
Learning analytics in computer programming
courses
Edna Chaparro1, Felipe Restrepo-Calle1 and Jhon Jairo Ramírez-Echeverry1

1Universidad Nacional de Colombia, Bogotá, Colombia

Abstract
In recent years, learning analytics has emerged as one of the most important fields on the future of
education. In the context of programming courses, the applications of learning analytics show high ef-
ficacy in giving directions for interventions, which help to promote better learning methods. However,
few investigations have considered complex datasets where there are heterogeneous student’s groups,
letting out differential factors that can influence in the learning process. The main objective of this
work is determining the relations between the measurements and metrics of the learning process with
the academic performance of the computer programming students of the National University of Colom-
bia. We apply a quantitative non-experimental methodological design, using as source of information
the records of 2 years of student’s interactions with an educational platform of automatic grading and
feedback use in the course. In total 38 variables are considered in this work, that include the number
of submissions, the results of each submission, software metrics, and the use rates of the tools avail-
able in the platform. The results show that the number of submissions, three types of results/verdicts,
two verdict’s rates, and one software metric have a positive correlation with the academic performance.
Moreover, the runtime error rate, and the use of a good practices verification tool (i.e., Linter) have a
negative correlation with the final performance of the students.

Keywords
Learning Analytics, Computer Programming, Quantitative data, Correlational analysis

1. Introduction

The last decade has seen an increase in the use of technology in educational environments with
tools such as computers, electronic boards, virtual environments and learning management
systems. Consequently, the data collected during the learning process have grown exponentially,
along with their potential to generate knowledge about possible factors for academic success
[1, 2]. In this sense, the information generated can be used to guide teachers, institutions, and
students in making decisions related to learning, teaching, and educational administration [3, 4].
Data analysis in the educational area is known as learning analytics and is considered the future
of education, especially in the context of higher education [3]. Learning analytics is based
on the principles of traditional educational research, but it leverages innovations such as the
collection of new forms of digital data and uses advanced computational analysis techniques

LALA’21: IV Latin American Conference on Learning Analytics, October 19–21, 2021, Arequipa, Perú
" edchaparroa@unal.edu.co (E. Chaparro); ferestrepoca@unal.edu.co (F. Restrepo-Calle);
jjramireze@unal.edu.co (J. J. Ramírez-Echeverry)
� 0000-0002-6147-6606 (E. Chaparro); 0000-0003-4226-1324 (F. Restrepo-Calle); 0000-0002-6499-1785
(J. J. Ramírez-Echeverry)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:edchaparroa@unal.edu.co
mailto:ferestrepoca@unal.edu.co
mailto:jjramireze@unal.edu.co
https://orcid.org/0000-0002-6147-6606
https://orcid.org/0000-0003-4226-1324
https://orcid.org/0000-0002-6499-1785
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


from data science and artificial intelligence [5, 6]. In the context of computer programming
courses, learning analytics has been used to achieve different objectives. Several efforts seek to
build models to automatically detect students at risk of failing a course [7, 8]. Others propose
to track course progress through visualizations of statistics and metrics representing student
behaviors [9], and to generate personalized feedback to students in programming courses [10].

However, Ferguson [11] has identified that research in learning analytics lacks methods that
use a wide range of datasets. This coincides with one of the challenges presented by Schmitz et
al. [12], who find a lack of educational investigations that considers diversity of learners. This
challenge is due to the fact that advances in education facilitates the inclusion of relatively new
or different groups of students than the traditional ones [12]. Thus, in this work we propose to
answer the following research question: What are the relationships between data generated
from students’ interactions with an educational platform and their academic performance in a
computer programming course when considering different groups of students in the dataset?
Thus, the objective of this work is to determine the existing relationships between measurements
and metrics from the learning processes of computer programming students at the National
University of Colombia and their academic performance. The methodology used is descriptive,
correlational, quantitative and non-experimental.

