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Abstract
Deep learning algorithms have shown their great potential in the hyperspectral image (HSI) classification task. However,
training these models generally requires a large number of training samples, which are laborious and time-consuming to
collect in practice. To reduce the annotation burden, we propose to conduct HSI classification with point-level supervision,
where only one annotated pixel in each category would be used for training. To this end, a novel region-growing fully
convolutional network (RGFCN) is proposed in this study. The key idea of RGFCN is to expand the annotated regions from
the original one point in each category with the region growing technique. As the annotated region grows, the network
could also get stronger supervision, which in turn, helps to produce more accurate pseudo labels in the region growing. To
better train the proposed RGFCN, we further adopt the entropy minimization strategy to assist the training in those unlabeled
regions. Experiments on two benchmark HSI datasets demonstrate the effectiveness of the proposed approach.
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1. Introduction
As an important data source for Earth Observation, hy-
perspectral images (HSIs) can record detailed informa-
tion from the Earth’s surface in both spatial and spectral
domains with hundreds or even thousands of continual
spectral bands. Because of this property, HSIs have been
widely used in many applications, such as environment
monitoring, urban planning, and resource exploration
[1]. To achieve these applications, HSI classification is
the fundamental task that aims to assign a class label for
each pixel in the image.

Witnessing the great development of deep learning
algorithms in the computer vision field, recent research
has attempted to use advanced deep neural networks
to tackle the HSI classification task [2]. However, con-
sidering the high complexity of deep neural networks,
training these models generally requires a large num-
ber of accurate pixel-wise annotations, which are very
laborious and time-consuming to collect in practice [3].

The main burden of assigning pixel-wise labels for a
remote sensing image comes from the boundary regions
of different objects. Figure 1 presents an example. It
can be observed that annotating the detailed boundaries
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(a) (b) (c)

Figure 1: An illustration of different types of annotations for
HSI classification. (a) The false color image. (b) Point-level
annotation used in this work. There is only one pixel in each
category annotated with ground-truth label. (c) Pixel-wise
annotation used in previous study.

for each object in the HSI is difficult since the spatial
distribution of the Earth’s surface is very complex. To
reduce the annotation burden, this paper proposes to
conduct HSI classification with point-level supervision,
where only one pixel in each category is annotated with
the class label. As shown in Figure 1 (b), the collection
of point-level annotation is much easier for an annotator
expert.

Compared to the traditional classification scenario
where the machine learning models could obtain suf-
ficient training data, classification with point-level su-
pervision is much more challenging especially for su-
pervised deep learning models which naturally require
a large training set. Besides, the complex spatial distri-
bution and the spectral heterogeneity of objects in HSIs
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Figure 2: An illustration of the proposed region-growing fully convolutional networks.

make it more difficult to achieve satisfactory classifica-
tion performance with weak supervision. To tackle the
aforementioned challenges, we propose a region-growing
fully convolutional network (RGFCN) for HSI classifica-
tion with point-level supervision. The initial inspiration
of this work comes from an observation that adjacent
pixels in remote sensing images, in particular those that
are of high spatial resolution, tend to belong to the same
category considering the spatial continuity of objects.
To this end, we propose a novel region-growing mech-
anism that helps to expand the annotated regions from
the original one point in each category. As the anno-
tated region grows, the network could also get stronger
supervision, which in turn, helps to produce more accu-
rate pseudo labels in the region growing. To better train
the proposed RGFCN, we further adopt the entropy mini-
mization strategy to assist the training in those unlabeled
regions. Experiments on two benchmark HSI datasets
demonstrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. Section
2 describes the proposed RGFCN in detail. Section 3
presents the experiments in this study. Conclusions and
other discussions would be made in Section 4.

2. Region-Growing Fully
Convolutional Networks

One of the main challenges of HSI classification with
point-level supervision comes from the insufficiency of
training samples [4]. To alleviate this problem, we pro-
pose to use the region growing mechanism to gradu-
ally expand the training samples from the original one
pixel in each category. The initial inspiration of this idea
comes from an observation that neighboring pixels tend
to belong to the same category considering the spatial
continuity of ground objects [5]. Thus, a natural idea is
to conduct region growing and network training simulta-

neously. As the annotated training samples expand, the
network could get stronger supervision, which in turn,
would also help to generate more accurate pseudo labels
in the region growing.

