CEUR-WS.org/Vol-3056/paper-10.pdf

Cyber range automation, a bedrock for Al applications

Leonardo Gavaudan’, Swann Legras’ and Véronique Ventos’

INukkAlI 75013 Paris

Abstract

This paper proposes an automated solution for conducting cybersecurity research. It shows how automation can improve
the foundations of cybersecurity research, and consequently facilitate and bolster the development of artificial intelligence
applications. The challenges that cybersecurity researchers face are discussed, as well as what automation offers to tackle
them at three different stages: provisioning, configuration, and attack simulation.

Keywords

cyber range, security automation, security testing, adversary emulation, threat hunting, infrastructure-as-code

1. Introduction

Over the last few years, the pace of cyber attacks has
particularly accelerated; their complexity and reach have
relentlessly been growing. The 2020 Solarwinds attack,
an attack estimated to have infiltrated thousands of or-
ganizations among which United States government sys-
tems, is perhaps the best example of the trend. From the
start of 2020, the following major attacks can be already
named: Solarwinds, Colonial Pipeline, JBS, Microsoft Ex-
change Servers. The growing recognition of the need
for artificial intelligence applications in the realm of cy-
bersecurity research in order to respond to the increased
complexity and frequency of these attacks, is paralleled
with a lack of a good ecosystem for them to flourish.
The current cybersecurity research process has more of
a manual approach, and is not best suited for artificial
intelligence development.

According to the European Defense Agency, a cyber
range is "a multipurpose environment in support of 3
primary processes: knowledge development, assurance
and dissemination” composed of “three complementary
functionality packages”: a Cyber Research Range (CRR),
a Cyber Simulation & Test Range (CSTR), and a Cyber
Training & Exercise Range (CTER)[1]. It is a common
issue for cybersecurity researchers who want to study
a particular attack or technique to end up realizing just
how incredibly arduous the process of setting up such
a cyber range is. Cybersecurity professionals looking
to get started with AI development, and Al researchers
looking to develop applications are confronted with a
same problem. Without access to both a repository of
good datasets and a system to keep it up to date, the
mission for developing production ready, up to date and

CESAR 2021: Automatisation en Cybersécurité - Automation in
Cybersecurity

EMAIL: lgavaudan@nukk.ai (L. Gavaudan); slegras@nukk.ai
(S. Legras); vventos@nukk.ai (V. Ventos)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
- Commons License Attribution 4.0 International (CC BY 4.0)

[== CEUR Workshop Proceedings (CEUR-WS.org)

Proceedings of the 281" C& ESAR (2021)

advanced Al applications remains an extremely difficult
task. An automated cyber range is a cyber range where
the deployment and configuration of the infrastructure,
and initial installation of red teaming tools are automated.
By automating its setup, cybersecurity and Al researchers
are empowered to focus on studying the core of an attack,
and building Al applications, rather having to worry
about the underlying groundwork.

Given that the bottle neck to Al research and devel-
opment is a lack of good datasets, the aim of this paper
is to illustrate an automated cyber range platform that
researchers can use to easily generate and access high
quality, and diverse attack simulation datasets. The con-
tribution of this paper is in the showcase of how and
why existing open source technologies can be assembled
to build an end to end platform solution for cybersecu-
rity automation. This paper explains how the choice
for each component of the solution is justified. More
importantly, it will compare the platform solution as a
whole to the current state of practice for end to end au-
tomation solution. As much as this paper is an abstract
and theoretical explanation for cybersecurity automation,
it is also a practical guide. That is why the paper will
instantiate the proposed solution through an advanced
persistent threat simulation example. The advanced per-
sistent threat example will help depict the technologies,
as well help researchers to start implementing, and using
them.

The plan of the paper is as follows: To begin with, in
section 2, we take a look at the APT29 attack simulation
example, and current end to end solutions. In section 3,
we inspect the current way cybersecurity research takes
place and its shortcomings. We then provide, in section
4, a comprehensive automated solution that addresses
the challenges discussed in the previous section. Finally,
in section 5, we examine how cybersecurity automation
positively impacts artificial intelligence development.

165

mailto:lgavaudan@nukk.ai
mailto:slegras@nukk.ai
mailto:vventos@nukk.ai
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Cyber Range Automation, a Bedrock for Al Applications

2. Prerequisites & related works

In this section, we look at the context from which the
scenario of APT29 is drawn, and why it is fit to describe
the cybersecurity automation landscape in 2.1. We then
look at two existing end to end solutions, one of whom
represents current state of the art and practice in 2.2. Both
the pros and cons of the existing end to end solutions are
analyzed, as well as how the solutions compare to the
one proposed in this paper.

2.1. APT 29

MITRE Engenuity is a technology foundation and a portal
through which MITRE collaborates with the private sec-
tor, and applies state of the art innovation that emerges
out of their research and development activity[2]. Op-
erating in MITRE Engenuity is the Center for Threat
Informed Defense (CTID), a "privately funded research
and development organization”[3] that has developed
an adversary emulation library of advanced persistent
threat attack plans. If an autonomous red teaming tool
allows us to launch adversary simulations, then the plans
produced by CTID are the important inputs needed to
generate high quality attack simulation datasets.

One of the attack simulation plans that CTID has de-
veloped is a plan to simulate an APT29 attack. APT29
is a “threat group that has been attributed to Russia’s
Foreign Intelligence Service (SVR). They have operated
since at least 2008, often targeting government networks
in Europe and NATO member countries, research in-
stitutes, and think tanks”[4]. By extensively studying
real cyber attacks conducted by APT29, the CTID team
built an attack plan that simulates and draws on identical
or similar techniques, tactics and procedures that the
Russian hacking group has previously used. We have
chosen this particular attack simulation plan because the
attack’s complexity will further accentuate the benefits
of automation. The APT29 simulation plans provide both
a manual and automatic implementation guide for how
to carry out the attack simulation. This in turn allows us
to start setting quantitative benchmarks for how much
gain in time and productivity one can achieve through
an automated solution.

