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Abstract
Recently, graph neural network (GNN) has drawn increasing attention for hyperspectral image (HSI) classification, and there
are many related works have been proposed. However, previous works are focus on either the superpixel-level local spatial
information or the pixel-level global spectral information. In this paper, a novel Graph Neural Sparsification Network (GNSN)
is proposed for HSI classification. In our method, a fully connected graph is adaptively constructed to make full use of local
spatial information and global spectral information. Besides, we apply a neural sparsification technique to remove potentially
task-irrelevant edges in case of misleading message propagation. The resulting network (GNSN) is end-to-end trainable. We
conduct experiments on three popular benchmarks, including Indian Pines, Pavia University, and Kennedy Space Center, and
achieve state-of-the-art performance on all three datasets.
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1. Introduction
HSI classification is a fundamental and challenging prob-
lem in HSI processing [1], which aims to assign a specific
label to each pixel in the image. It has been widely ap-
plied to many scenarios, such as military target detection,
vegetation monitoring, and disaster prevention and con-
trol.

Convolutional neural networks (CNNs) have proven
their effectiveness in image processing by automatically
extract discriminative features. Many CNN-based vari-
ants have been designed for HSI classification from the
1D-CNN to the 3D-CNN, from the single CNN to the
hybrid CNN. Although the existing CNN-based methods
have achieved good performance to some extent, they
need many training parameters and tend to be overfitting
due to the scarcity of the training samples. Meanwhile,
CNNs tend to blur the classification boundary using a
fixed shape kernel around the central pixel to extract
features. Therefore, the accurate classification of HSI is
still challenging.

To build more flexible models, many GNN-based meth-
ods have been proposed for HSI classification. Generally,
there can be two categories according to the types of
adjacent graph. One is pixel-level adjacent graph[2, 3].
This type of graph can directly propagate information
between nearby and distant regions, while it takes each
pixel as a node of a graph, leading to a massive amount of
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computation and limits its applicability. Superpixel-level
adjacent graph is another commonly used graph for HSI
classification [4, 5], which is usually accomplished by a
superpixel segmentation algorithm. However, this graph
only focuses on the local structure of the data. In order to
capture the long-range contextual information, multiple
convolution layers are required to be stacked, which is
highly inefficient and will bring potential concerns of
over-smoothing.

Aiming to address the above issues of the superpixel-
level adjacent graph, we propose a novel GNN-based HSI
classification algorithm (GNSN), in which a fully con-
nected graph is adaptively constructed to make full use
of local spatial and global spectral information. Further-
more, in order to avoid potentially misleading message
propagation, we apply the neural sparsification technique
to remove potentially task-irrelevant edges. The main
contributions of this paper are summarized as follows:

• We incorporate both local and global information
by a learnable graph, which will automatically
decide whether the model will likely pay more at-
tention to the nodes near it or pay more attention
to the nodes far away from it;

• GNSN applies a sparsification strategy that fa-
vors subsequent classification task by removing
potentially task-irrelevant edges;

• Experiments on three benchmark HSI datasets
show that GNSN outperforms other compared
HSI classification methods.
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Figure 1: Schematic depiction of the proposed Graph Neural Sparsification Network. GNSN first assigns nearby pixels with
similar features to the same vertex after graph projection. And then, a learned adjacent matrix that captures both local and
global structure is obtained through adaptive graph construction. Under the guidance of sparsification, the graph removes
most task-irrelevant edges and is subsequently fed into a two-layer GCN to get the high-level feature map. After the graph
reprojection, the corresponding coarse segmentation result is obtained. Finally, the refined feature map is fused with the
original feature to get the final refined classification result.

2. Approach
The task for hyperspectral classification aims to predict
the labels of all the pixels in the HSI by a classification
model given the supervised data set. As illustrate in Fig.
1, we present a Graph Neural Sparsification Network for
the HSI classification model to adaptively capture both
local and global contextual information. GNSN takes
the original image data 𝑋 ∈ R𝐻×𝑊×𝐵 and the asso-
ciation matrix 𝑄 ∈ R𝐻𝑊×𝑁 produced by a superpixel
segmentation algorithm as input, where 𝐻 , 𝑊 𝐵 and 𝑁
represent the height, width, the number of bands, and the
number of superpixels respectively. By treating superpix-
els as the vertexes in the graph, we transform the image
to the graph representation 𝑉 ∈ R𝑁×𝐵 . Applying the
adaptive graph construction discussed below, we can
obtain the similarity matrix 𝐴 ∈ R𝑁×𝑁 that captures
both local and global structure in the image data. Subse-
quently, the sparsification operation removes most task-
irrelevant edges in the graph. Following the paradigm of
GCN, a two-layer GCN network is applied on the graph to
further propagate information, resulting in a high-level
feature map ̃︀𝑉 ∈ R𝑁×𝐶 , where 𝐶 is the dimension of
the feature map. After the graph reprojection, the corre-
sponding coarse segmentation result ̃︁𝑋 ∈ R𝐻×𝑊×𝐶 is
obtained in the original grid form. Finally, the refined fea-
ture map concatenated with the original feature passes
through a conventional 1× 1 convolutional layer to get
the final classification result. GNSN consists of four main
blocks: Graph Projection and Reprojection, Graph Con-
struction, Sparsification, and GCN. In the following, we
will describe each block in detail.