2. Related work

One of the areas where learning analytics has gained importance is computer science [7]. In
the context of computer programming courses, one of the most frequent objectives is the
prediction of student behavior. For example, Azcona et al. [7] propose a model to automatically
detect students at risk of failing a Python computer programming course and based on the
predictions, provide personalized feedback. Other investigations seek to generate mechanisms
for effective course monitoring with visualizations of statistics and metrics that represent
the students’ behavior. For example, Shen et al. [9], propose a heat map that visualizes the
intensity of student access to educational resources and activities in an introductory Python
MOOC. Additionally, through social network analysis, examines similarities and differences
in access patterns. Another example is the set of visualizations proposed by Leony et al. [13]
in a C programming course, aiming to inform teachers about students’ emotions based on the
interaction of students with an educational technology tool. Finally, other researches aim to
generate personalized feedback to students. For example, Lu et al. [10] apply learning analytics
to identify students who need immediate intervention in a Python MOOC, and based on this
information, teachers build adaptive learning guides that are applied in an experimental group
and compared with a control group.

3. Methodology

The learning analytics’ methodology of this work has a quantitative approach with a descriptive
and correlational scope. The type of research design is non-experimental, since the data to be
used have been collected without modifying the variables of the context. The methodology
consists of 3 sequential phases: 1) data preparation, 2) data transformation, and 3) data analysis.



3.1. Phase 1: Data preparation

Data collection. First, the location and format of the available data is identified. Then, the
data of the students’ learning process is gathered through a data management and analysis tool.

Data consolidation. A consolidation process is necessary, since the raw data is often disag-
gregated. Subsequently, the most appropriate data structures are identified for the organization
and manipulation of the consolidated data.

Data cleaning. The variables present in the consolidated dataset which gives useful infor-
mation about the learning process are identified. Also, the variables that are not related to the
objective of the study or those that have data quality problems are discarded.

3.2. Phase 2: Data transformation

Identification of measurements. Firstly, a literature review of measurements and metrics
used in educational research in computer programming courses should be performed. Subse-
quently, identify which of the measurements found in the literature are present in the dataset
and which can be used to build suitable metrics.

Metrics design. From the results found on metrics in the literature, the equations needed
for the estimation of metrics are established.

Calculation of metrics. The equations proposed in the metrics design stage are applied in
the data management tool and the values obtained are stored for later analysis.

3.3. Phase 3: Data Analysis

Exploratory data analysis. Based on the previous measurements and metrics, an exploratory
univariate analysis is performed to identify behaviors and trends. For this, descriptive statistics
(arithmetic mean, dispersion measures, skewness, etc.) and visualizations (box plots, histograms,
etc.) are used.

Data analysis and modeling techniques. The relationships between metrics and measure-
ments are identified through correlations or regression analysis. Additionally, supervised or
unsupervised machine learning techniques can be applied if the objective of the work is to
obtain classifications, regressions or groupings of data.

Discussion of results. The results obtained are compared with similar findings of other
studies. Then, the behaviors found are interpreted and the implications in the context of the
research are specified.

Conclusions. The summary of the findings is presented along with its limitations and the
possible threats to validity. Finally, future work is proposed based on the results of the study.



4. Results

Results obtained by applying the proposed methodology to the 2-year (between 2019 and
2020) history of the Computer Programming course at the National University of Colombia are
presented below.

4.1. Phase 1: Data Preparation

Data collection. Data were collected from the interaction of students with the educational
platform UNCode used for the automatic evaluation of programming exercises of class activities
[14]. UNCode allows students to submit multiple program attempts (source code or Jupyter
notebooks) built to solve programming tasks. For each solution attempt, the platform stores the
program file, date and time of the submission. In addition, it offers automatic feedback through
verdicts related to errors in the syntax, semantics and efficiency of the program. Also, it offers a
numerical grading, depending on the test cases the designed program solved. Within UNCode
there is a set of learners’ support tools, such as: syntax highlighting, code auto-completion,
linter (suggestions of good programming practices), visualization of code execution, custom
tests and reports of grades [15]. The raw data was stored in a MongoDB database and it was
exported to CVS (Comma Separated Values) files. The programming language Python was used,
with its specialized libraries for data analysis and visualization (pandas, matplotlib, seaborn).

Data consolidation. The exported files in CSV format for each course were stored in a shared
folder in Google Drive. The data was organized in separate folders per course where there are
files with the list of student usernames, the records of the submissions made per activity, and
the final grades. In addition, each course contains a folder with the files submitted, organized
by student and by activity.