The CTID team continues to develop new emulation
plans, and refine already established ones. The plans are
mapped to MITRE’s ATT&CK framework, and used to
evaluate detection solutions both in the context of the
’ATT&CK Evaluations’, a detection solution evaluation
series led by MITRE, and for individually and separately
evaluating one’s own detection solution. This ecosys-
tem allows researchers to develop applications on the
emulation library with confidence.

166

2.2. Existing Cyber Ranges
2.2.1. Splunk - Attack Range

The first end to end solution proposed is Splunk’s At-
tack Range[5]. Introduced in 2019 and developed by the
Splunk Threat Research Team, Attack Range is the state
of art and state of practice when it comes to integrating
multiple technologies to automate each stage in the cy-
bersecurity research process. It takes care of deploying
and configuring infrastructure in the cloud, to running
autonomous adversary emulation and extracting the re-
sulting logs. The Attack Range technology stack is very
similar to the one proposed in this paper, albeit the solu-
tion presented here proposes some improvements. Attack
Range uses Terraform to deploy infrastructure in either
AWS or Azure’s cloud, and Ansible to then configure
it. Attack Range also deploys MITRE’s CALDERA as an
autonomous red teaming tool. Lastly, it uses Window’s
WEF technology in order to recuperate the logs gener-
ated from an attack. Attack Range then indexes the logs
on a Splunk Server and uses other Splunk technologies
for security orchestration and rule based detection.

However, although Splunk’s Attack Range allows us
to test individual abilities and techniques, it does not
provide comprehensive attacks for researchers to study,
run, and develop on. Likewise, Attack Range’s default
environment setup is composed of 2 Windows machines,
and 2 Linux servers. In order to execute complex attack
chains that require larger and convoluted environments,
one would need to firstly adapt to required the environ-
ment by editing a configuration file provided in Attack
Range. Then, one would need to gather, in the correct or-
der from the MITRE ATT&CK framework, the list of tech-
nique IDs used in the attack, and feed it as a command
line argument argument when initiating the program.
Depending on an attack’s complexity, the configuration
file can quickly become bloated, hard to manage, and
work against the initial intended goal that the research
team had set: facilitating cybersecurity automation for
threat research.

Secondly, because Attack Range was developed by a
research team within Splunk, the data indexing and visu-
alization step, and SOAR step of the solution can only be
configured with Splunk technologies: Splunk and Splunk
Phantom. Although Splunk is recognised as a leader in
the field of log collection, analysis, and detection, avoid-
ing vendor lock-in is a fundamental concept to consider
when it comes to designing an end to end solution. It al-
lows the solution to be easily modified in order to best fit
the needs of users, and ensures that the solution doesn’t
have a single point of failure.

Lastly, Splunk’s red teaming automation is based on
CALDERA’s old version 2 release, and therefore any new
features developed and introduced in CALDERA will not
be compatible with Attack Range.

Proceedings of the 281" C& ESAR (2021)

L. Gavaudan, S. Legrasand V. Ventos

2.2.2. Microsoft - SimulLand

The second tool we’re going to a look at is SimuLand[6],
a tool developed by Microsoft and introduced in 2021.
The tool isn’t a fully automated end to end solution. It
automates the deployment and configuration of infras-
tructure, but lacks red team automation tooling. Rather,
it aims to guide researchers on how to manually simulate
different techniques on already deployed and configured
infrastructure. It deploys and configures an infrastruc-
ture in the cloud using Azure Resource Manager Tem-
plates, and has good integration with different security,
DevOps, and cloud products within the Microsoft ecosys-
tem (Microsoft 365 Defender, Azure Defender, and Azure
Sentinel). On another hand, SimuLand’s design limits
users to using Azure as a sole cloud provider, which is
particularly problematic when studying security exploits
directly embedded in a cloud provider’s system.

3. Manual security research

In this section we will look at how current cybersecurity
research is being conducted at three different stages: pro-
visioning (3.1), configuration (3.2), and attack simulation
(3.3). The section will analyze in detail the procedure that
a researcher would go through for each step, and analyze
its weaknesses and disadvantages, all done through the
lens of a setup for an APT29 attack simulation.

3.1. Provisioning

The first step in conducting cybersecurity research is the
deployment of an environment, a cyber range, in which
we want to test out different abilities and techniques. A
common way to manually deploy the infrastructure is
by requesting the necessary resources through a cloud
provider website’s graphical user interface. Another so-
lution is to build the required infrastructure with virtual-
izing software like VirtualBox, or KVM and locally host
the environment.

Going through a cloud provider entails having to sepa-
rately request each resource and specify instance details.
The process of setting up an environment for a complex
attack can call for requesting to the cloud provider virtual
machines, networks, sub-networks, network interface
controllers, network peerings, and additional resources.
For each of these resource requests, one must specify a
group of settings. For instance, a virtual machine will
typically require the disk, image, CPU, RAM among other
details to be provided in order to be deployed. Individu-
ally deploying resources is prone to error, hard to debug,
tedious, and time consuming.

In order to set up the correct environment for the
APT29 scenario as depicted in Figure 1 (1), a target and

Proceedings of the 281" C& ESAR (2021)

attacker environment is required. The target environ-
ment is a Windows domain sub-network with 2 Windows
servers with the "2019-Datacenter’ SKU, one serving as a
domain controller, and the other serving as a file server,
and three Windows workstations running Windows 10
1903 with a “19h1-pro” or “1903-evd-0365pp“ SKU. The
domain controller and file server are usually controlled
and under the supervision of IT professionals, whilst
workstations usually represent regular computers that
non-technical employees use. In this case, all VMs are
“Standard B4MS” instances, with four vCPUs and 16GB of
RAM. The attacker environment is a second sub-network
with 2 Linux machines running 18.04.3 LTS Ubuntu, one
serving as a traffic redirector, and the other as a C2 (Com-
mand and Control) from where attack commands are
sent. The sub-network also has a workstation running
Windows 10 1903 with the same SKU as the target work-
stations, it serves as a platform to replicate the target
environment, appropriately compile payloads. Lastly, a
virtual peering network is needed to connect the two
sub-networks.

