
Not Deep Enough: Autoencoders for Automatic
Feature Extraction in Wireless Cognitive Load
Inference
Anže Kristan1, Daniel Pellarini1 and Veljko Pejović1

1University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia

Abstract
Automatic and unobtrusive inference of a user’s cognitive load could revolutionise interaction with
computing systems. Wireless ranging represents an attractive alternative to the current state-of-the-
art solutions relying on wearable physiological sensors. Yet, which wireless signal features will be
the most informative for cognitive load inference remains an open research question. Due to their
way of deconstructing input features into intermediate hidden layers, and reconstructing them into an
output vector as similar as possible to the input data, autoencoders are on paper perfectly suited to help
highlight the most important features in input data. In our study, we discover that using autoencoder for
cognitive load inference from wireless signals can indeed sometimes beat classical machine learning
classifiers in terms of accuracy. Nevertheless, despite the theoretical advantage, we find that autoencoders
often struggle to reach the same accuracy levels as advanced traditional machine learning solutions.
Consequently, we warn against over-reliance on deep learning methods in human-computer interaction
research.

Keywords
autoencoders, machine learning, deep learning, cognitive load inference

1. Introduction

Thirty years after Mark Weiser’s vision of human-computer interaction (HCI) being as seamless
as a walk in the woods is still not a reality [1]. Computers do not understand us. Empowering
computers with the ability to infer their users’ cognitive load would open a range of possibilities
for improved HCI. For instance, if a device senses that a student has stopped paying attention to
a lecture or a learning exercise, it could remind the student to focus, present relevant content to
pique the student’s curiosity or relay a helpful hint or a tip. Or, in another example, if a device
could know when a person is distracted or losing focus while performing a critical task, such as
driving or operating machinery, it could alert the user to start paying attention or take a break
in order to avoid potential accidents.

Efforts to enable automatic cognitive load inference often rely on the physiological response
a person experiences when put under high cognitive load. In such cases, the person’s heart
activity becomes faster and more uniform, skin temperature varies, onsets of sweating appear,

Human-Computer Interaction Slovenia 2021, November 11, 2021, Koper, Slovenia
Envelope-Open ak4352@student.uni-lj.si (A. Kristan); daniel.pellarini@fri.uni-lj.si (D. Pellarini); veljko.pejovic@fri.uni-lj.si
(V. Pejović)
GLOBE https://www.fri.uni-lj.si/en/about-faculty/employees/veljko-pejovic (V. Pejović)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ak4352@student.uni-lj.si
mailto:daniel.pellarini@fri.uni-lj.si
mailto:veljko.pejovic@fri.uni-lj.si
https://www.fri.uni-lj.si/en/about-faculty/employees/veljko-pejovic
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


and pupils dilate, to name a few relevant physiological reactions. Initial attempts to infer a
user’s cognitive load relied on lab-based equipment that required a user to be strapped to
specialised sensors, thus were of little practical utility in the field of HCI [2]. Recently, wearable
sensing relying on smartwatches, smart wristbands, and chest straps has enabled cognitive
load inference where the participants can be put in real life situations [3]. Nevertheless, such
approaches still require that each user is equipped with sensors.

A few recent attempts have been made to wirelessly sense cognitive load [4, 5]. One such
method is Wi-Mind [5], which uses radio waves to detect changes in the movement of the
user’s chest. From the signal of these radio waves, breathing and heart rate features can be
extracted. With these features, engineered upon the related work on physiological signal
sensing, inferring whether the user is resting or busy (and the difficulty of the task they are
solving) can be attempted. However, the wireless signal may contain much more information
than just the features relating to breathing and heart rate. Whether extraction that goes beyond
the well-known features would yield higher cognitive load inference accuracy remains an open
question.

