
An implementation Analysis of Risk Mitigation in Software
Reusability using Matrix Approach

Alankrita Aggarwal1, Kanwalvir S. Dhindsa2, P. K. Suri3and Pardeep Singh4

1,2 IKGPTU, Kapurthala,Jalandhar-Kapurthala, Highway, Vpo Ibban, Punjab 144603, India
3Kurukshetra University,Thanesar, Kurukshtera, Haryana 136119, India
4University of Petroleum and Energy Studies, Energy Acres, UPES, Bidholi, via, Prem Nagar, Dehradun,

Uttarakhand-248007, India

Abstract
Component-based programming is one of the most efficient and reliable parameters to

improve software development capabilities. The reusable components not only speed up the

development process but also increase the software's reliability. But this reliability and

efficiency depend on the number of components used along with interfacing with new

components. In this work, a weighted approach is defined to perform the analysis and to

identify the effectiveness and risk minimization of software reusability and done using

Matlab simulations.

Keywords 1
Software Components, Risk Mitigation, Matrix analysis, Complexity Analysis

1. Introduction

Today most of the available software systems are defined in modular form. These modules are

defined in the form of a method or component. These components are being used in a software

system as the essential software part based on which software complexity analysis can be

performed. This usability analysis also depends on multiple parameters such as the criticality of

the components, the Number of variables or methods being shared, interactivity with external or

internal files, etc. Based on these all vectors, software complexity analysis to perform reliable

software delivery [1][2].

1.1SoftwareComponents

A software module or component can be described along with specific properties

• A Software module, the block, function, or the class can be a Software component. These

modules can be dependent on the language or can be neutral and generalized so that can be

embedded in any language

• These components can be application or database-specific these components can be an

online or offline component. An end product or it can be if extensible can be considered a

software component.

• An interface that conceptually identifies internal and external interface with the main

application will be also a part of a software component

International Conference on Emerging Technologies: AI, IoT, and CPS for Science & Technology Applications, September 06–07, 2021,

NITTTR Chandigarh, India
EMAIL:alankrita.agg@gmail.com (A.1); kdhindsa@gmail.com (A. 2); pksurikuk@gmail@mail.com (A. 3),pardeep.maan@gmail.com(A.4)

ORCID: 0000-0002-0931-1118 (A. 1); 0000-0002-7911-9244(A. 2); 0000-0002-0368-4757(A.4)

©2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

https://orcid.org/0000-0002-7911-9244

• A deliverable software object can also be considered a software component. The above-

mentioned points about the software components must be supported by all the available

languages [3][4]

1.2 SoftwareMetrics

As the number of components available on the market increases, it is becoming more important to

devise software metrics to quantify the various characteristics of components and their usage.

Metrics can also be used in guiding decisions throughout the life cycle, determining whether

software quality improvement initiatives are financially worthwhile. Therefore, a different set of

metrics is required to measure various aspects for component-based systems and their quality

issues. [5][6]

2. Literature Review

Defined work on the analysis of the software system for different structural and object-oriented

metrics. The authors discussed the metrics such as LOC, cyclomatic complexity, cohesion, and

coupling.

• Authors proposed estimation on software products to analyze the software system under

defect analysis for an object-oriented software system [7].

• Presented a resource-based software estimation scheme for software quality analysis. The

author defined a budget analysis approach to improve software product analysis and also

performed analysis under different testing aspects.[8]

• The proposed work introduced an improved metrics-based complexity model for object-

oriented programming and the complexity analysis under multiple aspects so that effective

software development under method analysis will be performed [9].

• Proposed the structural complexity model under an integral factor so that the development

effort will be reduced and also proposed the size and complexity-based model for the

development of software systems under cost estimation [10].

• Proposed and defined a computational system for the software system under the software

development rules for cost, timeline, and quality analysis [11].

• The idea developed computational work to perform software development and software

product analysis under cost and time analysis. Here all works are done to define a parametric

analysis on software system under software quality and software history analysis [12][13].

