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Abstract
The use of deep learning for water extraction requires precise pixel-level labels. However, it is very difficult to label high-
resolution remote sensing images at the pixel level. Therefore, we study how to utilize point labels to extract water bodies
and propose a novel method called the neighbor feature aggregation network (NFANet). Compared with pixel-level labels,
point labels are much easier to obtain, but they will lose a lot of information. In this paper, we take advantage of the similarity
between the adjacent pixels of a local water body, and propose a neighbor sampler to resample remote sensing images. Then,
the sampled images are sent to the network for feature aggregation. Our method uses neighboring features instead of global
or local features to learn more representative features. The experimental results show that the proposed NFANet method not
only outperforms other weakly supervised approaches, but also obtains similar results as the state-of-the-art ones.
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1. Introduction
Water-body extraction from high-resolution remote sens-
ing images is an important research topic in the field
of remote sensing. Although the traditional algorithms
have made some progress in water-body extraction, there
are still problems such as low automation, cumbersome
manual feature extraction, and insufficient extraction
accuracy. In recent years, deep learning has become
an emerging research hot spot in the field of artificial
intelligence. The rapid development of deep learning
technology and the improvement of computer hardware
performance have made deep learning, especially the
CNN-based techniques, successful in many important
tasks, such as image classification, target detection, and
semantic segmentation, and their performance has sur-
passed many traditional algorithms. The work [1] in
proposes a method that combines graph convolutional
network (GCN) and CNN to fuse different Hyperspec-
tral features to improve the performance of hyperspectral
classification. Work in [2] studys the multi-modal models
and proposes a variety of plug-and-play fusion modules
to fuse the features of remote sensing images of differ-
ent modalities. Work in [3] discusses the importance of
nonconvex modeling in interpretable AI models from
multiple topics.Therefore, it is necessary to apply deep
learning to extract water bodies [4, 5, 6].

Unfortunately, the success of deep learning for fea-

CDCEO 2021: 1st Workshop on Complex Data Challenges in Earth
Observation, November 1, 2021, Virtual Event, QLD, Australia.
" 1148462196@qq.com (M. Lu); leyuanfang@hnu.edu.cn (L. Fang);
yzhang@scu.edu.cn (Y. Zhang)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ture extraction is highly dependent on the availability of
sufficient pixel-level labels for training. However, high-
resolution remote sensing images are large in scale and
data volume, which makes pixel-level labeling extremely
laborious. The pixel-level annotation usually requires a
lot of time and labor costs, as well as professional knowl-
edge to accurately mark uncertain boundaries between
different classes of interest, which hinders the extraction
of informative features from high-resolution remote sens-
ing images to a certain extent. Training models using
weak labels have received more and more attention in the
field of computer vision. Compared with fully-supervised
semantic segmentation, weak-supervised learning does
not require pixel-level labels, and has the characteristics
of fast labeling and low cost. However, the use of weak
annotations makes the supervision information seriously
insufficient and, thus, key information such as shape, tex-
ture, and edges are usually lost, which makes it difficult
to extract water from high-resolution remote sensing
images with complex scenes.

Some researchers try to use traditional methods com-
bined with deep learning to solve weak supervision prob-
lems. The work in [7] combines super-pixels and a local
map to obtain rough pseudo-labels to train a water ex-
traction model. Work in [8] combines super-pixel pool-
ing with multi-scale feature fusion to detect buildings.
Other researchers attempt to obtain better results by us-
ing the extraction capabilities of neural networks. Work
in [9] learns from the principle of CAM [10] and ex-
tracts feature maps from UNet [11] for hard-threshold
processing to obtain segmentation predictions. These
methods have achieved promising results in the field of
weak-supervised learning but do not consider the char-
acteristics of the image itself.
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Figure 1: Proposed neighbor sampler. When k is set to 2, a cell contains neighbor pixels of the 2×2 size and is re-allocated to a
neighbor image group. Best viewed in color.