In this work, we use automatic feature extraction to try and find new features in order to
improve cognitive load inference from wireless signals. For this purpose we use the autoen-
coder [6], a special type of a neural network that is composed of an encoder and a decoder part.
The encoding layer transforms the input into an encoded representation (hidden layer), which
is of a smaller size than the input. Then the decoder transforms the encoded representation
into a reconstruction aiming to resemble the input as closely as possible. Since the hidden layer
has fewer dimensions than the input data, the autoencoder tries to learn and extract important
features of the data in order to be able to reconstruct the input from those features.

Using data obtained with wireless ranging of 23 participants solving six different task types
at various difficulty levels, we assess the autoencoder’s ability to derive features enabling
high-accuracy cognitive load inference. Specifically, the contributions of our work include:

• We craft four different types of autoencoders with the goal of automatic feature extraction
from wireless phase signals;

• We systematically evaluate the above autoencoders on various flavors of the cognitive
load inference problem;

• We compare the autoencoder-based solutions with a range of conventional machine
learning and deep learning solutions to assess the potential of autoencoders for real-world
wireless cognitive load inference.

Contrary to the expectations, our results show that the traditional breathing and heart rate
features usually trump autoencoders and produce the highest prediction accuracy. There are a
few cases, however, where autoencoders can match or improve the prediction accuracy. We
suspect our findings demonstrate that, despite their modelling power, deep learning-based
methods need not be the most appropriate machine learning solution in cases where the data
is noisy, or when the amount of data is not enough, and where a substantial body of expert
knowledge on feature extraction already exists.



2. Background

2.1. Related work

Cognitive load is defined as “a multidimensional construct representing the load that performing
a particular task imposes on the learner’s cognitive system” [7]. Consequently, it is rather difficult
to assess one’s cognitive load – the load is modulated by the difficulty of a task one is solving,
one’s cognitive capacities, but also interests and motivations for solving a particular problem.
Thus, measuring cognitive load is traditionally done through subjective self-evaluation after
completing a task by using a survey, such as the NASA-TLX [8]. However, this does not allow
for real time unobtrusive measuring of cognitive load, which is necessary should we want to
use cognitive load information for human-computer interaction adaptation.

Harnessing the physiological reaction catalyzed by an increase in the cognitive load, re-
searchers have devised methods for inferring cognitive load from various physiological signals.
A study from 2010 used a contactless eye tracker, an ECG-enabled armband, a wireless EEG
headset and a wireless HR monitor to measure a participant’s physiological signals while solving
elementary cognitive tasks. Using some of those signals the authors were able to achieve over 80
% classification accuracy of the participant’s cognitive load defined as a two-category construct
(high vs low load) [2].

Moving towards in-situ inference, off-the-shelf wearable devices have been recently used
for cognitive load inference. In [3] researchers have demonstrated that cheap wristbands with
photoplethysmogram (PPG) and electrodermal activity (EDA) sensors can be used for inferring
cognitive load when users are exposed to specifically tailored tasks. The same has been shown
in the context of playing a mobile video game [9]. The drawback of such solutions that users
still need to be fitted with a particular device, which may not be possible in all situations.

2.2. Wireless cognitive load inference

Wireless cognitive load inference has recently been investigated in the Wi-Mind study [5]. This
solution uses a software-defined radio-based radar to measure sub-millimeter movements of a
person, which relate to their breathing and heart rates. For this, Wi-Mind records raw wireless
signal phase of waves sent from a transmitter, reflected at a person’s chest, and received at the
receiver.

In the accompanying paper, the authors of Wi-Mind conducted a study with 23 volunteers
who, while seated in front of a computer, individually solved tasks of six different task types,
which are specifically designed to elicit a cognitive load response. Each task type has three
difficulty levels – low, medium and high – for a total of 18 tasks. The tasks fall into the group of
elementary cognitive tasks (described in [2]) and include:

• Finding A’s (FA),
• Gestalt Completion (GC),
• Finding hidden pattern (HP),
• Number comparison (NC),
• Pursuit test (PT),
• Scattered X’s (SX).



