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Abstract
Remotely sensed imagery is a well-established data source for spatial predictions, however,it comes with some disadvantages.
Here, we explore how another data source could be used for spatial predictions, namely, geospatial vector data, by looking at
a specific case study: LULC classification. We show how vector data can be encoded for an artificial neural network, making
it geographicly aware and enable it to predict LULC classes. We use two different encoding schemes as well as two different
artificial neural network architectures. Our results suggest that geospatial vector data can be used for LULC classification and
that the type of encoding and artificial neural network plays a significant role.
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1. Introduction
A series of spatial prediction tasks, such as land use
land cover (LULC) classifications, are based on remotely
sensed imagery as input data. Electromagnetic re-
flectance of the physical surface enables to gain knowl-
edge of the Earth and to base prediction models based
on it. However, using remotely sensed imagery comes
with two major disadvantages: (1) Electromagnetic re-
flectance does not capture all relevant geographic phe-
nomena, such as land use, and may even be inconsistent
across multiple sensor types and scenes [1]. (2) The raster
model introduces two assumptions into the model: That
the world can be tessellated in a regular manner and is ho-
mogeneous within a pixel [2]. As such, the raster model
also does not maintain topological characteristics of real-
world objects [3]. In this work we probe the usage of
another data source for this purpose, namely geospatial
vector data, which is expressed in geometric primitives
(polygon, line strings, points) and attributes (e.g. type of
object, height, etc.) describing corresponding geographic
objects (geo-objects).

Geospatial vector data has attributes that make it a
challenging task to be used as input for a deep neural
network. A deep neural network requires structured and
well-defined data, whereas vector data is highly irregular.
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For example, geo-objects might be scattered irregularly in
a region and contain descriptions such as coffee shop, or,
supermarket. To be able to create a deep learning model,
the artificial neural network (ANN) architecture needs
to be able to deal with this irregular geographic and se-
mantic data. Here, we use LULC classification as a case
study to explore how geospatial vector data can be used
in combination with ANNs for spatial prediction tasks.
To be able to deal with the irregular nature of geospatial
vector data, we employ two encoding techniques which
transform the vector input data to a feature space that
can be used by an ANN. The outcome of this work is
two-fold: (1) We show that geospatial vector data can be
used for LULC classification; (2) we show that the type
of encoding used for transforming geospatial vector data
as well as the ANN architecture have an impact on the
final classification performance. The first section briefly
discusses the problems which appear when using geospa-
tial vector data as input for ANNs. Then, we describe
the experiments carried out and provide the preliminary
results. In the end, we discuss our findings and outline
future research.

2. Geospatial Vector Data and
Artificial Neural Networks

Unlike raster data, (geospatial) vector data is irregular. A
raster dataset tessellates a region of interest (ROI) into
pixel, which is an ideal data model to be used for various
deep learning architectures, as it is already formatted in a
desired regular format that can be forwarded to an ANN
right away. In contrast, geo-objects, such as a house, a
street, a garden, a river, etc. are described as geometric
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primitives. A polygon for example might describe the
shape of a house, a linestring a street, or, a point geom-
etry the location of a point of interest. Next to these
geometric descriptions, geo-objects contain attributes,
which describe the corresponding geo-object. Such at-
tributes can be, for example, the type of geo-object, such
as a coffee shop, a bar, or a university. This data model
may allow for a precise description of geographic and
extensive auxiliary information (attributes) but is irregu-
lar and cannot be used in its native form by ANNs. This
irregularity has two aspects: (1) a geometric and (2) a
semantic aspect.

Ad 1: Training samples would have a varying num-
ber of geo-objects. ANNs however require input vectors
with a fixed number of input features. Furthermore, geo-
objects come in three different geometric primitives –
ANNs can also not deal with this aspect, as they do not
have the capabilities to represent this geometric informa-
tion without loss.

Ad 2: Semantics of a geo-object, which describe it, are
often of nominal scaling (e.g. restaurant, or university).
However, an ANN requires numerical input, not a nomi-
nal one. One may simply transform each nominal value
to a token number. However, this would introduce a flaw
into the ANN-based model as the distance between any
two token values will introduce a wrong semantic sim-
ilarity in feature space. For example, coffee shop might
have a value of 128, restaurant a value of 1076 and school
a token value of 203. These values would suggest that a
coffee shop is semantically more similar in feature space
to school than to restaurant. Such a tokenization of nom-
inal values is a standard procedure in natural language
processing (NLP) [4] and can be used to train language re-
lated models by embedding words. However, geographic
data, which is used here, does not exhibit a sequential
character such as a sentence observed in NLP. There-
fore methods from NLP are not suitable to model the
geographic distribution of semantic features. The encod-
ings used here overcome this issue and cherish the two
dimensional (geographic) distribution of the semantics.