Unlike other natural objects, water bodies are usually
liquid, the colors and textures of local water bodies are
very similar. Therefore, there is a high degree of simi-
larity between neighbor pixels in water bodies, which
makes the inherent difference of the features contained
between the neighbor pixels of the water-body generally
smaller than that of the non-water-body. We hope to
map the neighbor pixels of the remote sensing image
to the same location in space, and then extract neighbor
features from multiple neighbor pixels, and use the neigh-
bor features to jointly decide whether the pixel at this
location belongs to the water bodies. Based on the above
motivation, we propose the neighbor feature aggrega-
tion network (NFANet) to make full use of this property.
Specifically, we utilize a sampling method called neigh-
bor sampler to generate a set of neighbor images from
high-resolution remote sensing images. The neighbor
pixels of the original image are separately allocated to
each neighbor image, so that the pixel values of any two
neighbor images at the same position are similar but the
pixel values are different. On the whole, neighbor image
groups have similar but different characteristics. Then,
we use an end-to-end model to perform feature extrac-
tion on each image of the neighbor image groups, and
aggregate the features by using the feature aggregation
module. Compared with other methods that only use

the local information or global information of an image,
the neighbor feature aggregation effectively utilizes the
neighbor information and, therefore, more representative
features can be learned.

2. Method
Figure 1 illustrates the proposed weakly supervised wa-
ter extraction framework. Figure 1.a shows the entire
recursive training process. We will describe it in the
third section. The acquisition of pseudo-labels is shown
in Figure 1.b. We input neighbor images into the network
and use point labels for supervision to obtain neighbor
features. Then the feature aggregation module is used to
aggregate the features extracted from the previous step.
Finally, post-processing is performed to obtain pseudo-
labels. We will describe the details of each of the above
steps in the following sections.

2.1. Neighbor Sampler
First, we introduce a neighbor sampler to obtain a neigh-
bor images group (𝑛1 (𝑥) , 𝑛2 (𝑥) , . . . , 𝑛𝐿 (𝑥)) from a
single optical remote sensing image 𝑥. 𝐿 represents
the number of neighbor images. Figure 2 shows the
schematic diagram of generating a group of neighbor



Figure 2: Proposed neighbor sampler. When k is set to 2, a
cell contains neighbor pixels of the 2×2 size and is re-allocated
to a neighbor image group. Best viewed in color.

images using the neighbor sampler. Let us assume that
the width, height, and channel of the input image 𝑥 are
𝑊,𝐻,𝐶 , respectively. The implementation of the neigh-
bor sampler 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝐿) is described as fol-
lows:

1. The image 𝑥 is divided into 𝑊
𝐾

× 𝐻
𝐾

cells, where
the size of each cell is 𝐾 ×𝐾 × 𝐶 . 𝐾 is experimentally
set to 2 and, therefore, 𝐿 = 𝐾 ×𝐾 = 4.

2. For the 𝑖− 𝑡ℎ row and 𝑗− 𝑡ℎ column of the cell, the
pixels in the adjacent positions of each cell are selected
in the order from top to bottom and from left to right,
which are regarded as the (𝑖, 𝑗)− 𝑡ℎ elements of 𝑁 =
(𝑛1 (𝑥) , 𝑛2 (𝑥) , . . . , 𝑛𝑙 (𝑥)). When 𝐾 is set to 2, the
pixels at the upper left, upper right, lower left, and lower
right adjacent positions are selected, respectively.

3. For all 𝑊
𝐾

× 𝐻
𝐾

cells being divided in step 1, step
2 will be repeated until all the cells are resampled, and
a neighbor sampler 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝐿) is generated.
Given an optical remote sensing image 𝑥, neighbor im-
ages group (𝑛1 (𝑥) , 𝑛2 (𝑥) , . . . , 𝑛𝐿 (𝑥)) is generated,
where the size of each neighbor image is 𝑊

𝐾
× 𝐻

𝐾
× 𝐶 .