Based on the aforementioned idea, we propose a
region-growing fully convolutional network (RGFCN),
as shown in Figure 2. In what follows, we will describe
the proposed region-growing mechanism and the opti-
mization of the network in detail.

2.1. Region-Growing Mechanism
Formally, let 𝑋 ∈ Rℎ×𝑤×𝑛 be the input HSI, where ℎ,
𝑤, and 𝑛 are the height, width, and the number of bands
in the image, respectively. Let 𝐹 (·) denote the mapping
function of the backbone network, and 𝑃 = 𝐹 (𝑋) ∈
Rℎ×𝑤×𝑘 be the corresponding probability map of 𝑋 ,
where 𝑘 is the number of total categories. Recall that
our goal is to expand the annotated regions iteratively.
To this end, at each iteration in the training phase, we
visit all labeled pixels 𝑥𝑙 ∈ 𝐿, where 𝐿 denotes the set
that collects the locations of labeled pixels at the current
iteration. Specifically, for each 𝑥𝑙 ∈ 𝐿, let 𝑝 ∈ [1, 𝑘] be
its label and 𝐶8 denote the 8-connectivity neighborhood
regions of 𝑥𝑙. Then, for each unlabeled pixel 𝑥(𝑢,𝑣) ∈ 𝐶8,
the following criterion is used to update its label:

𝑇ℎ𝑒 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑥(𝑢,𝑣) ← 𝑝, 𝑖𝑓

{︃
argmax

(︀
𝑃(𝑢,𝑣,𝑝′)

)︀
= 𝑝

𝑃(𝑢,𝑣,𝑝) ≥ 𝜏,

(1)
where 𝑃(𝑢,𝑣,𝑝′) denotes the probability of the 𝑝′th class
at position (𝑢, 𝑣), and 𝜏 is a confidence threshold.

In this way, the annotated regions could gradually
expand from the original one pixel in each category.

2.2. Optimization
Obviously, the quality of the expanded annotation de-
pends largely on the accuracy of the probability map 𝑃
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Figure 3: Classification maps for the Pavia University dataset with point-level supervision. (a) The false color image. (b)
Ground-truth map. (c) SpeFCN only. (d) SpeFCN-RGFCN. (e) SpaFCN only. (f) SpaFCN-RGFCN.
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Figure 4: Classification maps for the Indian Pines dataset with point-level supervision. (a) The false color image. (b) Ground-
truth map. (c) SpeFCN only. (d) SpeFCN-RGFCN. (e) SpaFCN only. (f) SpaFCN-RGFCN.

in (1). To constrain the optimization of the network, we
first define the cross-entropy loss ℒ𝑐𝑙𝑠 on the labeled set
𝐿 as:

ℒ𝑐𝑙𝑠 = − 1

|𝐿|
∑︁

(𝑢,𝑣)∈𝐿

𝑘∑︁
𝑖=1

𝑌(𝑢,𝑣,𝑖) log
(︀
𝑃(𝑢,𝑣,𝑖)

)︀
, (2)

where 𝑌 is the label map at current iteration.
Note that the annotations in 𝑌 would be very sparse

in practice since there are a lot of unlabeled samples. To
better train the network and apply constraint on those
unlabeled regions, the entropy minimization strategy is
adopted [6]. In fact, the generated probability map 𝑃
behaves as a discrete distribution over different classes.
If the network has very low confidence in recognizing
the class label in position (𝑢, 𝑣), its probabilities 𝑃(𝑢,𝑣,𝑖)

would be evenly spread in different classes. In this case,
the entropy at position (𝑢, 𝑣) would also be large. Thus,
to encourage the network make more confident predic-
tions on those unlabeled regions, the entropy minimiza-
tion loss ℒ𝑒𝑛𝑡 can be defined as:

ℒ𝑒𝑛𝑡 = −
1

|𝑈 | log (𝑘)
∑︁

(𝑢,𝑣)∈𝑈

𝑘∑︁
𝑖=1

𝑃(𝑢,𝑣,𝑖) log
(︀
𝑃(𝑢,𝑣,𝑖)

)︀
,

(3)
where 𝑈 denotes the set that collects the locations of
current unlabeled pixels. With the constraint in (3), the

network would be more likely to produces high-confident
predictions.