In this work, we used two encoding schemes which
enable us to transform geospatial vector data into a fea-
ture space that tackles these two problems. As such, we
take geospatial vector data from LinkedGeoData1, which
describes each geo-object semantically using an ontol-
ogy, and aim at predicting LULC over Austria. Prior work
suggests that geospatial semantics are highly associated
with LULC classes [5]. The ground truth is obtained from
CORINE (Level 2)2.

1http://linkedgeodata.org/
2https://land.copernicus.eu/pan-european/corine-land-cover

3. Methodology
We used two input datasets for the classification experi-
ments over Austria, which is the ROI: (1) Geospatial vec-
tor data from LinkedGeoData; (2) CORINE LULC raster
data. There are 13 different LULC classes in Austria, de-
fined by CORINE Level 2, described by grid-cells of size
100m x 100m. For each LULC class, 12,000 grid-cells were
selected randomly, each of which serves as ground truth
for the corresponding sample. Then, for each of the grid-
cells, geospatial data from LinkedGeoData was obtained
for the area 1km around the corresponding cell center.
This data would then ultimately be used to predict the
LULC class of the corresponding LULC grid-cell. How-
ever, in order two be able to do so, the vector data was
transformed. Two encoding schemes were used for this
purpose, the Geospatial Configuration Matrix [6], and
an encoding that was developed within the realm of this
work. We denote this encoding as the Channel Encoding.

3.1. The Geospatial Configuration Matrix
The Geospatial Configuration Matrix (GSCM) computes
local statistics of every present class of geo-objects (see
figure 1b for an illustration). It represents the mean,
minimum, maximum of the distances and azimuths of all
geo-objects of a particular type, relative to the LULC grid-
cell center. For example, all geo-objects of type restaurant
around a LULC grid-cell (distance is 1km) are obtained,
then, all azimuths and distances between the restaurants
and the LULC grid-cell are computed. Afterward, the
mean, minimum and the maximum of these distances
and azimuths were computed, which provides 6 features
with regards to class restaurant. There are 805 geo-object
classes within the ROI, which were not defined by us,
but by the ontology of LinkedGeoData. As a result, the
GSCM provides 4830 (6 features x 805 potential classes)
features for each sample. LinkedGeoData describes the
geo-objects with an Web Ontology Language (OWL) on-
tology. As such, each geo-object can be an instance of
multiple classes. For example, a pet-shop is also a shop as
well as an amenity.

3.2. The Channel Encoding
Another encoding scheme, denoted as the Channel En-
coding, was developed within this work (see figure 1a).
The focus of this encoding is to represent the geographic
distribution of the geo-objects while avoiding the prob-
lem of a wrong semantic similarity. For this purpose,
an image stack having a width and height of 1km, 805
channels and a pixel resolution of 10m x 10m was created
for each sample. Each channel represents the geographic
distribution of one OWL class of geo-objects, as each



(a) The Channel Encoding scheme. Each layer in the
image stack represents the geographic distribu-
tion of geo-objects of a particular OWL class (e.g.
pet-shop). Each pixel represents the number of
geographic objects of this OWL class that appear
within the corresponding pixel. Here, dark blue
pixels denote higher numbers whereas light blue
pixels denote a lower number of geo-objects.
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(b) The GSCM computes six local statistics for each
class of geo-objects around a grid-cell 𝑐𝑒𝑗 (which
is obtained from CORINE level 2). The distance
threshold around a grid-cell is denoted 𝑑𝑚𝑎𝑥 and
has to be defined. Here, we use a threshold of 1km
only. In this figure, the different shapes denote
different classes of geo-objects. For example, all
pentagons could be of class Restaurant. Azimuths
(𝑎1 to 𝑎3) and distances (𝑑1 to 𝑑3) are used to
calculate six descriptive statistical values for this
class of geo-objects. Source of image: [6]

Figure 1: The two different encodings used in this work.

pixel value is the number of geo-objects of this particular
class which are present within the same pixel.

3.3. The artificial neural network
architectures

Within this work we employ two different ANN architec-
tures: The MLP-Mixer [7] and the Perceiver architecture
[8]. The MLP Mixer architecture is based on fully con-
nected layers only, however, they are applied layer-wise
and pixel-wise. As such, it is a competitive alternative
to convolutional neural networks and visual transformer
networks, which are usually utilized for image vision
tasks. The Perceiver architecture has two main char-
acteristics: (1) It uses Transformer mechanisms which,
in addition, use a reduced latent space as a bottleneck.
This enables to speed up the computation. (2) It uses a
parametrized Fourier feature encodings which enables
to retrieve attentions, based on relative positions. As
such, the Perceiver architecture is designed as a general-
purpose ANN and was utilized for image data, sound
data, and 3D point clouds [8].