Graph Projection and Reprojection. To reduce the

computational complexity and meanwhile preserve the
local structure of HSI, the GNN-based models usually
work on superpixel-based nodes but not the pixel-based
nodes. Similarly, we first apply the simple linear iterative
clustering (SLIC) method to partition the entire image
into many spatially connected superpixels. By treating
each superpixel as a graph node and taking the average
spectral signatures of each superpixel as the node feature,
the graph projection assigns 𝑋 to a set of vertices and
gets the feature matrix 𝑉 of the vertices in the graph by
the form of matrix multiplication as follows

𝑉 = 𝑄̂
𝑇

Flatten(𝑋), (1)

where 𝑄̂ is the normalized 𝑄 by column, i.e., 𝑄̂𝑖,𝑗 =
𝑄𝑖,𝑗/

∑︀
𝑚 𝑄𝑚,𝑗 . Flatten(·) denotes flattening the HSI

data by the spatial dimension, and the association matrix
𝑄 ∈ R𝐻𝑊×𝑁 is introduced by SLIC that is defined as

𝑄𝑖,𝑗 =

{︃
1, 𝑖𝑓 𝑥𝑖 ∈ 𝒮𝑗 ,

0, otherwise,
(2)

where 𝒮𝑖 is the 𝑖-th superpixel that consists of several
homogeneous pixels.

We perform graph reprojection to transform the result-
ing features back to the original coordinate space. The
graph reprojection operation takes the inputs of trans-
formed vertex features ̃︀𝑉 and the assignment matrix 𝑄,
and produces the corresponding 2D feature map ̃︁𝑋 . This
operation is defined as

̃︁𝑋 = Reshape(𝑄 ̃︀𝑉 ), (3)



where Reshape(·) denotes restoring the spatial dimension
of the flattened data.

Graph Construction. The graph (which is the adja-
cency matrix in our formulation) is constructed according
to the similarity between different nodes. Denote 𝐴𝑖𝑗 as
the (𝑖, 𝑗)-element of the adjacency matrix 𝐴, we have:

𝐴𝑖𝑗 = 𝑤𝑇 [𝑊 𝑇𝑣𝑖||𝑊 𝑇𝑣𝑗 ] + 𝑏(𝑣𝑖,𝑣𝑗), (4)

where 𝑏(𝑣𝑖,𝑣𝑗) = 1 if the 𝑖-th region and the 𝑗-th region
are spatially related, and otherwise 𝑏(𝑣𝑖,𝑣𝑗) = 0. Com-
pared to the adjacency graph described in [5, 6], where
the receptive field is restricted to the neighbors, we can
see that Eq. (4) provides both global and local informa-
tion. And the learnable graph will automatically decide
whether the model will likely pay more attention to the
nodes near it or pay more attention to the nodes far away
from it.

Sparsification Network. We focus on 𝑘-neighbor
graph for graph neural sparsification. The 𝑘-neighbor
graph is obtained by repeatedly sampling 𝑘 edges for
each node in the original graph. To make samples dif-
ferentiable, we apply Gumbel-Softmax to generate dif-
ferentiable discrete samples. Firstly, softmax function is
employed to compute the probability to sample the edge,
which is

𝜋𝑣𝑖,𝑣𝑗 =
exp

(︀
𝐴𝑣𝑖,𝑣𝑗

)︀∑︀
𝑤∈N𝑣𝑖

exp (𝐴𝑣𝑖,𝑤)
(5)

Then we can generate differentiable samples using Gumble-
Softmax as follows

𝑥𝑣𝑖,𝑣𝑗 =
exp

(︀(︀
log

(︀
𝜋𝑣𝑖,𝑣𝑗

)︀
+ 𝜖𝑣

)︀
/𝜏

)︀∑︀
𝑤∈N𝑣𝑖

exp ((log (𝜋𝑣𝑖,𝑤) + 𝜖𝑤) /𝜏)
, (6)

where 𝑥𝑣𝑖,𝑣𝑗 is a scalar that represents weather to sample
the edge between 𝑣𝑖 and 𝑣𝑗 , 𝜖𝑣𝑗 = − log(− log(𝑠)) with
𝑠 randomly drawn from Uniform (0,1), and 𝜏 is a hyperpa-
rameter that controls the interpolation between discrete
distribution and continuous categorical densities.