• The work analyzed the software measurement under the defined framework so that the

software measurement validation is performed along with the structural model for software

development so that the attribute relation analysis will be performed [14].

• Authors presented the entity analysis of the components of the software and analyzed the

effective path generation so that effective software measurement and testing will be applied

over it [15][16].

• The proposed work explained the reuse of software by using combining RF and gradient

boosting machine learning methods [17].

• Proposed to minimize the risk by using Random ForestAlgorithm [18][19].

• Explained the methods to increase the quality of software by bugs detection and

prediction methods[20[21][22].

3. Proposed Work

Risk mitigation is the important criterion in a software plan while performing software cost

analysis and software project scheduling. Software reusability is about designing a software

system by using some existing software or the module. In this work, we are combining the

software reusability vector with software risk management. The presented work is divided into

four main stages. During the first stage, software analysis will be done under the metric-based

estimation. In the second stage; the module requirement will be defined to represent
reusable modules. In the final stage, all representations of reusable modules will get identified in

terms of cost estimation with the inclusion and testing of reused modules will be performed. Based

on this analysis, the system cost and the risk estimation will be identified and presented as the final

result. The work begins with the selection of a complete software system. These stages are defined

in figure 1. As shown in the figure.

Figure 1: Example figure

The parts are the evaluation of individual software modules, module interaction analysis, and the

complete system analysis. This stage will be able to perform the software representation in terms

of software statistical analysis. In the second stage, the software system will be analyzed

respectively to the new software system with which, the existing software system will be

integrated.

3. Results & Discussion

The presented work is implemented in a Matlab environment to the process of data

analysis from obtaining data from external sources and databases, doing pre-processing,

related visualization, numerical analysis to produce quality output presentation tested on a

dummy.

4. Conclusion & Future Scope

In this work, system complexity analysis is defined respective to software usability under different

parameters such as inter-communication analysis, and risk is minimized. The work can be

analyzed with the help of various machine learning methods which will be giving promising

results rather than traditional methods. The paper applies to the industry as the component-based

Figure 2: Individual Module Analysis

risk mitigation will minimize the risk and will be useful to the industry as well. module-based

project representation. The results obtained from the work are given here under.Here figure 2 the

individual. Module analysis dependent on module interface complexity is shown. Here x-axis is

representing the modules and the y-axis is representing complexity analysis.In figure 3 the internal

component analysis respective to modules is shown. Here x-axis is representing the modules and

the y-axis is representing complexity analysis.

Figure3: Internal Component Analysis

5. Acknowledgment

We are thankful to the research department of IKG Punjab Technical University, Kapurthala

(Punjab) for their assistance. No other person or organization is associated with our work in this

manuscript.

6. References

[1] Sedigh-Ali, S., Ghafoor, A., & Paul, R. A. (2001). Software engineering metrics for COTS-

 based systems. Computer, 34(5), 44-50.

[2] Prasad, L., & Nagar, A. (2009, July). Experimental analysis of different metrics (object-

oriented and structural) of software. In 2009 First International Conference on Computational

Intelligence, Communication Systems and Networks (pp. 235-240).IEEE.

[3] Rana, Z. A., Shamail, S., &Awais, M. M. (2009, May). Ineffectiveness of use of software

science metrics as predictors of defects in object oriented software. In 2009 Wri World

Congress on Software Engineering (Vol. 4, pp. 3-7). IEEE.

[4] Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,

 21(5),61-72.

[5] Da-Wei, E. (2007, April). The software complexity model and metrics for object-oriented. In

 2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID) (pp.

 464-469). IEEE

[6] Shatnawi, R. (2010). A quantitative investigation of the acceptable risk levels of object-

oriented metrics in open-source systems. IEEE Transactions on software engineering, 36(2),

216- 225.