3.2. Configuration

The process of configuring an environment varies a lot
depending on the target operating system, and the attack
simulation. Without a clear list of settings and software
that need to be present, launching an attack is either un-
achievable, or produces inaccurate results. The countless
ways a configuration setup can go amiss, and the needed
technical knowledge and familiarity with the operating
system make configuration a daunting task.

To configure the environment for the APT29 scenarios,
one needs to connect to each resource through Windows
Remote Desktop, an application that allows one to inter-
act with a GUI for your virtual machines. The domain
controller server needs to be setup by installing Active Di-
rectory (AD), creating a domain, adding the workstations
to the domain along with creating a domain name service
(DNS), group policy objects (GPO), domain users, and
domain user groups. The workstations are then setup by
installing additional software like Google Chrome, tam-
pering with the registries and firewall rules, disabling
Windows Defender, and ensuring that Windows Remote
Management (WinRM) as well as other communication
protocols and services are functioning correctly. Finally,
on a command and control server (C2), one needs to in-
stall penetration testing tools such as Metasploit [7] to
have a platform on which to launch the attack from.

The measures taken on the domain controller, work-
stations, and C2 are quite common for threat hunting cy-
bersecurity research. Additionally, APT29 also requires
the Powershell execution policy set to "Bypass”, the reg-
istry modified to allow storage of wdigest credentials, the
firewall configured to allow SMB (Server Message Block),

167

Cyber Range Automation, a Bedrock for Al Applications

AZURE NETWORK
DOMAIN: DMEVALS ATTACKER INFRASTRUCTURE
Host Machine
— — —
Ol) Il C
y ’ , !
= P [=] A—”
— A— A— = P
Scranton Utica Nashua -—
10.0.1.4 10.01.5 E
Windows 10 with Windows 10 with Wlndows 10 Pro
Office365 Office365
OpenVPN
NewYork Warehouse
10.0.0.4 10.0.0.5
Domain Controller File Server
Windows Server Windows Server — —
2019 Datacenter 2019 Datacenter _]l @I
— ——
= d— =
—
=4 Team Server [EI Ubuntu VPN
- 192.168.0.4 _=‘_‘/ 10.0.2.4
Tools: —
Pupy & Redirector
PoshC2 192.168.0.5

Figure 1: Schema of the APT29 Network

a SMB share present and working, the UAC (User Access
Control) set to never notify for all Windows hosts.

Whereas the manual provisioning of the infrastructure
was all initiated from a centralized cloud provider web
platform with a user friendly interface, the manual con-
figuration of an environment requires configuring the
environment by connecting to different virtual machines
endpoints. That framework offers a less controlled envi-
ronment where the user has a harder time tracking the
current state of configuration process and the remaining
steps.

3.3. Attack Simulation

Once the infrastructure is deployed and configured, a re-
searcher can then proceed to launch attacks. Every attack
simulation requires an entry point from which malicious
commands are executed and payloads downloaded. The
entry point is an agent that lays in wait and listens for
commands to execute from the C2 server. Therefore,
one needs to connect to at least one workstation, and
initiate the agent process before starting the attack sim-
ulation. The use of already infected workstations as a
starting point for conducting post-breach cybersecurity
research is common under the paradigm known as "As-
sume Breach Paradigm” [8]. Microsoft’s Cyber Defense
Operations Center describes it as such: “despite all the
protections in place, we assume systems will fail or peo-
ple will make errors, and an adversary may penetrate our
infrastructure and services.”

Once the workstation(s) are infected and the pene-

168

tration testing tools ready, the attack simulation can be
initiated. This step requires general knowledge about
what the attack is trying to achieve, how it accomplishes
its goals, what each step of the attack performs, also
known as "Techniques, Tactics and Procedures’ (TTP), as
well as more in-depth knowledge about how to navigate
and send commands from the penetration testing tool.

The APT29 attack simulation is broken down into 2
different scenarios in order to depict the two approaches
that the hacking group could deploy when they attack
their targets. For both scenarios, the attacker uses a mix
of Metasploit and Pupy in order to communicate with
infected workstations and send shell commands to carry
out the attacks. The first APT29 scenario represents a
more aggressive, fast-paced, direct style that ’smashes
and grabs’ in order to reach its goals. The goal is to
firstly collect and exfiltrate data, the focus then shifts to
persistence, data collection, credential access, and lateral
movement. The second scenario on the other hand is a
stealthier and slower attack that looks at “establishing
persistence, harvesting credentials, then finally enumer-
ating and compromising the entire domain”.[9]

More details about each step of the attack for both
scenario 1 and 2 can be found in the appendix, where
notes gathered from MITRE’s adversary_emulation_li-
brary GitHub repository[9] can be found.

Proceedings of the 281" C& ESAR (2021)

L. Gavaudan, S. Legrasand V. Ventos

4. Automated security research

After studying how current manual security research is
directed, we propose a way to conduct automated secu-
rity research, and how to implement each of its steps.
The automated solution is split in 3 main steps: provi-
sioning (4.1), configuration (4.2), and attack simulation
(4.3) as shown on figure 2. Additionally, data collection
and reporting will be covered in 4.4, and a comparison
between manual and automatic cyber security research
will be drawn in 4.5.

One important and pressing issue reoccurring in the
last section was the unavoidable complexity, and sub-
sequently the required technical know-how one needs
in order to carry out security research.This section is
now going to see how to abstract out the intricacies of
deploying, and configuring our cyber range through the
concept of Infrastructure as Code (IaC) [10, 11]. As for at-
tack simulations, the required technical knowledge that
comes with penetration testing software is abstracted
out through Caldera’s intuitive GUI for managing agents,
adversarial profiles, and operations.