To infer cognitive load from wireless signals the authors of Wi-Mind used carefully engi-
neered features representing different aspects of a person’s breathing and heartbeat activity.
The resulting features were then used in various classifiers, yielding a 75% accuracy rate in
differentiating between busy (working on a task) and relax times, and a 65% accuracy rate in
detecting transitions between two task difficulties, while achieving 52% accuracy of discerning
between low and high cognitive engagement (corresponding to low and high task difficulty). A
more fine-grained distinction among easy, medium, and high difficulty tasks was not possible.

2.3. Autoencoders

Autoencoders (AE) are a type of neural networks [6]. In essence, AEs are trained to attempt
to copy their input to their output through a hidden layer, thus learning the characteristics of
the data and how to represent (encode) it. An AE is made up of two parts: an encoder and a
decoder, where the encoder acts as a function that maps the input to an encoded representation
the size of the hidden layer, while the decoder acts as the inverse of the encoder function and
maps the encoded representation back into the input. These properties render AEs a suitable
tool for extracting features from sensor data, e.g. [10].

Similarly to standard neural network models, AEs are trained through backpropagation,
with the difference being that the input provided to the AE is also the target output, whereas
standard neural networks have a target output different to their input. Different regularization
mechanisms, such as the limitation on the sparsity of network layers, or the Frobenius norm of
the Jacobian matrix of the encoder activations with respect to the input, lead to different flavors
of AEs, such as sparse, contractive AEs [11] and others.

3. Machine learning evaluation pipeline

In this paper we examine whether automatic feature extraction using autoencoders can help
with cognitive load inference from wireless data. We use the wireless signal phase data collected
from 23 participants performing the cognitive load elicitation experiments described in Section
2.2. Each participant was assigned a randomly generated identification string (ident), which is
used instead of personally identifiable information.

We segment the wireless signal phase data into 30-second time frames (the length of the
relaxation period during the Wi-Mind study). We examine several aspects of detecting cognitive
load for which we try to infer the user’s state during a time frame:

• Busy vs Relaxed (BvR): whether a user is busy or relaxed (solving a task vs being instructed
to relax);

• Low vs High (LvH): whether a busy user is solving a low or high difficulty task;
• Low vs Medium vs High (LvMvH): whether a busy user is solving a low, medium or high
difficulty task.

For the BvR problem we use one relax time frame and one busy time frame for each task (before
preprocessing), because each period of relaxation only last as long as one time frame. While
for the LvH and LvMvH problems we use 10 consecutive time frames from each task (before



preprocessing). For each of these problems we first use all task types (FA, GC, HP, NC, PT,
SX), then we explore how our models perform when using only one task type at a time. For
classification purposes we use a range of machine learning models:

• Simple Dense (SD): a simple neural network with 1 dense hidden layer made using Keras;
• Long Short-Term Memory (LSTM): an LSTM based classifier made using Keras, based on
a classifier made in the original Wi-Mind paper (an LSTM is a type of neural network
especially useful for time series data);

• k-Nearest Neighbors (kNN): a k-nearest neighbors algorithm from the scikit-learn library;
• Support Vector Machine (SVM): a support vector machine based classifier from the scikit-
learn library;

• Naive Bayes (NB): a naive Bayesian classifier from the scikit-learn library;
• Random Forest (RF): a random forest based classifier from the scikit-learn library;
• XGBoost (XGB): the XGBoost classifier from the XGBoost python package.

Using these classifiers we experiment with features extracted by experts (taken from the Wi-
Mind paper) and features extracted by AEs. There are 8 feature groups we used as input for
classification, 4 of which are not based on AEs and 4 of which are based on AEs:

• Phase (PHS): unwrapped phase data;
• Breathing (BR): 12 features related to a person’s breathing extracted from the phase data;
• Heartbeat (HB): 10 features related to a person’s heartbeats, extracted from the phase
data;

• Combined (CMB): concatenated BR and HB features (22 features total),
• Undercomplete (under.): encoded representation of data as extracted by the undercomplete
AE. This AE has no explicit regularization term, but contains a restricted number of nodes
in the hidden layer;

• Sparse (sparse): encoded representation of data as extracted by the sparse AE. Here, the
loss function penalizes activations within a layer;

• Deep (deep): encoded representation of data as extracted by the deep AE;
• Contractive (contr.): encoded representation of data as extracted by the contractive AE.
Here, the loss function penalizes large derivatives of the hidden layer activations with
respect to the input training examples (i.e. the AE should be more robust to variations in
the input data).