[7] Krishnapriya, V., &Ramar, K. (2010, June). Exploring the difference between object oriented

class inheritance and interfaces using coupling measures. In 2010 International Conference on

Advances in Computer Engineering (pp. 207-211).IEEE.

[8] Kulkarni, U. L., Kalshetty, Y. R., &Arde, V. G. (2010, November). Validation of ck metrics

for object oriented design measurement. In 2010 3rd international conference on emerging

trends in engineering and technology (pp. 646-651). IEEE.

[9] Du, Q., & Wang, F. (2010, December). Software Power: a new approach to software

complexity metrics. In 2010 Second World Congress on Software Engineering (Vol. 2, pp.

165- 168). IEEE.

[10] Chen, J., Wang, H., Zhou, Y., &Bruda, S. D. (2011). Complexity metrics for component-

based software systems. International Journal of Digital Content Technology and its

Applications, 5(3),235-244.

[11] Thapaliyal, M., &Verma, G. (2010). Software defects and object oriented metrics-an

empirical analysis. International Journal of Computer Applications, 9(5),41-44.

[12] Da-Wei, E. (2007, April). The software complexity model and metrics for object-oriented.

 In 2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID)

(pp. 464-469). IEEE.

[13] Koh, T. W., Selamat, M. H., Ghani, A. A. A., & Abdullah, R. (2008). Review of

complexity metrics for object oriented software products. International Journal of

Computer Science and Network Security, 8(11), 314-320.

[14] Xiao, H., Li, S., & Wang, B. (2009, March). A tool for the application of software metrics

to UML class diagram. In 2009 First International Workshop on Education Technology and

Computer Science (Vol. 1, pp. 181-184).IEEE.

[15] Selvarani, R., Nair, T. G., & Prasad, V. K. (2009, May). Estimation of defect proneness

using design complexity measurements in object-oriented software. In 2009 International

Conference on Signal Processing Systems (pp. 766-770). IEEE.

[16] Lang, A. B., Debenham, C. J., &DeLaurentis, D. A. (2021). Enabling reusability of a

 spacecraftdesigntoolset via MBSE. In AIAA Scitech 2021 Forum (p. 0095).

[17] Sandhu, A. K., &Batth, R. S. (2021). Software reuse analytics using integrated random

 forest and gradient boosting machine learning algorithm. Software: Practice and Experience,

 51(4),735-747.

[18] Aggarwal, A., Dhindsa, K. S., & Suri, P. K. (2021). Performance-Aware Approach for

Software Risk Management Using Random Forest Algorithm. International Journal of

Software Innovation (IJSI), 9(1),12-19.

[19] Aggarwal, Alankrita, Kanwalvir Singh Dhindsa, and P. K. Suri. "Enhancing Software

Quality Assurance by Using Knowledge Discovery and Bug Prediction Techniques." In Soft

Computing for Intelligent Systems, pp. 97-118. Springer, Singapore,2021.

[20] Hasan, M. Mahmudul, George Kousiouris, DimosthenisAnagnostopoulos, TetaStamati, Peri

zoucopoulos, and Mara Nikolaidou. "CISMET: A Semantic Ontology Framework for

Regulatory-Requirements-Compliant Information Systems Development and Its Application

in the GDPR Case." International Journal on Semantic Web and Information Systems

(IJSWIS) 17, no. 1 (2021):1- 24.

[21] Abayomi-Alli, Adebayo Adewumi, Sanjay Misra, MulkahOpeyemiAkala, Abiodun

MotunrayoIkotun, and BolanleAdefowokeOjokoh. "An Ontology-Based Information

Extraction System for Organic Farming." International Journal on Semantic Web and

Information Systems (IJSWIS) 17, no. 2 (2021): 79-99.

[22] DK ShivaniGaba, ShifaliSingla.A Genetic Improved Quantum Cryptography Model to

 Optimize Network Communication,” Special Issue, vol. 8, no. 9S, pp. 256–259, Aug. 2019.