Furthermore the automation technologies outlined for
infrastructure provisioning and configuring have impor-
tant attributes that make them all the more fit for cy-
bersecurity research and development. The agentless
nature of the technologies is an important step towards
tackling the automation challenge as it avoids any unnec-
essary dependencies, limits the requirements to initiate
the automation process, and minimizes the probability of
critical errors. Moreover, the declarative capabilities of
those technologies allow users to rapidly learn about and
understand the different components that make up the
automation process with little to no technical knowledge
of the tools used. By separating the user from software
implementation issues and edge case problems, a declar-
ative style approach requires very little effort to build
functional and robust programs.

4.1. Provisioning

In order to provision our environment in a fully auto-
mated manner, we use Terraform [12], an open source
IaC software tool. The tool allows for the creation and
provisioning of infrastructure using HashiCorp Configu-
ration Language (HCL), a declarative configuration lan-
guage where the user 'declares’ or writes in HCL code
the desired state for the infrastructure.

Terraform offers the ability to write reusable and mod-
ular code. The re-usability feature gives Terraform a
sizeable advantage over deploying each resource manu-
ally on a Cloud Provider. Users save on the amount of
time the infrastructure takes to deploy: Terraform creates
a resource dependency graph to set the order in which
resources need to be deployed, it then instantly and con-

Proceedings of the 281" C& ESAR (2021)

N
v

Terraform

CALDERA

Figure 2: The 3 step automation cycle for cybersecurity re-
search: Terraform, Ansible, and Caldera.

currently creates infrastructure in a way that respects
the dependency graph, and in a manner that humans
could not compete with. But the leading gain is in the
reduced amount of workload and time someone has to
spend in order to boot up the infrastructure. The whole
infrastructure can be built from 2 simple commands:

terraform plan -out {name_of plan}
terraform apply {name_of_plan}

The user first creates a ’plan’ that represents the changes
Terraform counts on implementing such as destroying or
creating a virtual machine, and then applies the planned
changes. Finally, “terraform state list” shows the current
state of the infrastructure. The user then doesn’t have to
spend 1 to 2 hours creating the resources by hand, but
can spend that time on higher added value work whilst
waiting for Terraform to complete. The modular nature
of Terraform means that we can share our code, or a
portion of it for others to reuse. There are no manual
equivalents when one looks for a way to share the abil-
ity to launch an identical infrastructure, and show the
desired infrastructure end-state. The code format of our
infrastructure deployment, or IaC, enables us to use fea-
tures that come with version controller systems (VCS)
hosting platforms like GitHub or GitLab. It allows us to
perform code reviews, work on particular branches of
the code, look at history graphs, track issues and goals,
and more broadly work in a collaborative, structured
and fast-paced environment. Finally, in contrast to an
imperative approach, the user does not need to know
how Terraform implements HCL code and deploys the

169

Cyber Range Automation, a Bedrock for Al Applications

infrastructure. Subsequently, a great deal of complexity
is taken out of the hands of the user given that HCL is
easy to read, learn and execute.

4.2. Configuration

As for the automation of configuration for our environ-
ment, Ansible [13], another open source [aC software
tool released in 2012, and developed by Red Hat Inc since
2015, provides a wide range of packages and functions
that allow for configuration management. Ansible uses
a hybrid between imperative and declarative style lan-
guage where development should be as declarative as
possible but might still require imperative style code.

Ansible’s modular programming capabilities are just as
pronounced as Terraform’s, not only are functions used
within a source code file reusable, but so are larger and ab-
stract goals such as setting up and configuring Windows’
Active Directory can be packaged and encapsulated in
a single package or ‘role’. A role is a folder or package
that contains both what the user might conceive as the
main source code (tasks), as well as additional resources
such as template files, variable files, handler files (files
that manage exceptions and special conditions). They
can then easily be shared with the community or within
a workspace. Ansible’s flexibility becomes important
when looking at requirements and interoperability. Its
requirements are minimal, as it only requires for Python
to be installed, and for a mean of connection (WinRM or
ssh [14]) to be available. Like Terraform, Ansible’s use
of IaC allows for code reviews and other perks, as well
as being easy and quick to launch.

4.3. Attack simulation platform

There are various challenges with automatically mea-
suring aspects of a network’s security posture through
penetration testing, red teams, and adversary emulation
and numerous way to go about implementing it [15]. Cy-
ber Adversary Language and Detection Engine for Red
team Automation (CALDERA) version 3 [16] is a simu-
lated penetration testing platform for autonomous red
teaming. It is an open source tool developed by MITRE.
CALDERA offers three major advantages over a manual
style attack.

The first is that CALDERA has an interactive, friendly
and graphical user interface, launching an attack is an in-
tuitive and short procedure. The program has 3 main cat-
egories: Agents, Adversaries, and Operations. One can
easily toggle from one to the other without any interfer-
ence between each other. The ’Agents’ section provides
a dashboard with a list of agents currently running, their
information and whether they have been terminated, as
well as code to implant agents on a target workstation be-
fore one can simulate an attack. The ’Adversaries’ section

170

provides an interface to inspect the collection of abili-
ties that make up an adversary, or an adversarial attack.
One can either analyze the attack by overviewing the
different abilities and getting a general understanding of
how the attack works, or dig deeper in each ability, and
inspect the commands launched. Lastly, the ’operations’
section is at the core of launching attacks, it allows for
the configuration and management of operations, with
the capability to manually add and execute commands
to an on-going autonomous attack.

The second advantage CALDERA has to offer is a plat-
form on which one can easily build variations out of a
particular adversarial attack, as well as producing, exper-
imenting and sharing new adversaries. This feature is of
upmost importance as it comprehensively captures the
merit and spectrum of benefits that an automated system
provides. It provides an unparalleled flexible structure to
produce modular and automated attacks.

The third advantage CALDERA brings is a catalogue of
attacks belonging to different threat actors, including the
APT29 scenario. The utility for autonomous red teaming
grows with the complexity of the simulated attacks, and
given that the attacks available are of APT level sophis-
tication, CALDERA becomes an invaluable tool. An ad-
vanced persistent threat (APT) is a threat group, usually
associated with nation states, with advanced capabilities
to penetrate systems and networks.