The PHS, BR and HB features are based on the Wi-Mind paper. Each AE was set to extract 30
features (chosen empirically to be slightly larger than the number of CMB features and due to 30
seconds being the length of each time frame). Altogether there were 7 task types, 3 classification
problems, 7 machine learning models and 8 feature groups, which brings the total number of
combinations to 1176. For each combination of test ident, classifier and feature group used, we
saved the classification accuracy (CA) to a dictionary. Once we have calculated the CA of each
combination, we save the dictionary containing the CAs to a file. This was done using data
from each task type separately, and then using data from all task types at once (7 times in total).



3.1. Noise filtering

For each ident there is raw phase data with timestamps describing when a volunteer was solving
each task (or relaxing), how much time was spent on that task and how they performed on that
task. Each instance of a class is based on a 30-second time frame, which means that any time an
instance of a class was shorter than 30 seconds, it is instead skipped. Additionally, there is a
meta-feature which denotes whether there is significant noise present in a certain time frame.
Taking the noise meta-feature into account, more instances may be skipped.

Table 1 and 2, compare the number of instances before and after noise filtering. The prefix
“before” means that there were no instances removed due to the noise meta-feature. The prefix
“after” means that the noise meta-feature was used to remove noisy instances. The suffixes
determine the class of that row.

Table 1
Comparison of the number of class instances for each task type for the busy vs relax problem.

task types FA GC HP NC PT SX total
before_relax 66 55 68 68 62 52 371
before_busy 66 55 68 68 62 52 371
after_relax 38 22 40 37 19 22 178
after_busy 38 22 40 37 19 22 178

Table 2
Comparison of the number of class instances for each task type for the low vs medium vs high problem.

task types FA GC HP NC PT SX total
before_low 230 230 230 230 230 230 1380

before_medium 230 230 230 230 230 230 1380
before_high 230 230 230 230 230 230 1380
after_low 177 102 185 177 135 150 926

after_medium 171 126 193 174 159 187 1010
after_high 189 135 191 166 129 178 988

4. Experimental results

For each problem we evaluated all combinations on each task type separately and then all task
types together. Reported are the mean accuracies of the leave-one-out approach averaged over
all participants.



4.1. Busy vs Relaxed

For the BvR problem we aim to classify whether the user is resting or solving a task. Before
solving each task, participants in the study were instructed to relax for a period of time. The
data from that period of relaxation was used to define the relaxed class. In contrast, the data
obtained while the user was solving any task (regardless of the task type and difficulty) was
used to define the busy class.

The results are summarized in Table 3. Some notable highlights for the BvR problem include:

• The highest overall accuracy 0.87 was achieved with the XGB classifier using the BR
feature group using the NC task type;

• The highest overall accuracy using all task types is 0.76 with the RF classifier and BR
feature group;

• The highest accuracy using only AE based feature groups is 0.74 with the NB classifier
and Deep feature group using the NC task type;

• The highest accuracy using only AE based feature groups and all task types is 0.66 with
the RF classifier and Deep feature group.

Table 3
Top accuracies for the BvR problem with the corresponding classifier and feature group used to achieve
the given accuracy. The rows with the “_AE” suffix only take into account combinations with AE-
based feature groups (written in lowercase), while the rows without the suffix take into account all
classifier/feature combinations.