Graph Convolution Network (GCN).
We perform two-layer GCN from [7] to further propa-

gate information on the graph. Specifically, for a single
graph convolution with its parameter 𝑊 ∈ R𝑑×𝑑′ , the
operation is defined as

̃︀𝑉 = 𝑓(𝐴𝑉 𝑊 ), (7)

where 𝑓 can be any nonlinear activation function. We
can see that GCN calculates new features of a vertex as a
weighted average of features of its neighbors on a graph,
which allows the vertices in the same cluster to have
similar features, making the subsequent classifications
much easier.

3. Experiments
In this section, we conduct experiments to validate the
effectiveness of our proposed method GNSN on three
real-world benchmark datasets, namely Indian Pines (IP),
Pavia University (PU), and Kennedy Space Center (KSC).
The Indian Pines dataset is captured over the agricultural
test site in the Indian Pines, which contains 200 spectral
bands with a size of 145× 145 and 16 terrain classes for
research and analysis. The Pavia University dataset is the
continuous imaging of 115 spectral bands with a size of
610× 340. This dataset includes nine land-cover classes.
The KSC data contains 176 bands with a size of 512×614.
For classification purposes, 13 classes representing the
various land cover types that occur in this environment
were defined for the site.

3.1. Experimental settings
To quantitatively evaluate different models for hyper-
spectral image classification tasks from various aspects,
three metrics, including overall accuracy (OA), average
accuracy (AA), and kappa coefficient, are used to evalu-
ate the performance of all the compared methods. For
all the datasets, we randomly select 30 labeled pixels in
each class for training and choose 15 labeled pixels if the
corresponding class has less than 30 samples. Besides,
the learning rate and the number of training epochs are
set to 0.001 and 2000, respectively. All the reported re-
sults are calculated based on the average of ten training
sessions to obtain stable results, and the best results are
highlighted in bold.

3.2. Classification results
In our experiments, we compare our method with several
HSI classification methods: SVM, Multilayer Perception
(MLP), 3DCNN [8], NLGCN [9] and GSAGE [10]. The
quantitative results of different methods on all the three
datasets are shown in Table 1. From the results, we can
see that GNN-based methods, including NLGCN, GSAGE,
and the proposed GNSN, show better performance than
traditional machine learning and deep learning models
(i.e., SVM, MLP, 3DCNN), demonstrating that GNN is
more helpful for extracting discriminative information.
Note that NLGCN and GSAGE neglect fusing the informa-
tion of both local and global information, thus resulting
in lower performance than our GNSN.

4. Conclusion
In this article, we propose a novel Graph Neural Sparsi-
fication Network (GNSN) for hyperspectral image clas-
sification. Different from prior way of constructing the



Table 1
Classification results (in percent) of defferent methods on three real datasets

Methods SVM MLP 3DCNN NLGCN GSAGE GNSN

IP
OA 69.72 70.07 79.19 83.83 85.36 94.08
AA 81.01 80.78 87.88 91.17 91.13 96.20

Kappa 66.00 66.31 76.55 81.70 83.35 93.24

PU
OA 77.54 80.59 83.35 87.11 89.41 97.72
AA 85.16 86.40 88.45 91.95 92.62 97.33

Kappa 71.49 75.25 78.59 83.35 86.21 96.97

KSC
OA 86.70 87.72 91.47 93.76 96.78 99.61
AA 81.92 83.81 88.11 90.78 95.00 99.50

Kappa 85.16 86.31 90.48 93.02 96.40 99.56

adjacent graph, the proposed GNSN constructs a learn-
able graph that reveals the local and glocal structure
of HSI. Besides, a differentiable sparsification technique
is applied to favor subsequent classification task by re-
moving potentially task-irrelerant edges. Experimental
results reveal that our method significantly outperforms
its counterparts in terms of OA, AA, and Kappa.
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