4.4. Data collection and reporting

The data collection process is specific to an operating
system, but can be setup automatically at the configura-
tion step through Ansible. Taking a deeper look at the
data collection process for a windows ecosystem, a way
to collect logs is through Windows Event Forwarding
(WEF) [17], a service that comes as part of Windows 10,
and allows workstations to forward local logs to other
Windows machines. The main steps in setting up WEF
can be split between setting up the workstations, also
known as WEF clients, on which the attacks are unfold-
ing, and the server listening for incoming connections
from the WEF Clients. These steps include enabling the
WinRM service, changing registry keys, changing au-
dit policies and system access controls, and uploading
XML files to configure the WEF service, all steps that can
be completed automatically through Ansible packages
and functions. There are plenty of services and products
that take care of the data reporting process, and are usu-
ally chosen depending on the technology a user is most
familiar with, or already has setup.

4.5. Results

The time results comparing a manual and automated
approach to simulating the APT29 attack plans can be

Proceedings of the 281" C& ESAR (2021)

L. Gavaudan, S. Legrasand V. Ventos

Manual Automatic
Provisioning 1-2h 17m
Configuring 5-10h 30m
Attack 10 - 15h (30m if familiar) 8m
Total 6.5-27h 55m
Table 1

Time comparisons between manually and automatically com-
pleting APT29’s scenario 1

found above in Table 1 (1). All in all, the deployment of
the infrastructure, configuration of the environment, and
completion of the attack simulation for the first scenario
of APT29 takes just under an hour from start to finish.
In contrast, for a cybersecurity researcher new to APT29
attacks, the simulation would likely take between 6.5 and
27 hours.

Using Terraform to deploy the infrastructure took 17
minutes, whilst deploying all of the infrastructure man-
ually through Azure would take an amount of time in
the scale of multiple hours. Configuration automation
allows researchers to have a environment ready in 30
minutes. Configuring automatically with Ansible, here,
allows us to save time on a process that would usually
take between 5 - 10 hours.

Manually running an attack simulation is different
from deploying an infrastructure or configuring it, in the
sense that once an attack is mastered by a researcher,
he can complete the attack in the same time order as he
automatically would with an automated tool. CALDERA
took a total of 8 minutes to run scenario 1 of the APT29
simulation, whilst a well versed researcher could finish
it in less than 30 minutes.

The automation of a cyber range does not come with-
out a price, cyber range automation allows us to acceler-
ate the research development cycle but in turn takes away
from potential expertise and knowledge that researchers
would have developed in the process of creating a cyber
range themselves. In the deployment and configuration
step, the time savings justifies the expertise delegated
to the automated platform. In contrast, spending time
in the attack simulation stage to understand an attack
and manually launch attack simulations is an important
component to preserve in an automated cyber range. If
expertise was delegated in the deployment and config-
uration stage, it is for researchers to spend more time
on mastering the attack simulation stage. Nevertheless,
automated red teaming presents an alternative and in-
teresting way of conducting attack simulations. Whilst
manually executing an attack simulation requires a grasp
of every step before completing an attack, automated red
teaming allows researchers to run full attack simulations
without understanding certain steps, which is useful for
understanding the general operational flow of an attack.

Proceedings of the 281" C& ESAR (2021)

5. Relevance of automation for Al

Generating and updating a collection of diverse datasets
is especially important in the cybersecurity field where
threats, actors and their representations are constantly
changing, and where experts have to be persistently
learning about new paradigms, heuristics and technolo-
gies. The automatic construction of a cyber range pre-
sented in this paper does not just provide solutions for
current threats, but a general framework in which one
can continually conduct research, and build new datasets.

In AI development, results can only be as good as the
quality of the data used. Therefore, having a limited
amount of datasets to train good models and counting
on them to protect organisations is not a viable solution.
A fully automated cyber range ensures us to have access
to diverse datasets. Its flexibility enables us to add varia-
tions on an attack, and create a wide array of different
environments against which to generate datasets.

In this section we will discuss how such a framework
does not just enhance cybersecurity researchers but also
provide the necessary sandbox for Al researchers to de-
velop applications and train models of good quality. We
will firstly see how such a cyber range can help build a
high level ontology in the domain of cybersecurity in 5.1.
We then look at some commons pitfalls machine learning
models encounter with poor data and how an automated
cyber range can help us avoid them in 5.2.

5.1. Ontologies

"MITRE ATT&CK is a globally-accessible knowledge base
of adversary tactics and techniques based on real-world
observations”. The tactics and procedures provided by
the framework allow us to paint a meaningful picture
for attacks [18]. If the MITRE ATT&CK framework pro-
vides the tools to build high level view attacks, and an
automated system the low level log datasets of attack
simulations (see figure 3), then Ontology [19] is the key
to bridging the gaps between the two. It enables us to
map thousands of logs into a coherent and comprehensi-
ble sequence of MITRE ATT&CK techniques, tactics and
procedures.

Ontology-based data access (OBDA) is a well estab-
lished paradigm for querying incomplete and heteroge-
neous data sources while incorporating knowledge from
a domain ontology [20, 21]. OBDA allows a user to for-
mulate queries through a high-level ontology vocabulary,
delegating to the algorithm the task of querying low level
data and mapping them back to high level concepts.

The ontological process represents the abstraction ex-
ercise that cybersecurity experts perform each day when
looking at a collection of security logs, whether it is in an
incident response, troubleshooting, or active monitoring
context. An ontology must consequently define semantic

171

Cyber Range Automation, a Bedrock for Al Applications

1

1

1

: Data Source Data Component Relationships Among Data Elements Event Logs
1

I =0 {] L

1 ‘[Process created Process }—r:—

! — 1

! !

! !

‘ (! : Security

|

' B oo O BC R | O 0
I 4 il

l i

| 8

' . s o |

1 \ 1!

| Process 1!

1 1 |

' H Security

1 ecul

" Process Connected to ——[Ip J) £ID 5156 J
1 . J |

| I :

! 1

. blocked inbound 1! Security

| - T (e - et (e (S
I &

1 ? e] :

: Permitted listener — | Security

i on T EID 5154

1 (!