Task types FA GC HP NC PT SX all

Accuracy 0.70 0.85 0.79 0.87 0.77 0.67 0.76
Classifier SVC NB RF XGB NB LSTM RF
Feature BR HB CMB BR BR under. BR

Accuracy_AE 0.61 0.61 0.64 0.74 0.62 0.67 0.66
Classifier_AE SD SD RF NB NB LSTM RF
Feature_AE sparse under. deep deep contr. under. deep

4.2. Low vs High

For the LvH problem we aim to classify whether the user is solving a task with low or high
difficulty, as each task type was performed at three different difficulty levels (low, medium, high)
by each of the participants. For this problem we only use data gathered while the participants
were solving a task with low difficulty or high difficulty. Table 4 summarizes the results. Some
notable highlights for the LvH problem include:

• The highest overall accuracy 0.67 was achieved with the NB classifier and Contractive
feature group on the FA task type;

• The highest overall accuracy for all task types is 0.59 with the RF classifier and BR feature
group;



• The highest accuracy using only AE-based feature groups is the same as the highest
overall accuracy with the same classifier, feature group, and task type;

• The highest accuracy using only AE-based feature groups and all task types is 0.57 with
the SVM classifier and Undercomplete feature group.

Table 4
Top accuracies for the LvH problem with the corresponding classifier and feature group used to achieve
the given accuracy. The rows with the “_AE” suffix only take into account combinations with AE-
based feature groups (written in lowercase), while the rows without the suffix take into account all
classifier/feature combinations.

Task types FA GC HP NC PT SX all

Accuracy 0.67 0.63 0.63 0.58 0.59 0.65 0.59
Classifier NB XGB RF NB SVC RF RF
Feature contr. HB BR CMB HB CMB BR

Accuracy_AE 0.67 0.50 0.63 0.47 0.50 0.61 0.57
Classifier_AE NB NB SD XGB SVC LSTM SVC
Feature_AE contr. deep contr. under. sparse contr. under.

4.3. Low vs Medium vs High

For the LvMvH problem we aim to infer whether the user is solving a task with low, medium or
high difficulty. Table 5 summarizes the results. Some notable highlights for the LvMvH problem
include:

• The highest overall accuracy 0.49 was achieved with the SD classifier and PHS feature
group on the PT task type;

• The highest overall accuracy using all task types is 0.40 with the SVM classifier and CMB
feature group;

• The highest accuracy using only AE-based feature groups is 0.47 with the NB classifier
and Sparse feature group on the PT task type;

• The highest accuracy using only AE-based feature groups and all task types is 0.37 with
the LSTM classifier and Contractive feature group.

We finally graphically summarize the results for task-invariant classifiers in Figure 1 and
across different task types in Figure 2. We see that AE-based solution in general tend to perform
worse than solutions based on features extracted from the existing domain expertise published
in the literature. Nevertheless, we do see that in certain situations (e.g. certain task type, certain
problem definition), AE-based solutions tend to be on a par with the expert feature-based
solutions.



Table 5
Top accuracies for the LvMvH problem with the corresponding classifier and feature group used to
achieve the given accuracy. The rows with the “_AE” suffix only take into account combinations with
AE-based feature groups (written in lowercase), while the rows without the suffix take into account all
classifier/feature combinations.

Task types FA GC HP NC PT SX all

Accuracy 0.46 0.43 0.42 0.43 0.49 0.46 0.40
Classifier NB SD SVC XGB SD SD SVC
Feature contr. HB PHS CMB PHS CMB CMB

Accuracy_AE 0.46 0.39 0.39 0.39 0.47 0.43 0.37
Classifier_AE NB SVC SVC LSTM NB XGB LSTM
Feature_AE contr. contr. contr. under. sparse under. contr.

Figure 1: Boxplot for each problem.

A boxplot diagram using highest mean accuracies (as
listed in the tables in section 4) for each problem. No
suffix means that all feature groups were taken into
account, while the “_AE” suffix means only AE based

features were taken into account.

Figure 2: Accuracies for each task type.

Comparison of highest mean accuracies for each task
type. No suffix means that all feature groups were

taken into account, while the “_AE” suffix means only
AE-based features were taken into account.