In this way, the neighbor image dataset can be gen-
erated from the original dataset. Neighbor images are
similar but not identical, because for any two neighbor
images, (𝑖, 𝑗) − 𝑡ℎ pixel comes from the neighboring
location of the original remote sensing image.

2.2. Neighbor feature aggregation and
post-processing

We input the neighbor images group to an
end-to-end network to extract features, and ob-
tain the corresponding neighbor feature group
(𝑓1 (𝑋) , 𝑓2 (𝑋) , . . . , 𝑓𝐿 (𝑋)) ∈ R𝐻×𝑊×𝐶×𝐿, where
𝑓𝑙 (𝑋) ∈ R𝐻×𝑊×𝐶 represents the feature maps
extracted from the 𝑙 − 𝑡ℎ image in the neighbor
images group. We use the encoder-decoder structure
as the feature extraction network. Specifically, the
feature maps are extracted from the penultimate
convolutional layer. The network structure is shown
in Figure 1.b. It is worth noting that the network is
replaceable (in the experimental part, a variety of
network structures are used for feature extraction).

CMax pooling is adopted to reduce the number of
channels of each neighbor feature to one. CMax
pooling is defined mathematically in detail as follows:
Given a three-dimensional feature maps tensor group
𝐹 = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝐿 (𝑥)) ∈ R𝐻×𝑊×𝐶×𝐿,
The operation of CMax pooling is as follows:

𝑧𝑖,𝑗,𝑙(𝑥) = 𝑚𝑎𝑥(𝑓𝑖,𝑗,1,𝑙(𝑥), 𝑓𝑖,𝑗,2,𝑙(𝑥), . . . , 𝑓𝑖,𝑗,3,𝑙(𝑥)),

𝑖 = 1, 2, . . . , 𝐻, 𝑗 = 1, 2, . . . , 𝑤, 𝑙 = 1, 2, . . . , 𝐿.
(1)

As a result, the feature maps group 𝑍 =
(𝑧1 (𝑥) , 𝑧2 (𝑥) , . . . , 𝑧𝐿 (𝑥)) ∈ R𝐻×𝑊×𝐿 is ob-
tained. Then, the OTSU algorithm is used to
binarize each feature in 𝑍 to obtain the result
𝑂 = (𝑜1 (𝑥) , 𝑜2 (𝑥) , . . . , 𝑜𝐿 (𝑥)) ∈ R𝐻×𝑊×𝐿. The
formula is as follows:

𝑜𝑙 = 𝑂𝑡𝑠𝑢 (𝑧𝑙) , 𝑙 = 1, 2, . . . , 𝐿. (2)

Finally, we vote for all binarized neighbor features of the
neighbor feature group to obtain the aggregated result
𝑉 . 𝑉 is calculated using the following equation:

𝑉𝑖,𝑗 =

{︃
1,
∑︀𝐿

𝑙=1 𝑜𝑖,𝑗,𝑙 ≥
2
𝐿

0,
∑︀𝐿

𝑙=1 𝑜𝑖,𝑗,𝑙 <
2
𝐿

(3)

To sum up, the mathematical definition of the feature
aggregation module is detailed as follows:

𝑉 = 𝑉 𝑜𝑡𝑒 (𝑂𝑡𝑠𝑢 (𝐶𝑀𝑎𝑥 (𝐹 ))) (4)

where 𝐹 ∈ R𝐻×𝑊×𝐶×𝐿 represents the neighbor fea-
tures group and 𝑉 ∈ R𝐻×𝑊 is the output. Next, the
aggregated result 𝑉 is input to the post-processing mod-
ule. The specific operations include filling small holes in
the closed area by using area filling and removing noise
by using morphological operations. Then, we apply a
point-label constraint to the processed results. If the area
in the result contains point labels, the entire area is re-
tained, otherwise it is not retained. The generated results
are used as pseudo-labels and input into the recursive
training as supervision information.

2.3. Recursive training
Recursive training is a weakly supervised strategy. When
applying the resulting model over the training set, the net-
work outputs capture the shape of objects significantly
better than that of just pseudo-labels [12]. We have ob-
served through experiments that when the training set is
input to the network again, the obtained network output
will become smoother than the coarse-grained pseudo-
label, which improves the accuracy of the prediction
result to a certain extent.