Figure 3: ATT&CK Data Sources (Defining ATT&CK Data Sources, Part I: Enhancing the Current State).

concepts that cybersecurity analysts use and recognise
in order to abstract out the logs.

The diversity of our data allows us to test the level
of expressiveness an ontology has to offer. Building an
ontology only with high level concepts in mind might
not scale to real data mapping. On the other hand, over-
fitting concepts on a limited amount of datasets puts us
at risk of not being able to generalize when the paradigm
shifts ever so slightly. Therefore, ontology building is
an iterative process which is best served by an flexible
and automated cyber range that can reliably produce
heterogeneous and realist as possible data.

5.2. Machine learning

After developing an ontology, one can train machine
learning models that learn from the same semantic con-
cepts that cybersecurity experts use, enabling them to
intelligently interpret predictions, as opposed to trying
to learn directly from datasets of innumerable logs. Al-
lowing machine learning models to base themselves off
of high level abstractions, it empower them to be much
more robust both to overfitting problems, and adversarial
examples. Firstly, it allows models to avoid overfitting on
meaningless features [22, 23] such as learning that com-
munication with a particular IP address presents a high

172

attack risk, and should therefore be blocked. Secondly,
the heavy use of abstraction allowed through the use of
ontologies enables the models to limit the effects of ad-
versarial artificial intelligence examples. Deep learning
models for instance, are known to be highly vulnerable
to adversarial examples[24]. Introducing very superficial
changes to an input can make predictions highly unstable
and inaccurate, a situation where humans can reliably
understand that the input has not significantly changed.

Ultimately, the hope is for the machine learning models
to grasp abstract concepts and general pattern recogni-
tion, and discover new heuristics for cybersecurity an-
alysts to integrate in their practice. As can be seen on
figure 4 (4), among the most pressing issues that cyber-
security analysts are trying to solve is the problem of
overwhelming false positives (A2 and A3). The prob-
lem clouds analysts’ judgment for potential threats, and
causes what is known as ’Alert Fatigue’, a fatigue pro-
duced by a myriad of false positives that continually drain
analysts’ attention. Other important issues pointed out
in Panther Labs’ survey findings (Figure 4) are a lack of
context for alerts and insights given by current SIEM
systems to experts, and the sheer number of those alerts
(A1 and A4). Using an approach to machine learning
based on ontology, the enrichment of our data from ini-
tial logs to high level data would allow models to put

Proceedings of the 281" C& ESAR (2021)

https://medium.com/mitre-attack/defining-attack-data-sources-part-i-4c39e581454f

L. Gavaudan, S. Legrasand V. Ventos

When it comes to interacting with your SIEM day to day,
what is the #1 challenge you face with your current platform?

Al Too many alerts

AZ False positives from the product

A3 False positives from the rules written by cur team
A4 Mot encugh context to investigate

AS Lack of visibility across both on-prem
and cloud environments

AS It's too expensive
A7 It doesn't scale

AE Requires switching between multiple tools
to get a comprehensive view

AS workforce limitations
Al We don't have any issues with our current SIEM

Figure 4: Panther Labs’ cybersecurity survey on the current state of SIEM (State of SIEM 2021 Insights From 400 Security

Professionals)

in the hands of cybersecurity experts meaningful and
contextual alerts.

6. Conclusion

The automation solution we brought forward in this pa-
per is designed to help cybersecurity researchers look-
ing to integrate Al in their operations, as well as Al re-
searchers interested in contributing to the cybersecurity
field. We used a scenario inspired from an APT29 attack
campaign to better illustrate the benefits that the automa-
tion platform brings for researchers. The solution enables
researchers to operate and build software on top of an
automated cyber range, allowing them to save time and
focus solely on the development of artificial intelligence
tools. Terraform automates the deployment of the infras-
tructure, Ansible automates its configuration, Caldera
provides autonomous red teaming capabilities for attack
simulations, and WEF helps centralize and collect the
attack simulation’s data.

References

[1] Common staff target for military cooperation
on cyber ranges in the european union, 2013.
URL: https://eda.europa.eu/docs/default-source/
procurement/annex-a---cyber-ranges-cst.pdf.

[2] Mitre engenuity website, 2019. URL: https://
mitre-engenuity.org/.

[3] Center for threat informed defense website, 2019.
URL: https://ctid.mitre-engenuity.org/.

[4] Mitre att&ck website, 2015. URL: https://attack.
mitre.org/groups/G0016/.

Proceedings of the 281" C& ESAR (2021)

[5] Attack range github repository, 2019. URL: https:
//github.com/splunk/attack_range.

[6] Simuland github repository, 2021. URL: https://
github.com/Azure/SimuLand.

[7] D.Kennedy, J. O’gorman, D. Kearns, M. Aharoni,
Metasploit: the penetration tester’s guide, No
Starch Press, 2011.

[8] R. Pompon, Assume Breach, Apress,
Berkeley, CA, 2016, pp. 13-21. URL:
https://doi.org/10.1007/978-1-4842-2140-2_2.
doi:10.1007/978-1-4842-2140-2_2.

[9] Adversary emulation library github repos-

itory, 2019. URL: https://github.com/

center-for-threat-informed-defense/adversary _
emulation_library/tree/master/apt29/Emulation_

Plan.

A. Rahman, R. Mahdavi-Hezaveh, L. Williams, A

systematic mapping study of infrastructure as code

research, Information and Software Technology 108

(2019) 65-77. URL: https://www.sciencedirect.com/

science/article/pii/S0950584918302507. doi:https:

//doi.org/10.1016/j.infsof.2018.12.004.

C.Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghat-

tas, A. Glover, J. Holman, J. Micco, B. Murphy, T. Sa-

vor, M. Stumm, S. Whitaker, L. Williams, The top 10

adages in continuous deployment, IEEE Software

34 (2017) 86—-95. doi:10.1109/MS.2017. 86.

Mitchell Hashimoto et al , Terraform website, 2014.