Data cleaning. The stored data includes all the courses of the university that use UNCode;
for this reason, it contains data from courses other than computer programming. Therefore,
a screening process is made by selecting only the programming courses (22 groups). Then, a
filtering is performed within each course for activities and students with insufficient number of
submissions. The post-filtering dataset contains 1352 activities and 735 students.

4.2. Phase 2: Data Transformation

Identification of measurements. Table 1 specifies the 15 measurements that are considered
of interest in the research, which are classified into four categories: 1) data related to the attempts
of solution of programming assignments made by each student, 2) the verdicts obtained in each
solution attempt, 3) the use of the platform tools, and 4) numerical grading. Additionally, the
source code files sent as solutions to the programming tasks are used to obtain characteristics
of the students’ programs (software metrics).

Metrics design. Based on the identified measures, 24 metrics were designed, divided into
three categories (verdicts, tool usage and software metrics). See Table 2. First, the verdicts’ rates

https://drive.google.com/drive/folders/1d8EJPLYmpDwswPeQjxPb0VSMoH10AuJj?usp=sharing
https://drive.google.com/drive/folders/1d8EJPLYmpDwswPeQjxPb0VSMoH10AuJj?usp=sharing


Table 1
Measurements considered in the dataset

Category Measurements Description

Submissions
Total_Submissions Number of attempts submitted per student.

Duration_of_Submission Average time spent by students between submission attempts.

Verdicts

Accepted Number of solutions with correct answers.
Wrong_Answer Number of solutions with incorrect answers.

Compilation_Error Number of submitted attempts that fail to compile.
Runtime_Error Number of attempts that succeed in compiling but fail during execution.

Time_Limit_Exceeded Number of attempts that take too long to execute.
Memory_Limit_Exceeded Number of attempts that exceed the memory available for execution.
Output_Limit_Exceeded Number of attempts that exceed the expected program output size.

Tool usage

Python_Tutor Number of logged accesses to the Python tutor tool that allows visualization step-by-step execution of a program.
Custom_Input Number of registered accesses to the Custom input tool where students perform custom tests on their programs.

Linter Number of registered accesses to the Linter tool, which highlights syntax and style problems in the source code.
User_Statistics Number of registered accesses to the interactive dashboard to report on students’ individual statistics.

Multiple_Languages_Code Number of accesses to the Multiple Languages tool that allows submission in different programming languages.
Academic performance uncode_grade Weighted average of grades of the activities performed by students in UNCode.

obtained for each type of verdicts in Table 1 are defined. These rates are the percentage of one
type of verdict with respect to the total number of verdicts obtained by the student. The second
category is the usage rates of each tool in Table 1. The usage rates are defined as the percentage
of the number of accesses to a single tool in relation to the total number of accesses to all
available tools (these two categories of rates are defined with the objective of quantifying the
verdicts and tools of greater or lesser use by students).The third category are software metrics,
which represent specific characteristics of the programs built by the students (see Table 3).

Calculation of metrics. For each student the 7 verdict rates and the 5 tool usage rates are
calculated by applying the equations in Table 2. Then, the software metrics are calculated using

Table 2
Metrics based on the verdict measures obtained and tool usage

Category Metric Equation

Verdicts

Success_rate 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Error_rate_Wrong_Answer 𝑊𝑟𝑜𝑛𝑔_𝐴𝑛𝑠𝑤𝑒𝑟∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Error_rate_Compilation_Error 𝐶𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛_𝐸𝑟𝑟𝑜𝑟∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Error_rate_Runtime_Error 𝑅𝑢𝑛𝑡𝑖𝑚𝑒_𝐸𝑟𝑟𝑜𝑟∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Error_rate_Time_Limit_Exceeded 𝑇𝑖𝑚𝑒_𝐿𝑖𝑚𝑖𝑡_𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑑∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Error_rate_Memory_Limit_Exceeded 𝑀𝑒𝑚𝑜𝑟𝑦_𝐿𝑖𝑚𝑖𝑡_𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑑∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Error_rate_Output_Limit_Exceeded 𝑂𝑢𝑡𝑝𝑢𝑡_𝐿𝑖𝑚𝑖𝑡_𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑑∑︀
𝑖 𝑉 𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖

· 100

Tool usage

Python_Tutor_rate 𝑃𝑦𝑡ℎ𝑜𝑛_𝑇𝑢𝑡𝑜𝑟∑︀
𝑖 𝑇𝑜𝑜𝑙𝑠𝑖

· 100

Custom_input_rate 𝐶𝑢𝑠𝑡𝑜𝑚_𝑖𝑛𝑝𝑢𝑡∑︀
𝑖 𝑇𝑜𝑜𝑙𝑠𝑖

· 100

Linter_rate 𝐿𝑖𝑛𝑡𝑒𝑟∑︀
𝑖 𝑇𝑜𝑜𝑙𝑠𝑖

· 100

User_Statistics_rate 𝑈𝑠𝑒𝑟_𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠∑︀
𝑖 𝑇𝑜𝑜𝑙𝑠𝑖

· 100

Multiple_Languages_Codes_rate 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒_𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠_𝐶𝑜𝑑𝑒∑︀
𝑖 𝑇𝑜𝑜𝑙𝑠𝑖

· 100



Table 3
Software metrics from source code files submitted by students.

Category Metric Description/Equation

Software
metrics

Lines of code (NLOC) Number of lines of source code excluding comments.
Tokens_count Num. reserved words of the programming language used in program.
Ciclomatic complexity (G) Number of decision blocks contained in the code plus one.
Program vocabulary (n)a,b 𝑛 = 𝑛1 + 𝑛2

Program length (N)c,d 𝑁 = 𝑁1 +𝑁2

Calculated program length (L) 𝐿 = 𝑛1 · 𝑙𝑜𝑔2(𝑛1) + 𝑛2 · 𝑙𝑜𝑔2(𝑛2)
Volume (V ) 𝑉 = 𝑁 · 𝑙𝑜𝑔2(𝑛)
Difficulty (D) 𝐷 = 𝑛1

2 · 𝑁2

𝑛2

Effort (E) 𝐸 = 𝐷 · 𝑉
Time required to program (T ) 𝑇 = 𝐸/18
Number of delivered bugs: (B) 𝐵 = 𝑉/3000
Maintainability Index (MI)e,f,g Measure of how easy to support and change the source code is (0-100).

a 𝑛1 : The number of distinct operators.
b 𝑛2 : The number of distinct operands.
c 𝑁1 : The total number of operators.
d 𝑁2 : The total number of operands.
e 𝑀𝐼 = 𝑚𝑎𝑥[0.1 ·

√︀
171− 5.2 · 𝐿𝑛(𝑉 )− 0.23 ·𝐺− 16.2 · 𝐿𝑛(𝑆𝐿𝑂𝐶) + 50 · 𝑠𝑖𝑛(2.4 · 𝐶)/171]

f 𝑆𝐿𝑂𝐶 : The number of source lines of code.
g 𝐶 : The percent of comment lines converted to radians.

the Python libraries lizard1 and radon2.

4.3. Phase 3: Data analysis

Exploratory data analysis. Figure 1 summarizes the most important results of the univariate
analysis. In the case of total submissions made each student (top-left in Figure 1) on average
makes (𝑥) 176.6 attempts with a standard deviation (𝑠) of 120.8. Regarding the average time
between submissions (top-right in Figure 1) the 𝑥 is 7.1 ℎ with a 𝑠 of 19.8 ℎ. On the other hand,
the plot of verdicts (bottom-left in Figure 1) evidences that the verdicts with the highest rates
are Error_rate_Wrong_Answer and Success_rate with 48.9% and 31.7%, respectively. Regarding
the tool usage rates, the total rates graph (bottom-right in Figure 1) shows that the most used
tool by students is Custom_input_rate being 65.0% of the total accesses. This is followed by
Python_Tutor_rate and Multiple_Languages_Codes_rate with percentages of 17.7% and 12.0%,
respectively. Table 4 summarizes the statistical values describing the software metrics calculated
based on the programs built by the students. Besides that, Figure 2 shows the distribution of
the (uncode_grades) in each group3. The total 𝑥 is 4.1 with a 𝑠 of 0.9.

