 1). In Table (2) ,
we compared our model with the baseline models (persis-
tence and Unet) provided on the leaderboard which shows
that our model performs better with less than 700,000
parameters. In Tables (1), it is important to note that the
validation MSE is computed on the validation set (Region
R1-R6 [17]) while the core and transfer MSE in Table (2)
are computed using a specially crafted MSE computation
which puts a segmentation mask into consideration [17].

Table 1
Validation results of our various model configurations on the
Weather4Cast2021 Data

dim neck #Parameters Validation MSE

16 False 688,080 0.0297
16 True 790,752 0.0299
32 False 2,574,688 0.0298
32 True 2,622,000 0.0305

Table 2
Comparing our result with baseline models’ results on
Weather4Cast2021 Data

Method Core MSE Transfer MSE

Persistence baseline 1 1
Unet-baseline 0.6688 0.6111
SwinNet3D(Ours) 0.5337 0.4959

4. Conclusions and Future Work
We presented the first ever use of 3D Swin-Transformer
in a UNet architecture for short time spatiotemporal fore-
casting, which resulted in competitive results, i.e., an
MSE of 0.5337 and 0.4959, for the core and transfer chal-
lenges (Weather4Cast2021 [17]), respectively, with only
688,080 parameters. The model having only three blocks
of four Swin-transformers in both encoder and decoder



was implemented in PyTorch and trained using Pytorch-
Ligthning [19]. As transformer architecture is still rela-
tively new to vision domain, we plan to explore other
variants of attention layers in the future. Likewise, we
equally plan to explore token mixing using hypercom-
plex networks like sedenion [20]. The code with the
implementation of the proposed approach is available
online at https://github.com/bojesomo/Weather4cast2021-
SwinEncoderDecoder .
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