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Abstract
In the drug discovery pipeline, the lack of multi-scale modeling approaches able of taking into account the observation of
an immunological phenomenon from the molecular to the tissue/organism levels represents a big issue. In this scenario,
agent-based models can partially make up for this issue allowing them to accurately describe all the interactions that occur at
the cellular level and showing the phenomenon at the tissue/organ level thanks to their capability of producing emergent
global behaviors. This short review will present some of these agent-based approaches developed for the simulation of
diseases and the relative immune system response that also try to explicitly include molecular-level aspects such as internal
cell behavior or receptor binding, for a more real and complete representation of the immunological phenomena under
examination.
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1. Introduction
One of the biggest unsolved issues in the drug discovery
pipeline is given by the lack of multi-scale modeling
approaches able of taking into account the observation
of an immunological phenomenon from different points
of view, i.e. from the molecular to the tissue/organism
level.

This aspect is particularly critical for the development
of new vaccines, where researchers make use of bioinfor-
matics approaches only on a limited number of aspects of
the phenomenon (as existing tools are usually designed
to tackle specific questions, such as immunogenicity and
so on) to detect possible candidate drugs or to design pos-
sible vaccines. Such compounds have to be then tested
at later stages to verify their safety and efficacy. So, fur-
ther studies possibly carried on expensive in vitro/in vivo
setups are then needed, but the results are not always
capable of supporting the previous findings.
For example, it is well known that developing a uni-

versal influenza/A has been challenging [1], and various
attempts have fallen short during in vitro and/or in vivo
verification.

To this end, simulation approaches that can be used to
substitute in vivo/in vitro experiments may reduce both
the time-to-market and the development costs. These ap-
proaches, referred to as in-silico approaches, must be ca-
pable of reproducing the target disease and the involved
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entities first; then the possibly relevant immune system
entities (cells and molecules) and their behavior in ab-
sence of any external perturbation (i.e., the treatment);
finally the expected direct (against the disease) and/or
indirect (i.e., to instruct the immune system) effects of
the candidate treatment under investigation.
There are at least 3 possible different levels for such

in-silico approaches that it is worth considering. These
levels, that refer to different levels of magnification of
the natural phenomenon under study, are:

• The molecular-level scale, in which interactions
at the molecular level are taken into account

• the cellular-level scale that mostly considers cell-
cell (and eventually cell-molecule) interactions

• The tissue/organ scale, in which the system is
seen as a whole.

For the molecular-level scale, we can consider both
intracellular and extracellular molecular processes. For
what regards the intracellular point of view, we can have
gene co-expression networks, protein-protein interaction
networks, metabolic and signal transduction pathways
that drive the behavior of cells. Such processes are usu-
ally represented by systems of differential equations and
modeled using specific software such as COPASI [2] or
mathematical formalisms such as Petri nets [3, 4].

At the extracellular level, we can consider all the pro-
cesses involved in recognizing non-self antigens, such as
their binding to major histocompatibility complex (MHC)
class molecules in antigen-presenting cells, and B and T
cell epitope recognition processes. Many recent method-
ologies for solving these tasks are nowadays based on
structural and machine learning algorithms [5, 6].
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For the cellular level scale, in which cell-cell interac-
tions hold, the use of agent-based models (ABMs) repre-
sents the most natural choice. ABMs allow to accurately
describe all the interactions that occur at the cellular
level naturally and simply, making also easier the com-
munication between the modeler and the domain expert
(i.e., the immunologist, biologist, pharmaceutical scien-
tist, or medical doctor). Furthermore, their capability of
producing emergent global behaviors at a higher level as
the sum of the actions of their agents makes ABMs an
exceptional tool to describe immunological phenomena
at the cellular level, obtaining a representation at the
tissue/organ level. In this sense, ABMs can be already
considered multi-scale models in immunology and can
be used in substitution of continuous approaches based
on ODE/PDE systems that are instead frequently used
for tissue scale representation, provided that sufficient
computational resources are available [7].
Many agent models have been developed for repro-

ducing the immune system behavior, however few of
them try to explicitly include also molecular-level as-
pects. These models are either developed to tackle spe-
cific pathologies, or presented as general-purpose plat-
forms and then specialized each time on given diseases.
The goal of this short review is to present some of these
models and approaches. To this end, we will first recall
some crucial aspects of agent-based models for the im-
mune system and how to build them, then we summarize
some of the models and approaches based on ABMs that
include molecular aspects (either intracellular o extracel-
lular) in these cellular to tissue level approaches.