URL: https://www.terraform.io/.

Ansible website, 2012. URL: https://www.ansible.

com/.

T. Ylonen, C. Lonvick, et al., The secure shell (ssh)

protocol architecture, 2006.

[15] J. Hoffmann, Simulated penetration testing: From

(12]
(13]

(14]

173

https://resources.runpanther.com/hubfs/Marketing%20Materials/Reports/State%20of%20SIEM%202021.pdf
https://resources.runpanther.com/hubfs/Marketing%20Materials/Reports/State%20of%20SIEM%202021.pdf
https://eda.europa.eu/docs/default-source/procurement/annex-a---cyber-ranges-cst.pdf
https://eda.europa.eu/docs/default-source/procurement/annex-a---cyber-ranges-cst.pdf
https://mitre-engenuity.org/
https://mitre-engenuity.org/
https://ctid.mitre-engenuity.org/
https://attack.mitre.org/groups/G0016/
https://attack.mitre.org/groups/G0016/
https://github.com/splunk/attack_range
https://github.com/splunk/attack_range
https://github.com/Azure/SimuLand
https://github.com/Azure/SimuLand
https://doi.org/10.1007/978-1-4842-2140-2_2
http://dx.doi.org/10.1007/978-1-4842-2140-2_2
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/apt29/Emulation_Plan
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/apt29/Emulation_Plan
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/apt29/Emulation_Plan
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/apt29/Emulation_Plan
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
http://dx.doi.org/10.1109/MS.2017.86
https://www.terraform.io/
https://www.ansible.com/
https://www.ansible.com/

Cyber Range Automation, a Bedrock for Al Applications

174

“dijkstra” to “turing test++”, in: Proceedings of
the Twenty-Fifth International Conference on In-
ternational Conference on Automated Planning
and Scheduling, ICAPS’15, AAAIT Press, 2015, p.
364-372.

Caldera, a scalable, automated adversary emulation
platform, 2021. URL: https://caldera.mitre.org/.
Spotting the Adversary with Windows Event Log
Monitoring, Technical Report, NSA, 2015.

Best Practices for MITRE ATT&CK Mapping, Tech-
nical Report, CISA, HSSEDI, 2021.

D. L. McGuinness, F. Van Harmelen, et al., Owl web
ontology language overview, W3C recommenda-
tion 10 (2004) 2004.

M.-L. Mugnier, M.-C. Rousset, F. Ulliana, Ontology-
Mediated Queries for NOSQL Databases, in:
DL: Description Logics, volume CEUR Workshop
Proceedings, Cape Town, South Africa, 2016,
pp. 1051-1057. URL: https://hal-lirmm.ccsd.cnrs.fr/
lirmm-01375093, this paper is an extended abstract
of the paper with the same title presented at AAAI
2016.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, R. Rosati, Linking data to ontologies,
in: S. Spaccapietra (Ed.), Journal on Data Semantics
X, Springer Berlin Heidelberg, Berlin, Heidelberg,
2008, pp. 133-173.

J. Reunanen, Overfitting in making comparisons
between variable selection methods, J. Mach. Learn.
Res. 3 (2003) 1371-1382.

R. B. Rao, G. Fung, R. Rosales, On the Dangers
of Cross-Validation. An Experimental Evaluation,
Society for Industrial and Applied Mathematics,
2008, pp. 588-596. URL: https://epubs.siam.org/
doi/abs/10.1137/1.9781611972788.54. doi:10.1137/1.
9781611972788 . 54.

P.-A. Moéllic, The dark side of neural networks: an
advocacy for security in machine learning, Com-
puter & Electronics Security Applications Rendez-
vous (C&ESAR) (2018).

Proceedings of the 281" C& ESAR (2021)

https://caldera.mitre.org/
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01375093
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01375093
https://epubs.siam.org/doi/abs/10.1137/1.9781611972788.54
https://epubs.siam.org/doi/abs/10.1137/1.9781611972788.54
http://dx.doi.org/10.1137/1.9781611972788.54
http://dx.doi.org/10.1137/1.9781611972788.54

L. Gavaudan, S. Legrasand V. Ventos

Appendix

Details about each step of the APT29 attack simulation
for both scenario 1 and 2 are compiled here, as refer-
enced in 3.3. The details were gathered from MITRE’s
adversary_emulation_library GitHub repository[9].

Scenario 1

The scenario begins with an initial breach, where a le-
gitimate user clicks (T1204 / T1204.002) an executable
payload (screensaver executable) masquerading as a be-
nign word document (T1036 / T1036.002). Once exe-
cuted, the payload creates a C2 connection over port
1234 (T1065) using the RC4 cryptographic cipher. The
attacker then uses the active C2 connection to spawn in-
teractive cmd.exe (T1059 / T1059.003) and powershell.exe
(T1086 / T1059.001).

The attacker runs a one-liner command to search the
filesystem for document and media files (T1083, T1119),
collecting (T1005) and compressing (T1002 / T1560.001)
content into a single file. The file is then exfiltrated over
the existing C2 connection (T1041). The attacker now
uploads a new payload (T1105) to the victim. The pay-
load is a legitimately formed image file with a concealed
PowerShell script (T1027 / T1027.003). The attacker then
elevates privileges via a user account control (UAC) by-
pass (T1122 / T1546.015, T1088 / T1548.002), which ex-
ecutes the newly added payload. A new C2 connection
is established over port 443 (T1043 using the HTTPS
protocol (T1071 / T1071.001, T1032 / T1573). Finally, the
attacker removes artifacts of the privilege escalation from
the Registry (T1112).

The attacker uploads additional tools (T1105) through
the new, elevated access before spawning an interac-
tive powershell.exe shell (T1086 / T1059.001). The addi-
tional tools are decompressed (T1140) and positioned on
the target for usage. The attacker then enumerates run-
ning processes (T1057) to discover/terminate the initial
access from Step 1 before deleting various files (T1107
/ T1070.004) associated with that access. Finally, the
attacker launches a PowerShell script that performs a
wide variety of reconnaissance commands (T1016, T1033,
T1063 / T1518.001, T1069, T1082, T1083), some of which
are done by accessing the Windows API (T1106).