We embed the neighbor sampler into the recursive
training so that the network can learn neighbor features
(the flowchart is shown in Figure 1.a). Recursive training



Table 1
Water extraction results (%). The full supervision uses 70% of the training set

Method Supervision BgIoU FgIoU MIoU BgDice FgDice MDice

FCN[13] full 89.83± 0.26 63.89± 0.79 76.86± 0.52 94.64± 0.14 77.96± 0.58 86.30± 0.36
Ours(FCN) weak 89.30± 0.31 58.52± 0.78 73.91± 0.55 94.35± 0.17 73.83± 0.62 84.09± 0.40

UNet full 90.46± 0.13 65.72± 0.67 78.09± 0.40 94.99± 0.07 79.31± 0.48 87.15± 0.28
Ours(UNet) weak 89.83± 0.40 59.93± 1.01 74.88± 0.71 94.63± 0.21 74.94± 0.79 84.79± 0.50
ResUNet[14] full 90.39± 0.25 65.72± 0.51 78.05± 0.37 94.93± 0.14 79.30± 0.37 87.12± 0.25

Ours(ResUNet) weak 89.68± 0.59 59.52± 1.41 74.60± 1.00 94.55± 0.33 74.60± 1.11 84.58± 0.72
NestedUNet[15] full 90.43± 0.20 65.83± 0.51 78.13± 0.36 94.97± 0.11 79.39± 0.37 87.18± 0.24

Ours(NestedUNet) weak 90.03± 0.16 60.41± 0.46 75.22± 0.31 94.75± 0.10 75.32± 0.35 85.04± 0.23
DLinkNet[16] full 90.23± 0.25 65.27± 0.67 77.75± 0.46 94.86± 0.14 78.98± 0.49 86.92± 0.31

Ours(DLinkNet) weak 89.86± 0.36 59.95± 0.91 74.90± 0.63 94.66± 0.20 74.95± 0.71 84.80± 0.45
DeepLabV3+[17] full 90.47± 0.17 66.03± 0.50 78.25± 0.33 95.00± 0.09 79.54± 0.36 87.27± 0.23

Ours(DeepLabV3+) weak 89.96± 0.35 60.23± 0.89 5.09± 0.62 94.71± 0.19 75.17± 0.69 84.94± 0.44

Figure 3: prediction results of the fully supervised methods and our methods. (a) and (h) represent the original image and
the ground truth. (b)-(g) represent the prediction results of FCN, UNet, ResUNet, NestedUNet, DLinkNet, and DeepLab V3+,
respectively. (i)-(n) represent the prediction results of our method based on FCN, UNet, ResUNet, NestedUNet, DLinkNet and
DeepLab V3+, respectively.

consists of three steps. First, the remote sensing image
is used to generate neighbor images group. We apply
the neighbor images group and point-label to train the
network to obtain pseudo-label. Second, the pseudo-
label is used to generate pseudo-labels groups. It is worth
noting that the 𝑖 − 𝑡ℎ image of the neighbor images
group and the 𝑖− 𝑡ℎ image of the pseudo-labels group
are resampled in the same way. Third, input the 𝑖− 𝑡ℎ
image into the network and utilize the 𝑖 − 𝑡ℎ label as
the supervision information for training. After training
the model with all training sets, the neighbor images
group are input again to obtain the results group. When
𝑘 = 2, the number of results is 4. We perform a weighted
average on the results group to obtain a new pseudo-
label.