3.4. The experiments
Once each encoding was performed for the input data,
they were forwarded to the two ANNs used in this work,
namely, the MLP-Mixer and Perceiver network. Finally,

we calculated the overall accuracy as well as kappa coef-
ficient for each of these four experiments (two encodings
times two networks). Please note that the hyperparam-
eters for each encoding were the same. In order to find
a set of suitable hyper parameter, a random search was
performed, as literature suggest its superiority over a
systematic search, such as a grid search [9]. The chosen
hyper parameters can be seen in table 1.

4. Results, Analysis, and
Discussion

Table 2 shows the results of the accuracy assessment of
the four experiments. Using the Channel Encoding and
the Perceiver yielded the highest accuracy of 72.0% with a
kappa coefficient of 0.69. However, using the Channel En-
coding yielded the lowest accuracy once it was used with
the MLP-mixer network. In contrast, using the GSCM
yielded the highest accuracies once used with the MLP-
Mixer (overall accuracy of 70.2% and kappa coefficient of
0.68). The Perceiver architecture and Channel Encoding
may have yielded the best results as the Perceiver is a
general-purpose ANN which can handle a high number
of channels. Additionally, the Perceiver uses a Fourier
feature encoding, which is parametrized. As such, it can
compare values based on relative positions. This capa-
bility enables the network to learn meaningful spatial
relationships which are present within the entire extent



Table 1
The hyperparameters of the MLP-Mixer (left) and Perceiver (right) architecture used in this work. The train and test split of
the data was 80% and 20%, respectively. The hyperparameters were searched for in a random search manner.

MLP-Mixer Perceiver
Latent dimensions 128 latent dimensions 512
Number of MLP-Mixer modules 6 cross heads 1
dropout 0.60 attention dropout 0.4

fully connected dropout 0.4
latent heads 4
number of iterations 10

Table 2
The results of the accuracy assessment of the experiments. The geographic extend used for each sample was the same (1 km).

Network Task OA (dmax = 1km) Kappa (dmax = 1km)

MLP-Mixer[7]

GSCM 70.2 % 0.68
Channel
Encoding

42.2% 0.37

Perceiver[8]

GSCM 65.1 % 0.62
Channel
Encoding

72.0% 0.69

of the Channel Encoding. In contrast, the MLP-Mixer does
not apply such strategies which can potentially explain
the poor performance when the Channel Encoding is used
with it and might suggest that attention mechanisms com-
bined with learnable position encoding can significantly
help to detect meaningful spatial relationships. Another
characteristic of the Perceiver might have improved the
accuracies, once the Channel Encoding was used: it is
permutation invariant to its input. As such, certain spa-
tial constellations may have appeared in a transformed
manner (e.g. rotated or shifted) but still be captured as
related and meaningful. A potential explanation for the
MLP-Mixer to have a lower classification performance
when using the Channel Encoding than when using the
GSCM, could be the following: The MLP-Mixer model
transforms every patch of the input into a latent space,
using a multilayer perceptron (MLP). This patch size is set
by the number of channels (805 in the case of the Channel
Encoding) and a defined width and height. Here, we used
the entire extent of 2km (two times 1km) as width and
height, covering the entire extend of a sample. While it
might be more difficult for the MLP to compute a mean-
ingful latent representation for a bigger patch than for a
smaller one, a smaller patch size might hamper to find
meaningful spatial relationships. Thus, the MLP-Mixer
model might not have been able to compute meaning-
ful latent representations as the input patches were too
big. In this work we explored only one dmax threshold
(1km). However, [6] found that this value can have a
significant impact on the performance of the spatial pre-
diction model. As such, we would expect that the LULC
classification performance would change here too, once
dmax is changed. However, we leave the exploration of

this hyper parameter to future research.

5. Conclusions and Future
Research

These preliminary results suggest that geospatial vec-
tor data can be used for a spatial prediction task like
LULC classification. They also indicate that the way how
geospatial vector data is encoded plays a crucial role.
Also, the type of network plays an important role: The
Perceiver network was able to learn meaningful features
from the Channel Encoding, which was not the case with
the MLP-Mixer. In this work, we described a first step
towards how geospatial vector data can be encoded for
using it with deep neural networks. As such, future re-
search can explore novel ways how vector data can be
efficiently encoded. Furthermore, ANN architectures that
do not require a prior encoding could be explored. In
this work we explored using vector data alone, however,
future research could focus on how vector data and im-
agery, such as hyperspectral [10] or multispectral optical
imagery [11], could be fused into one enhanced feature
space.
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