The attacker establishes two distinct means of persis-
tent access to the victim by creating a new service (T1031
/ T1543.003) and creating a malicious payload in the Win-
dows Startup folder (T1060 / T1547.001). The attacker col-
lects screenshots (T1113), data from the user’s clipboard
(T1115), and keystrokes (T1056 / T1056.001). The attacker
then collects files (T1005), which are compressed and en-
crypted (T1560 / T1560.001), before being exfiltrated to
an attacker-controlled WebDAV share (T1048 / T10438).
The attacker uses Lightweight Directory Access Protocol

Proceedings of the 281" C& ESAR (2021)

(LDAP) queries to enumerate other hosts in the domain
(T1018) before creating a remote PowerShell session to
a secondary victim (T1021 / T1021.006). Through this
connection, the attacker enumerates running processes
(T1057). Next, the attacker uploads (T1105) a new UPX-
packed payload (T1027 / T1027.002) to the secondary
victim. This new payload is executed on the secondary
victim via the PSExec utility (T1021 / T1021.002, T1035 /
T1569.002) using the previously stolen credentials (T1078
/ T1078.002).

The attacker uploads additional utilities to the sec-
ondary victim (T1105) before running a PowerShell one-
liner command (T1059 / T1059.001) to search for filesys-
tem for document and media files (T1083, T1119). Files
of interested are collected (T1005) then encrypted and
compressed (11002, T1022 / T1560.001 into a single file
(T1074 / T1074.001). The file this then exfiltrated over
the existing C2 connection (T1041). Finally, the attacker
deletes various files (T1107 / T1070.004) associated with
that access.

The original victim is rebooted and the legitimate user
logs in, emulating ordinary usage and a passage of time.
This activity triggers the previously established persis-
tence mechanisms, namely the execution of the new ser-
vice (T1035 / T1569.002) and payload in the Windows
Startup folder (T1060 / T1547.001). The payload in the
Startup folder executes a follow-on payload using a stolen
token (T1106, T1134 / T1134.002).

Scenario 2

The scenario begins with initial breach, where a legiti-
mate user clicks (T1204 / T1204.002) a link file payload,
which executes an alternate data stream (ADS) hidden
on another dummy file (T1096 / T1564.004) delivered
as part of the spearphishing campaign. The ADS per-
forms a series of enumeration commands to ensure it
is not executing in a virtualized analysis environment
(T1497 / T1497.001, T1082, T1120, T1033, T1016, T1057,
T1083) before establishing persistence via a Windows
Registry Run key entry (T1060 / T1547.001) pointing to
an embedded DLL payload that was decoded and dropped
to disk (T1140). The ADS then executes a PowerShell
stager (T1086 / T1059.001) which creates a C2 connection
over port 443 (T1043) using the HTTPS protocol (T1032 /
T1573.002, T1071 / T1071.001).

The attacker modifies the time attributes of the DLL
payload (T1099 / T1070.006) used in the previously estab-
lished persistence mechanism to match that of a random
file found in the victim’s System32 directory (T1083).
The attacker then enumerates registered AV products
(T1063 / T1518.001) and software installed by the user
documented in the Windows Registry (T1012).

The attacker performs local enumeration using vari-
ous Windows API calls, specifically gathering the local

175

Cyber Range Automation, a Bedrock for Al Applications

computer name (T1082), domain name (T1016), current
user context (T1033), and running processes (T1057).

The attacker elevates privileges via a user account con-
trol (UAC) bypass (T1122 / T1546.015, T1088 / T1548.002).
The attacker then uses the new elevated access to create
and execute code within a custom WMI class (T1047) that
downloads (T1105) and executes Mimikatz to dump plain-
text credentials (T1003 / T1003.001), which are parsed,
encoded, and stored in the WMI class (T1027). After
tracking that the WMI execution has completed (T1057),
the attacker reads the plaintext credentials stored within
the WMI class (T1140).

The attacker establishes a secondary means of per-
sistent access to the victim by creating a WMI event
subscription (T1084 / T1546.003) to execute a PowerShell
payload whenever the current user (T1033) logs in.

The attacker enumerates the environment’s domain
controller (T1018) and the domain’s security identifier
(SID) (T1033) via the Windows API (T1106). Next, the
attacker uses the previously dumped credentials (T1078
/ 'T1078.002) to create a remote PowerShell session to
the domain controller (T1028 / T1021.006). Through
this connection, the attacker copies the Mimikatz binary
used in Step 14 to the domain controller (T1105 / T1570)
then dumps the hash of the KRBTGT account (T1003 /
T1003.001).

The attacker harvests emails stored in the local email
client (T1114 / T1114.001) before collecting (T1005) and
staging (T1074 / T1074.001) a file of interest. The staged
file is compressed (T1002 / T1560.001) as well as prepended
with the magic bytes of the GIF file type (T1027).

The attacker maps a local drive to an online web ser-
vice account (T1102) then exfiltrates the previous staged
data to this repository (T1048 / T1567.002).

The attacker deletes various files (T1107 / T1070.004)
associated with that access by reflectively loading and
executing the Sdelete binary (T1055 / T1055.002) within
powershell.exe.

The original victim is rebooted and the legitimate
user logs in, emulating ordinary usage and a passage
of time. This activity triggers the previously established
persistence mechanisms, namely the execution of the
DLL payload (T1085 / T1218.011), referenced by the Win-
dows Registry Run key, and the WMI event subscription
(T1084 / T1546.003), which executes a new PowerShell
stager (T1086/ T1059.001). The attacker uses the renewed
access to generate a Kerberos Golden Ticket (T1097 /
T1558.001, T1558.003), using materials from the earlier
breach, which is used to establish a remote PowerShell
session to a new victim (T1028 / T1021.006). Through this
connection, the attacker creates a new account within
the domain (T1136 / T1136.001).

176

Proceedings of the 281" C& ESAR (2021)