2. Building immune system
enabled ABMs

Although the development of an ABM does not strictly
require the same mathematical knowledge as for differ-
ential equations-based models, it is mandatory to possess
minimal knowledge of computer science and some pro-
gramming skills.
We would like to distinguish between two different

aspects in the implementation of an ABM of IS and that
may influence the required degree of computer science
knowledge. The first aspect is themodeling aspect, which
regards the implementation of the biological knowledge,
including the description of which entities are involved,
and how they act and interact. The second aspect is
instead the simulation aspect, which takes instead care
of the underlying infrastructure that executes the sim-
ulation, performs the movement and the evolution of
the entities, manages memory allocation for the entities
and the physical space, and governs all the accessory
activities like the storage and visualization of the results.
To build from scratch an ABM, a substantial effort is

needed since both the modeling and the simulation as-
pects must be considered and developed. This entitles,
besides the longer developing times, the risk to have im-
plementation errors that may be present not only in the
modeling part (i.e., biological conceptual errors), but also
in the simulation part (i.e., programming bugs). However,
there are some advantages to implement an ABM from
scratch. Since both simulation and modeling parts are
in general partially merged, it is possible to include and
describe in depth any biological aspect without any limi-
tation, having as a result also better simulation speeds.

It is of course possible to implement an ABM by using
some of the general frameworks devoted to the simula-
tion of ABMs. In such cases, less programming knowl-
edge is required, as such frameworks typically require
specific ABM-oriented programming languages that are
easier to understand and learn. The use of a pre-built
ABM simulation framework allows focusing on the mod-
eling part of the problem, as the underlying simulator
part is provided by the framework itself. This speeds
up the development of the model and lowers the risk
of programming bugs and errors. On the other hand,
such models are usually slower than custom models, and
the possibility of defining custom agent behaviors, prop-
erties and functions, as well as the capacity to allow
large-scale simulations, are strictly connected to the flex-
ibility and capabilities of the chosen simulation platform.
Some ABM frameworks have been used quite fruitfully
in the modeling of IS. Among these we recall Netlogo [8],
Swarm[9], Repast[10], Flame and FlameGPU[11].

3. Multi-scale ABMs of the
immune system

While there is a broad historical literature about differen-
tial equations (DE) based approaches in immunology,
ABM literature on this topic is far more recent, par-
ticularly when we concentrate on multi-scale ABM ap-
proaches that include molecular aspects. Here we review
the most relevant ABM models and simulators that deal,
to some extent, with the immune system behavior, privi-
leging the most recent approaches, the approaches that
are still under development, or those that have given
birth to descending projects that are still alive.
One of the first ABM approaches for the modeling of

the immune system function is represented by IMMSIM,
a computer model presented by Franco Celada and Philip
Seiden in the early 90’ [12, 13]. In their work, the authors
present what they call a “generalized cellular automa-
ton” (the term agent-based model was not so common
at that time), which was able to mimic both the cognate
recognition and response of the immune system system
to general pathogens. In this approach, the space rep-
resentation is discretized by means of a hexagonal grid



called lattice. At each time-step, all the entities in the
same lattice point can act and interact with each other
according to pre-defined rules that drive the entities’ be-
havior. Entities may also diffuse from a lattice point to
another in the neighborhood. Agents are used to either
represent cellular immune system entities of the innate
and adaptive response, or pathogens such as viruses and
bacteria. Moreover, this approach includes many molec-
ular entities such as chemokines and cytokines, which
are represented by their concentration per lattice-point.
The model does not explicitly include extracellular re-
ceptors but tries instead to mimic receptor diversity by
using binary strings, and hamming distance between
strings to measure receptor affinity. More specifically, a
piece-wise function calculates an interaction probability
according to the hamming distance of two strings repre-
senting the cells’ receptors. Under a given threshold of
mismatching bits, the function will return no affinity, so
the entities will have zero probability to interact. Over
such a threshold, the function will return a probability
that is proportional to the number of mismatching bits.
While this approachmay appear quite simplistic, it allows
to execute many cell-cell and cell-molecules interactions
rapidly, and its adoption indeed allows to reproduce some
important hallmarks of the adaptive immune system re-
sponse: specificity, memory and discrimination between
self and non-self. From their effort many other mod-
els originated and, while some of them were lost on the
road, others are still actively developed and represent the
state-of-the-art immune system models at the cellular
scale.