Data analysis and modeling techniques. To identify which measurements or metrics are
significantly related to the students’ academic performance, a correlation analysis is performed.
Considering that all variables are continuous, Pearson’s correlation coefficient is used. Figure 2

1It is used to quantify the NLOC and the Tokens_count.
2It is used to calculate the cyclomatic complexity (G), the maintainability index (MI ) and the Halstead metrics

(Vocabulary, Length, Calculated length, Volume, Difficulty, Effort, Time to program, and Number of delivered bugs.)
3The range of the values are between 0.0 and 5.0 with a minimum passing grade was 3.0



Figure 1: Results of the calculated measurements and metrics. a) Top-Left: Distribution of To-
tal_Submissions per student in each course. b) Top-Right: Histogram of average time between attempts
(Duration_of_Submission) for each student. c) Bottom-Left: Total verdict rates obtained in all courses.
d) Bottom-Right: Total rates of tool usage across all courses.

Table 4
Descriptive statistics of software metrics.

Metric Arithmetic mean Standard deviation Minimum Maximum
Code lines (NLOC) 20.7 9.4 2.0 92.1
Tokens_count 150.2 66.1 25.0 565.4
Cyclomatic complexity (G) 7.8 4.4 1.0 42.2
Program vocabulary (n) 20.8 10.0 3.0 82.0
Program length (N) 42.0 25.7 3.0 225.2
Calculated program length (L) 88.3 66.3 2.0 534.7
Volume (V ) 214.6 117.5 4.8 1740.8
Difficulty (D) 3.7 1.3 0.5 12.6
Effort (E) 1290.0 1603.8 2.4 20181.8
Time required to program (T ) 71.7 89.1 0.1 1121.2
Number of delivered bugs (B) 0.1 0.1 0.002 0.6
Maintainability Index (MI) 60.9 6.4 40.1 86.1

illustrates 21 measurements and metrics that have a statistically significant correlation (p-valor
≤ 0.05) with the academic performance.

The variable with the highest positive correlation is Accepted with coefficient of 0.43. This
value is followed by Success_rate and Total_Submissions with coefficients of 0.25 and 0.24, re-
spectively. These are expected results since a student with a high number of correct answers,
success rate and attempts made is a student who is successful in solving the assignments.
Subsequently, the variables with correlations less than 0.20 and greater than 0.15 correspond to
Wrong_Answer, Time_Limit_Exceeded, Tokens_count, Custom_Input_rate, and NLOC. The num-



Figure 2: a) Left: Distribution of academic performance by group. b) Right: Variables with significant
correlations with the academic performance.

ber of tokens, lines of code and Custom Input usage rate are metrics that were expected to be
positively correlated, since as the student designs high content programs and is able to perform
custom testing of the built code, his/her academic performance could be better. However, the
number of incorrect answers and time limit exceeded errors were not expected to be in this
group, because these verdicts indicate errors in the proposed solution.

In contrast, the variable with the highest negative correlation is Error_rate_Runtime_Error
with −0.28. This metric was expected to be negatively correlated, given that a high runtime
error rate represents that a large number of the non-executed attempts. The variables with
correlations between −0.20 and −0.15 correspond to Linter_rate, MI, Custom_Input and Er-
ror_rate_Wrong_Answer. In these results, it is rare that the rate of use of Linter and the accesses
to Custom Input have negative correlations, since these tools are designed to facilitated students
to build their solutions. The maintainability index and incorrect answer rate were expected
to be negatively correlated, since a program with a high maintainability index indicates a low
level of programming skills and a high incorrect answer rate means that most of the attempts
made were unsuccessful.

5. Discussion

Regarding the research question posed: what are the existing relationships between the data
generated from students’ interactions with an educational platform and their academic per-
formance in a computer programming course when considering different groups of students?,
some of the findings found in the results are discussed below. The total number of submissions
made per student has a positive correlation with the final grade in the course. This may indicate
that students with high performance use the platform as a source of feedback to improve the so-
lutions constructed, making multiple attempts. This result agrees with the findings of Zacharis
et al. [16] who found a weak correlation (from 0.20 to 0.39) between number of activities
delivered and the final course grade. The positive correlations of the number of correct answers
and the success rate indicate that the students have possibly acquired sufficient knowledge to
successfully solve the course activities and this is reflected in their performances.