The final optimization of the network can be formu-
lated as:

min
𝜃
ℒ𝑐𝑙𝑠 + 𝜆𝑒𝑛𝑡ℒ𝑒𝑛𝑡, (4)

where 𝜃 denotes the parameters in the backbone network,
and 𝜆𝑒𝑛𝑡 is a weighting factor for the entropy minimiza-
tion loss.

Note that the optimization of the network and the
region growing procedure are simultaneous. At each
iteration, we first use the back-propagation algorithm
to update the parameters 𝜃. Then, the labeled regions
𝐿 and the unlabeled regions 𝑈 get updated through the
region growing mechanism.

3. Experiments

3.1. Data Description
The Pavia University dataset1, and the Indian Pines
dataset1 are utilized to evaluate the performance of the
proposed method. For each category in both datasets, we
randomly select 1 labeled pixel in each category from the
ground truth data to make up the original training set,
while the remaining samples are used as the test set.

1http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes
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Table 1
Quantitative results of the Pavia University dataset.

Backbone Model OA (%) 𝜅 (%) AA (%)

SpeFCN
Backbone Only 48.77 38.24 57.02

RGFCN 55.16 42.55 62.48

SpaFCN
Backbone Only 45.17 34.29 48.21

RGFCN 62.27 49.49 51.45

Table 2
Quantitative results of the Indian Pines dataset.

Backbone Model OA (%) 𝜅 (%) AA (%)

SpeFCN
Backbone Only 27.01 18.61 42.21

RGFCN 41.05 30.72 35.35

SpaFCN
Backbone Only 30.56 23.43 38.10

RGFCN 37.98 31.22 51.92

3.2. Performance Evaluation
In this subsection, we report the classification results of
the proposed RGFCN. Two different backbone networks
including the SpeFCN [7], and SpaFCN [7] are adopted to
implement RGFCN, respectively. The confidence thresh-
old 𝜏 , and the weighting factor 𝜆𝑒𝑛𝑡 are set as 0.3 and
0.01 in the experiments, respectively. The overall accu-
racy (OA), kappa coefficient (𝜅), and average accuracy
(AA) are utilized to quantitatively estimate different meth-
ods. We implement the experiments using the PyTorch
platform with an Intel Xeon E5-2678 2.50-GHz CPU and
one NVIDIA GeForce RTX 2080 Ti GPU.

As shown in Table 1 and Table 2, the existing state-of-
the-art deep neural networks like SpeFCN and SpaFCN
can hardly yield good performance in both datasets since
there is only one labeled pixel for each category in the
training set. By contrast, with the help of the proposed
RGFCN, the performance gets dramatically improved.
Take the result of the SpeFCN on the Indian Pines dataset
for example. While the backbone network can only yield
an OA of about 27%, the OA of RGFCN can reach more
than 41%, which outperforms the previous one with
about 14%. Similar phenomenons can be observed in
other scenarios.

To visually evaluate the classification results, we fur-
ther present the classification maps in Figure 3 and Figure
4. It can be observed that there exist a lot of salt and pep-
per noises in the results of SpeFCN and SpaFCN due to the
insufficiency of training samples. By contrast, RGFCN
can significantly improve the quality of the classification
maps especially for objects with large spatial sizes like
meadows.

4. Conclusions and Discussions
This paper proposes a region-growing fully convolutional
network (RGFCN) for HSI classification with point-level
supervision. To tackle the challenge of insufficient train-
ing samples, a novel region growing mechanism is pro-
posed. Besides, the entropy minimization loss is adopted
to further constrain the training on those unlabeled re-
gions. Experiments on two benchmark HSI datasets
demonstrate the effectiveness of the proposed method.

Since the performance of the whole framework de-
pends largely on the quality of the region growing mech-
anism, once wrong annotations are included in the ex-
panded labeled regions, the network may be misguided
to make wrong predictions. Thus, we will try to further
improve the region growing strategy to better filter out
those unreliable samples in our future work.
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