Among these models we recall two frameworks named
UISS andC-IMMSIM, defined as general-purpose immune
system simulators and specialized each time for the dis-
ease under investigation. These two frameworks are
written in C, and include both the simulation and the
modeling aspects into one single code.
UISS has been successfully used for optimizing, in

silico, the vaccination schedule of a prophylactic vac-
cine named Triplex against mammary carcinoma [14, 15].
Then it has been used, under the nameMetastasim, with a
similar goal (i.e., optimizing an administration schedule)
but in a different experimental setup, in which the same
vaccine was used as a therapeutic agent against lung
metastases derived by mammary carcinoma [16]. Then,
UISS has been recently used inside the H2020 Project
STriTuVaD to predict the effects of combined immuniza-
tion strategies against tuberculosis [17], and also special-
ized to suggest the best therapeutic options in patients
with Multiple Sclerosis [18]. Finally, UISS-COVID was
used for predicting SARS-CoV-2 dynamics and related
immune system host response [19]. C-IMMSIM, used in-
stead for simulating HIV alone or under HAART therapy
administration [20] and Epstein-Barr virus [21].

While being considered polyclonal models, in the sense

that such models may include various immune system
cells and pathogens with different receptors, these ap-
proaches lack the possibility to include real antigenic
sequences, and this limits their applicability to specific
cases. Furthermore, cells’ internal dynamics are based
on rules derived from immunology rather than driven
by intracellular pathways. So it is not possible to predict
cell behaviors outside the actions established by such
predefined rules.

However, when the binding-affinity is known a priori it
is possible to translate it into a pair of binary strings, one
representing a given antigenic sequence of the entity that
will challenge the immune system (i.e., a pathogen, a drug
or a vaccine), and the other one representing a specific
receptor of the IS family that will be challenged, in such
a way that their interaction will entitle an interaction
probability that is proportional to the in-vivo binding
affinity.

This approach has been used in [22], where the authors
predicted the efficacy of some candidate citrus-derived
adjuvants (to be used instead of Aluminum salts) for
influenza-A vaccines. The methodology applied some
virtual-screening techniques to calculate the interaction
scores of the candidate adjuvants and aluminum salts
(used as a reference value). Then, such scores were used
to build-up a translation function that converts a given
score into a required number of mismatching bits to re-
produce the adjuvants capability to stimulate the im-
mune system. The in-silico experiment predicted Beta-
Sitosterol as the best potential candidate, and this result
was then confirmed by in vitro experiments.

Another UISS extension to reproduce avascular tumor
growth and the involved immune system response was
presented in [23]. A lattice Boltzmann (LB) method (a
computational fluid dynamics technique that avoids solv-
ing the Navier–Stokes equations directly by using instead
a discrete lattice mesh [24]), was used for nutrient distri-
bution and propagation, while the ABM infrastructure
was used to describe the immune system reaction against
the tumor at the cellular level.

Various studies extended the C-IMMSIM framework by
including more features at the molecular level for better
describing either intracellular or extracellular behaviors.
A first extension (called VaccImm) was presented to re-
produce in-silico peptide vaccination in cancer therapy.
The ABM infrastructure, that was already capable of re-
producing the involved cells (immune system and cancer)
behavior as well as molecules (antibodies, antigens and
semiochemicals), was extended by substituting part of
the machinery based on binary strings for receptors’ in-
teractions with real amino acid sequences to represent
molecular binding sites of immune cells [25].
Another C-IMMSIM version deals instead with intra-

cellular aspects. Specifically, C-IMMSIM was extended
to include, at the intracellular level, a Boolean network



with the aim to describe the activation dynamics of a
gene regulatory network driving Th1 and Th2 polariza-
tion [26]. The model has been further extended [27] to
also include T helper cell polarization towards Th17 and
Treg, with a boolean network composed by 40 nodes.