5. Discussion

In the previous sectionwe constructed a large number ofmachine learning pipelines for cognitive
load inference. The dataset we used was previously analysed in [5], thus we juxtapose our
results with those presented by the dataset collectors. First, for the busy vs relaxed problem, the
Wi-Mind authors achieve 75% classification accuracy (CA) using 1-D CNN + LSTM classifier.
We, on the other hand, achieve 76% CA for the general (task-oblivious) model using RF classifier.
Furthermore, we reach up to 87% for a particular task type using XGBoost – a classifier not
experimented with in [5] – implying the importance of experimentation with diverse classifiers.
For the general two-class low vs high cognitive load inference, the authors of [5] achieve 52%
CA with a random forest classifier, while we achieve 59% CA with a random forest classifier.
We assume that the improvement comes from a more detailed hyperparameter tuning we



performed. Finally, for the three-class task-oblivious low vs medium vs high cognitive load
inference problem, they achieve 37% CA with a random forest classifier, while we reach 40% CA
with a fine-tuned SVM classifier.

Confident that our work delivers highly-optimised classification pipelines, we assess the
autoencoders’ ability to extract features beyond those already known and reported in the related
literature. The results from Section 4 show that in most cases handcrafted features (breathing-
and heart rate-related features) are sufficient, and features extracted from autoencoders do not
offer improvements. However, for certain problem-task type combinations autoencoder-based
features can offer the highest CA. For the BvR problem, for the SX task type, AE based features
achieve the highest CA of 67%. For the LvH problem, in case of the FA task type, AE based
features achieve the highest CA of 67%. Finally, for the LvMvH problem, for the FA task type,
AE based features achieve the highest CA of 46%. Only for the LvH and FA task type, the highest
CA using AE based features is also the overall highest CA for any task type in that problem.

The findings of our research are surprising. In theory, any function could be modeled with a
deep learning model, therefore an AE should be able to find features that are at least as good as
the handcrafted ones. Yet, in most cases, despite a rather detailed hyperparameter tuning, we
failed to match the performance of handcrafted features. We postulate that the following could
be the causes:

• Insufficient training data. On average, AEs contain significantly more parameters
than classical machine learning algorithms. Consequently, a larger training set is needed.
In Section 3.1 we see that for the BvR problem there are less than 400 data instances,
while for the LvH and LvMvH problems, each class has more than 900 instances of data.
Looking at the tables with results in Section 4, we see that the discrepancies between the
highest mean accuracies using only AE feature groups and the highest mean accuracies
using all feature groups are the highest for the BvR problem.

• Noise in the data. Wireless signals are notoriously noisy. While the handcrafted features
may be robust to certain noise artefacts, AEs could mistakenly “hook” on intermittent
noise, which could then lead to over-fitted classifiers. Indeed, the contractive AE, which
should be the most immune to noise, appears to be performing slightly better than other
AE flavors.

• Suboptimal neural architectures. In this work we used fixed simple AE architectures.
Whether architectures with a different number of layers, different layers widths, and
other parameters would perform better is an open question.

6. Conclusion

Riding on the wave of impressive results in computer vision, speech recognition, and other
domains, deep learning was quickly adopted by human-computer interaction (HCI) researchers.
Yet, while there are no doubts about the dominance of deep learning for problems such as visual
object recognition1, its suitability for various HCI problems is not that clear.

1In 2012 a CNN called AlexNet outperformed all other approaches submitted to the ImageNet competition by a
large margin, and neural networks have dominated the said competition ever since.



In this paper we pitted deep learning-based automatic feature extraction against features
extracted using conventional expert knowledge on the problem of human cognitive load infer-
ence from wireless ranging signals. Our analysis encompassed combinations of four different
autoencoders for automatic feature extraction, seven different classifiers, as well as four different
expert-feature groups, all tested on three different cognitive load inference problem flavours
and six different cognitive tasks performed by 23 volunteers.