3. Experimental results

3.1. Datasets and evaluation
To prove the effectiveness of the proposed method, we
applied the method to high-resolution visible spectrum
images for water extraction. This water-body dataset
comes from the Gaofen Challenge [18], which contains
RGB pan-sharpened images with a resolution of 0.5 m
and does not contain infrared bands or digital elevation
models. All images are taken from Wuhan and Suzhou,
China, mainly in rural areas supplemented by urban ar-
eas. The positive labels in the dataset include rivers,
reservoirs, rice fields, ditches, ponds, and lakes, while all
other non-water pixels are considered negative. The data
set is cropped into 1000 images with the size of 492×492
without any overlap. We re-annotated the dataset. The
rule is that each independent water body is randomly
labeled with a point label of the size 5×5.

In the experiment, the weak supervision models use



Table 2
Water extraction results (%). The full supervision uses 70% of the training set

Method BgIoU FgIoU MIoU BgDice FgDice MDice

Baseline 45.14± 5.41 14.26± 2.40 29.70± 1.69 62.08± 5.15 24.90± 3.66 43.49± 1.17
U-CAM [9] 85.30± 0.59 46.79± 1.34 66.04± 0.93 92.06± 0.34 63.74± 1.25 77.90± 0.78

Local Map [7] 86.07± 0.48 48.33± 1.56 67.20± 1.02 92.51± 0.28 65.15± 1.43 78.83± 0.85
Ours 89.83± 0.40 59.93± 1.01 74.88± 0.71 94.63± 0.21 74.94± 0.79 84.79± 0.50

point labels as the initial supervision information, while
the full supervision models use pixel-level labels. Because
the remote sensing image segmentation/classification
evaluation index of overall accuracy or Kappa coefficient
cannot effectively describe the real structure of image
segmentation geometry, we choose to use fgIoU (fore-
ground IoU), bgIoU (background IoU), mIoU (mean IoU),
fgDice (foreground Dice), bgDice (background Dice) and
mDice (mean Dice) to comprehensively evaluate the re-
sults. For each model, we performed five independent
runs to calculate the aforementioned evaluation indica-
tors and standard deviations.

3.2. Comparison with Fully Supervised
Approaches

In Table 1, we report the water extraction performance
of our proposed approach and compare it with the fully
supervised approaches. Figure 3 also provides the visual
performance of all approaches. These approaches ran-
domly use 70% of the samples as the training set, and
the remaining data as the test set. Experiments demon-
strate that our method achieves the best score using the
NestedUNet-based model, and the visual performance
shows that the prediction results obtained by our method
are very close to the ground truth. The mIoU of our
method reached 75.22%, and the mDice reached 85.04%.
Compared with the best fully-supervised model DeepLab
V3+, the mIoU of our method is only reduced by 3.03%,
and mDice is only reduced by 2.23%. But the labeling
cost of our method is much less than that of the fully
supervised method. Nevertheless, it is difficult to achieve
fully supervised performance using only point labels.

3.3. Comparison with Weakly Supervised
Approaches

We compare our method with several other weakly su-
pervised remote sensing approaches. The experimental
results are shown in Table 2. To be fair, all methods
are based on UNet. It can be seen that the mIoU of
our method is 8.84%, which is higher than that of the
U-CAM-based method with the mDice of 6.89%. In ad-
dition, Figure 4 shows the prediction results of other
weakly supervised methods and our method. Although

other weak supervision methods can predict the local
area of the water body, there are errors in the detection of
the water body boundary, while our method is relatively
more accurate. The studied weak supervised methods
cannot detect small objects appropriately while this issue
is solved to a great extent by the proposed method.

3.4. Effectiveness of neighbor sampling
In the ablation experiment, the other settings are un-
changed, and only the value of 𝐾 is changed. We set the
neighbor sampling parameter k of our proposed network
from 1 to 4 and only use cross entropy and dice loss to
train the model. For different 𝐾 values of NFANet, in
order to avoid interference from other modules, we only
select UNet as the feature extraction network for com-
parative experiments. In particular, when the value of
𝐾 is set to 1, the neighbor image group degenerates into
the input image. As shown in Figure 5, with the gradual
increase of 𝐾 , mIoU first increases and then decreases.
With the increase of neighborhood sampling parame-
ter 𝐾 , the number of adjacent pixels to be considered
increase geometrically, resulting in information redun-
dancy. The size of each reconstructed neighbor image is
gradually reduced, and the boundary of the water body
will also become unclear. Therefore, we set 𝐾 equal to 2,
because the neighbor features require less computation
and achieves better performance.