A similar approach was used by Beyer and Meyer-
Hermann[28], with an ABM that includes a set of ODEs
for chemokine receptor internalization. The ABM was
specifically developed to study the formation of cell ag-
gregates and consequent tissue instability in rheumatoid
arthritis.
Dutta-Moscato et al. [29] developed a multiscale

agent-based in silico Model of Liver Fibrosis Progression.
The liver fibrosis ABM (LFABM) includes five types of
agents (parenchymal cells, inflammatory cells, collagen-
producing cells, and structural elements that define lob-
ules). Agents can release various factors, such as tumor
necrosis factor alpha, transforming growth factor beta 1,
high mobility group box protein 1, that can influence the
agent behavior. LFABM made use of literature-derived
rules to the inflammation and fibrosis in a portion of a
chemically injured liver.
Using Netlogo as a starting point [8], Gary An devel-

oped the epithelial barrier agent-based model (EBABM),
an ABM that includes the enterocytes of the gut and their
response to inflammatory mediators such as nitric oxide
(NO) and to pro-inflammatory cytokines, including tu-
mor necrosis factor, interleukin-1 and interferon-gamma.
To this end, tight junction protein metabolism and pro-
inflammatory signaling cascades were included in the
model as considered responsible for gut epithelial barrier
function [30].
ENISI-MSM is instead a multi-scale platform that

makes use of an agent-based framework for cell-cell in-
teraction and movement based on Repast. This frame-
work is connected to a module that uses the COPASI
[2] ODE/SDE (ordinary/stochastic differential equation)
solver for representing intracellular pathways, and an
integrated PDE (partial differential equation) simulator
for molecule gradient and diffusion. The model has been
used to obtain the immune response in the gut at a high
resolution [31] thanks to the use of the REPAST-HPC
library [32].

4. Conclusions
The development of multi-scale ABMs of the immune
system may help to address various immunological ques-
tions on how diseases happen and evolve, on what is the
role of the immune system in developing and contrasting
such diseases, and on if and how candidate treatments act.
However, there are still some major issues that need to be
solved. Models from the molecular scale are commonly
developed exploiting methodologies that are usually far

from the concepts and approaches for ABMs. To this end,
it would be important to establish a common language
for the communication of the models at different scales.
On the other hand, the molecular and cellular scales can
be in general developed independently, and put together
at later times, making easier the development of these
multi-scale hybrid models.
Another problem with multi-scale modeling in im-

munology is correlated to the different spatiotemporal di-
mensions of the processes that happen at different levels.
Usually, the phenomena at a lower scale have reduced di-
mensions, but they happen and are repeated many times
during one single instance of the phenomena at a higher
level. For example, the development of Tuberculosis may
require years, but the involved cells’ interactions may
happen billions of times in that period. However, sim-
ulation of these processes usually does not require less
time as the modeling scale goes down, and this makes
difficult the development of comprehensive models. In
this case, it would be (in principle) possible to make use
of pre-calculated results using look-up tables for a given
subset of results referring to the molecular-level mod-
els and use interpolation (if the low-level solutions are
smooth enough) or lazy-evaluation for obtaining, when
needed, the missing points.

Furthermore, the accuracy of the low-level molecular
models may negatively influence the results of the model
at a higher scale. For example, the accuracy of B cell
epitope prediction tools is generally rather poor, having
AUC values ranging from 0.6 to 0.7 [6]. In such a case, it is
important to execute extensive robustness and sensitivity
analyses on the multi-scale models to estimate how and
in what measure these inaccuracies influence the global
behavior of the model.
Finally, to reach a real tissue/organ scale, beyond a

more accurate anatomical description that should be
taken into account for the involved organs (such as
lymph-nodes), it is important to have the capability of re-
producing the behavior of (at least) millions of agents, and
it is well known that this aspect represents the Achille’s
heel of any ABM approach. In this case specific HPC [32]
and/or GPU [11] enabled ABM infrastructures may come
to the aid to mitigate this issue.
In conclusion, despite the existing challenges and is-

sues, we expect in the coming years that the contribu-
tion of these multi-scale models will become even more
important and substantial, helping all the researchers
from the immunology and life-science fields in general
in better understanding disease mechanisms and thus in
developing faster more effective treatments.
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