In contrast, the positive correlation of the number of incorrect answers, the number of memory
limit errors exceeded, along with the number of verdicts and rates of time limit exceeded and
compilation error may indicate that these verdicts provide sufficient feedback to guide the
student to solve the possible errors present in the constructed solution. However, the rate of
incorrect answer and execution error has negative correlations. In the case of high incorrect
answers rate it may indicate a lack of understanding of the objective of the activity; with respect
to the execution error rate, this may indicate the students’ difficulty to obtain effective feedback
for his learning process.

6. Conclusions and future work

This work applies a non-experimental quantitative methodological design of learning analytics,
consisting of three main phases: data preparation, transformation and analysis, applied to 2
years of historical data of a computer programming course. This allowed finding relationships
between measurements and metrics of the learning process and the final students’ performance
of a computer programming course. The results show that the number of submissions, five
verdicts(correct answer, incorrect answer, time limit exceeded, memory limit exceeded and
compilation error), three verdict rates (correct answer, time limit exceeded and compilation
error), the rate of use of Custom Input, and four software metrics (number of tokens, number of
lines of code, cyclomatic complexity and difficulty) have a significant positive correlation with
the academic performance of the students. This indicates that students with high performance
may be able to use the error verdicts obtained as a source of formative feedback and that the
construction of programs of high content, length and complexity is related to better academic
performance. The variables with negative correlations are two verdict rates (incorrect answer
and execution error), three tools’ accesses (linter, multiple languages code and custom input),
two tools’ usage rates (linter and multiple languages code) and the maintainability index. These
findings may indicate the need for reinforcement in some aspects of the course, such as, clarity
in the objective of the activities, the applicability of the feedback offered by some tools (i.e.,
linter that focuses on the verification of good programming practices) and promote the learning
of generalizable program construction skills.

The main limitation of this study is related to the quantitative approach, since the results are
limited to evidencing relationships between measurements and metrics, but it is not possible to
identify the causes of the found behaviors. As future work, the constructed dataset can be used
to identify which metrics are most relevant and to track students and build a predictive model
of final academic performance. Qualitative data will also be considered within the analysis in
future works.

References

[1] G. Siemens, Learning analytics: The emergence of a discipline, American Behavioral
Scientist 57 (2013) 1380–1400. doi:10.1177/0002764213498851.

[2] R. S. Baker, P. S. Inventado, Educational Data Mining and Learning Analytics, Springer
New York, New York, NY, 2014, pp. 61–75. doi:10.1007/978-1-4614-3305-7_4.

http://dx.doi.org/10.1177/0002764213498851
http://dx.doi.org/10.1007/978-1-4614-3305-7_4


[3] P. Long, G. Siemens, Penetrating the fog: Analytics in learning and education,
EDUCAUSE Review 46 (2011) 31–40. URL: https://er.educause.edu/articles/2011/9/
penetrating-the-fog-analytics-in-learning-and-education.

[4] V. S. Kumar, Kinshuk, T. S. Somasundaram, D. Boulanger, J. Seanosky, M. F. Vilela, Big
Data Learning Analytics: A New Perpsective, Springer Berlin, 2015, pp. 139–158. doi:10.
1007/978-3-662-44659-1_8.

[5] S. Society for Learning Analytics Research, What is learning analytics?, 2021. URL: https:
//www.solaresearch.org/about/what-is-learning-analytic.

[6] M. D. Pistilli, J. E. Willis, J. P. Campbell, Analytics Through an Institutional Lens: Defi-
nition, Theory, Design, and Impact, Springer New York, 2014, pp. 79–102. doi:10.1007/
978-1-4614-3305-7_5.

[7] D. Azcona, I.-H. Hsiao, A. F. Smeaton, Detecting students-at-risk in computer programming
classes with learning analytics from students’ digital footprints, User Modeling and User-
Adapted Interaction 29 (2019) 759–788. doi:10.1007/s11257-019-09234-7.