3.5. Effectiveness of feature aggregation
As shown in Table 3, when 𝐾 is set to 2 (𝐿 = 4), assum-
ing that the features of the 𝑖−𝑡ℎ neighboring image is 𝑓𝑖,∑︀𝐿

𝑙=1 𝑓𝑙 means feature aggregation is used. Compared
with the best method that does not use feature aggrega-
tion, the mIoU and mDice of our method are improved
by 4.8% and 3.7% respectively. To a certain extent, the
greater the number of neighboring images, the more fea-
tures are available, and these features can complement
each other. Therefore, after the feature aggregation, the
performance of the prediction results can be improved.



Figure 4: Prediction results of the investigated weakly supervised methods. (a) and (b) represent the original image and the
ground truth. (c) represents the baseline. (d) represents U-CAM. (e) represents the Local Maps method. (f) represents our
method.

Figure 5: Effectiveness of neighbor sampling.

3.6. Time consumption
The hardware configurations for the experiments in this
paper consisted of Intel Core i7-9700k 3.60 GHz CPU,
GeForce RTX 2080Ti GPU, and 16GB RAM. The results of
the GPU inference time are shown in Table 4. The results
in the table are the average GPU inference time of the

Table 3
Effectiveness of feature aggregation

NF BgIoU FgIoU MIoU BgDice FgDice MDice

𝑓1 86.6 38.3 62.5 92.8 55.4 74.1
𝑓2 87.2 51.6 69.4 93.2 68.1 80.6
𝑓3 87.7 52.4 70.1 93.5 68.8 81.1
𝑓4 86.2 48.5 67.3 92.6 65.3 79.0∑︀𝐿
𝑙=1 𝑓𝑙 89.8 59.9 74.9 94.6 74.9 84.8

data set. After using recursive training to improve the
quality of pseudo-labels, we input the pseudo-labels and
original images into the models consistent with the fully-
supervised methods for training and inference. Therefore,
the GPU inference time of the proposed method is the
same as that of the fully-supervised methods. It can be ob-
served from the table that the inference time of DLinkNet
is the shortest. because DLinkNet compresses the feature
channel in the decoder to reduce the computational cost.
NestedUNet embeds U-Nets of different depths in its ar-
chitecture, which requires more convolution calculations,
thus increasing the consumption of inference time.



Table 4
GPU inference time of different mothods

Method FCN UNet ResUNet NestedUNet DLinkNet DeepLabV3+

Time (ms) 17.32 15.14 17.90 31.71 11.84 23.97

4. Conclusion
In this paper, we proposed a network entitled NFANet.
Unlike traditional convolutional neural networks that
only use global or local features for discrimination,
NFANet uses neighbor features, which allows more rep-
resentative features to be learned. We fuse these neigh-
bor features to obtain pseudo-labels, and improve the
label quality by recursive training. We tested it on water
data sets and compared it with advanced fully supervised
and weakly supervised methods. By using only point
labels, the proposed method obtains comparable results
with that of full supervision. As a possible future work,
we will conduct research on weakly supervised or semi-
supervised methods of self-correction. Remote sensing
images collected from satellites are usually affected by
spectral variability.

Work in [19] uses endmember dictionary and spectral
variability dictionary to model different spectral vari-
ability respectively. In addition, this method provides
reasonable prior knowledge for the spectral variability
dictionary. Our proposed method considers local neigh-
bor pixels. Therefore, when encountering various degen-
eration, noise influences and other variability factors, it
is necessary to analyze whether these variability factors
cause greater interference between neighbor pixels. If
the variability factors bring different effects to different
local areas, it is very likely that the prediction results will
lose the water bodies. In future work, we will consider in-
troducing cross-local features to improve the network’s
ability to learn features between different local water
bodies.
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