The thorough examination hints that deep learning is by no means a panacea. While
autoencoder-based feature extraction achieves comparable results as the best expert-based
feature extraction for certain tasks, such as SX, it is often outperformed by expert-based extrac-
tion and learning. We believe that the particularities of the problem and the dataset, including a
relatively modest number of training datapoints, a high level of noise in the data, as well as the
lack of a wider neural network architecture search lead to such results. Based on our experience,
we caution against an overly optimistic use of deep learning for less-examined problems in the
area of human-computer interaction.

7. Acknowledgments

This paper is based on the primary author’s bachelor’s thesis [12], with the other two authors
acting as the mentor and co-mentor for that thesis. We would also like to thank the authors of
Wi-Mind [5] for making their data and code publicly available.

References

[1] M. Weiser, The computer for the 21st century, Scientific American 265
(1991) 94–104. URL: http://dx.doi.org/10.1038/scientificamerican0991-94. doi:10.1038/
scientificamerican0991- 94 .

[2] E. Haapalainen, S. Kim, J. F. Forlizzi, A. K. Dey, Psycho-physiological measures for assessing
cognitive load, in: Proceedings of the 12th ACM international conference on Ubiquitous
computing, 2010, pp. 301–310.

[3] M. Gjoreski, M. Luštrek, V. Pejović, My watch says i’m busy: Inferring cognitive load
with low-cost wearables, in: UbiTtention 2018: 3rd International Workshop on Smart and
Ambient Notification and Attention Management (with UbiComp’18), 2018.

[4] Y. Abdelrahman, E. Velloso, T. Dingler, A. Schmidt, F. Vetere, Cognitive heat: exploring
the usage of thermal imaging to unobtrusively estimate cognitive load, Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1 (2017) 33.

[5] V. Pejović, T. Matkovič, M. Ciglarič, Wireless ranging for contactless cognitive load
inference in ubiquitous computing, International Journal of Human–Computer Interaction
(2021) 1–25.

[6] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016. http://www.
deeplearningbook.org.

[7] F. G. Paas, J. J. Van Merriënboer, Instructional control of cognitive load in the training of
complex cognitive tasks, Educational psychology review 6 (1994) 351–371.

http://dx.doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1038/scientificamerican0991-94
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[8] S. G. Hart, L. E. Staveland, Development of nasa-tlx (task load index): Results of empirical
and theoretical research, in: Advances in psychology, volume 52, Elsevier, 1988, pp.
139–183.

[9] M. Gjoreski, T. Kolenik, T. Knez, M. Luštrek, M. Gams, H. Gjoreski, V. Pejović, Datasets for
cognitive load inference using wearable sensors and psychological traits, Applied Sciences
10 (2020) 3843.

[10] T. Plötz, N. Y. Hammerla, P. L. Olivier, Feature learning for activity recognition in ubiquitous
computing, in: Twenty-second international joint conference on artificial intelligence,
2011.

[11] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit
invariance during feature extraction, in: ICML, 2011, pp. 833–840. URL: https://icml.cc/
2011/papers/455_icmlpaper.pdf.

[12] A. Kristan, Examining the potential of autoencoders for automatic feature extraction in
wireless cognitive load inference, Bachelor’s thesis, University of Ljubljana, Faculty of
computer and information science, 2021. URL: https://repozitorij.uni-lj.si/IzpisGradiva.
php?lang=eng&id=129656.

https://icml.cc/2011/papers/455_icmlpaper.pdf
https://icml.cc/2011/papers/455_icmlpaper.pdf
https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=129656
https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=129656

	1 Introduction
	2 Background
	2.1 Related work
	2.2 Wireless cognitive load inference
	2.3 Autoencoders

	3 Machine learning evaluation pipeline
	3.1 Noise filtering

	4 Experimental results
	4.1 Busy vs Relaxed
	4.2 Low vs High
	4.3 Low vs Medium vs High

	5 Discussion
	6 Conclusion
	7 Acknowledgments