[8] J. Lagus, K. Longi, A. Klami, A. Hellas, Transfer-learning methods in programming course
outcome prediction, ACM Trans. Comput. Educ. 18 (2018). doi:10.1145/3152714.

[9] H. Shen, et al, Understanding learner behavior through learning design informed learning
analytics, in: Proc Conf Learning @ Scale, ACM, NY, USA, 2020, p. 135–145. doi:10.1145/
3386527.3405919.

[10] O. H. T. Lu, J. C. H. Huang, A. Y. Q. Huang, S. J. H. Yang, Applying learning analytics for
improving students engagement and learning outcomes in an moocs enabled collaborative
programming course, Interactive Learning Environments 25 (2017) 220–234. doi:10.1080/
10494820.2016.1278391.

[11] R. Ferguson, Learning analytics: drivers, developments and challenges, International
Journal of Technology Enhanced Learning 4 (2012) 304–317. doi:10.1504/IJTEL.2012.
051816.

[12] M. Schmitz, et al, Opportunities and challenges in using learning analytics in learning
design, in: E. Lavoué, et al (Eds.), Data Driven Approaches in Digital Education, Springer
International Publishing, 2017, pp. 209–223. doi:10.1007/978-3-319-66610-5_16.

[13] D. Leony, et al, Provision of awareness of learners emotions through visualizations in
a computer interaction environment, Expert Systems with App 40 (2013) 5093–5100.
doi:10.1016/j.eswa.2013.03.030.

[14] F. Restrepo-Calle, J. Ramírez-Echeverry, F. A. González, Using an interactive software
tool for the formative and summative evaluation in a computer programming course:
an experience report, Global Journal of Engineering Education 22 (2020) 174–185. URL:
http://www.wiete.com.au/journals/GJEE/Publish/vol22no3/06-Echeverry-J.pdf.

[15] F. Restrepo-Calle, J. Ramírez-Echeverry, F. Gonzalez, UNCode: Interactive System for Learn-
ing and Automatic Evaluation of Computer Programming Skills, in: EDULEARN18, 10th
Int Conf on Education and New Learning Technologies, IATED, 2018, pp. 6888–6898. URL:
http://dx.doi.org/10.21125/edulearn.2018.1632. doi:10.21125/edulearn.2018.1632.

[16] N. Z. Zacharis, A multivariate approach to predicting student outcomes in web-enabled
blended learning courses, The Internet and Higher Education 27 (2015) 44–53. doi:10.
1016/j.iheduc.2015.05.002.

https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
http://dx.doi.org/10.1007/978-3-662-44659-1_8
http://dx.doi.org/10.1007/978-3-662-44659-1_8
https://www.solaresearch.org/about/what-is-learning-analytic
https://www.solaresearch.org/about/what-is-learning-analytic
http://dx.doi.org/10.1007/978-1-4614-3305-7_5
http://dx.doi.org/10.1007/978-1-4614-3305-7_5
http://dx.doi.org/10.1007/s11257-019-09234-7
http://dx.doi.org/10.1145/3152714
http://dx.doi.org/10.1145/3386527.3405919
http://dx.doi.org/10.1145/3386527.3405919
http://dx.doi.org/10.1080/10494820.2016.1278391
http://dx.doi.org/10.1080/10494820.2016.1278391
http://dx.doi.org/10.1504/IJTEL.2012.051816
http://dx.doi.org/10.1504/IJTEL.2012.051816
http://dx.doi.org/10.1007/978-3-319-66610-5_16
http://dx.doi.org/10.1016/j.eswa.2013.03.030
http://www.wiete.com.au/journals/GJEE/Publish/vol22no3/06-Echeverry-J.pdf
http://dx.doi.org/10.21125/edulearn.2018.1632
http://dx.doi.org/10.21125/edulearn.2018.1632
http://dx.doi.org/10.1016/j.iheduc.2015.05.002
http://dx.doi.org/10.1016/j.iheduc.2015.05.002

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Phase 1: Data preparation
	3.2 Phase 2: Data transformation
	3.3 Phase 3: Data Analysis

	4 Results
	4.1 Phase 1: Data Preparation
	4.2 Phase 2: Data Transformation
	4.3 Phase 3: Data analysis

	5 Discussion
	6 Conclusions and future work

