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Abstract
Congenital heart disease (CHD) is the most common congenital malformation and has high morbidity and
mortality related to late diagnosis. Screening protocols are lacking and only 1% of murmurs are associated
with CHD. The decline in auscultation skills highlights the need for better screening. This study aims
to create and evaluate models for the detection of CHD using clinical data and sound features. These
features were extracted using pure conventional MFCC and selected MFCC through matrix profiling
and motif search. Four combinations of data were used to train decision trees (DT) and artificial neural
networks (ANN), and the area under the curve (AUC) was compared. Posteriorly, models were also
trained for the detection of any cardiac pathology. In both pathologies, the ANN model using clinical
data and conventional MFCC showed the highest performance with AUC of 0.761 for CHD and 0.791 for
any cardiac pathology. However, this is only a slight improvement when compared with the ANN models
using only clinical data (0.747 and 0.789, respectively. Additionally, the inclusion of motif selected MFCC
seems to worsen the model performance. Although further research is still needed, this is a potential
improvement in CHD screening, particularly for primary care physicians.
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1. Introduction

1.1. Background

Congenital heart disease (CHD) is the most common congenital defect in the world [1, 2] and is
defined as an abnormal development of the structures of the heart and/or great vessels which is
present at birth.
In terms of global birth incidence, recent studies estimated a birth incidence of more than

17/1000 in 2017 [3, 4], which represents an increase of 4.2% from 1990 [5, 6]. As for global preva-
lence, it is estimated that nearly 12 million people were living with CHD in 2017, representing
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an increase of 18.17% since 1990 [4].
Looking at the mortality of CHD, several studies mention a clear decline in mortality since

1990 up to 2017 [3, 4]. Nevertheless, CHD remains the cause of 69% of deaths in children
younger than 1 year and in the top 10 causes of death in children of this age group [4]. It is also
responsible for more than double the years of life lost when compared to other cardiac diseases,
such as rheumatic heart disease (RHD) [4].
Focusing on the morbidity, of all heart disease, CHD is one of the most common causes of

years lived with disability (YLD) in individuals under 20 years, along with RHD [4]. Morbid-
ity caused by CHD is related to late diagnosis and can include pulmonary hypertension [7],
neurodevelopmental deficits [8, 9, 10] and delayed growth [11, 12].

Due to the context portrayed above, it is ever more important to have appropriate screening
and early diagnosis strategies. Currently, screening consists of prenatal ultrasounds and a pulse
oximetry test at birth, in countries where a formal screening protocol exists [13]. Still, this
screening detects only between 82.8 and 92% of critical CHD [14] and critical CHD only amount
to about 25% of all CHD [15]. This means that approximately 75% of CHD are not detected at
birth.
Even though there are other signs and symptoms associated with CHD, by far the most

concerning to general physicians and parent is the presence of a murmur, and this is the main
cause for referral to a pediatric cardiology appointment [16, 17]. Nonetheless, estimates show
that between 50 and 72% of children will have a murmur during infancy and adolescence
[16, 17, 18, 19] and that only 1% of these are associated with a CHD, pathologic murmurs
[16, 18].

To aggravate the situation, doctor’s cardiac auscultation skills are in decline [20], with a study
reporting a sensitivity of 73% and specificity of 78% for the detection of an abnormal murmur by
primary healthcare physicians [21] and even the cardiac auscultation skills of pediatric resident
being suboptimal [22]. One study found that the overall accuracy of cardiac auscultation skills
in pediatricians was 73%, which is low when compared to 83% overall accuracy for cardiologists
[23]. This illustrates the necessity for an assisted-decision tool primary care physicians and
pediatricians could use when referring children with murmurs to a pediatric cardiologist.

1.2. Prior Work

In recent years, there has been an exploration of the potential artificial intelligence brings to
the analysis of heart sounds. Several studies have attempted to detect cardiac pathology from
cardiac auscultation recordings [24]. In the area of pediatrics, a few studies were able to use
these methods to detect specific types of CHD [25, 26, 27] or distinguish normal and abnormal
heart sounds [26, 28, 29]. Those who tried to identify CHD had a limited number of participants
[30]. Nonetheless, to the best of our knowledge, no study has yet explored the detection of
CHD using both clinical and heart sound data.

1.3. Goal of This Study

This study aims to produce machine learning models for the detection of CHD using clinical
data and auscultation sound features. We hypothesized that by adding heart sound features to
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the existing clinical data, we would be able to improve the ability of the model to discriminate
individuals with and without CHD. The ideal being that this tool would be useful for screening
of CHD.

2. Methods

2.1. Data Collection and Preprocessing

This is a retrospective study, which reuses the data obtained from two volunteer mass screening
programs, thus forming a convenience series. These programs were conducted in Eastern Brazil
between July and August 2014, and June and July 2015, and included all participants presenting
voluntarily within this period. Eligibility criteria for screening was patients younger than 21
years of age.

When preprocessing the data, individuals identified as fetus, as having had previous cardiac
surgery and as not having an echocardiogram were removed. Errors identified in variable
codification were corrected. Variables were computed from information in other variables and
percentiles according to age were calculated for some variables.
Additionally, the body mass index (BMI) percentile was used to stratify children younger

than 19 years, inclusively, as underweight (BMI percentile ≤ 5), normal (BMI percentile <5 and
>85), overweight (BMI percentile ≥ 85) and obese (BMI percentile ≥ 95). For children older than
19 years, underweight was defined as a BMI <18.5, overweight was defined as a BMI ≥ 25 and
obese was defined as a BMI percentile ≥ 30. Clinical indication variables were recoded into
logical variables. Variables including information on diagnosis or orientation and irrelevant
information were removed, as well as redundant variables. Finally, variables with more than
50% missing data were also removed.
Echocardiogram diagnosis was used as reference standard to create the outcome variable,

presence or absence of CHD. Due to the exclusion criteria, the were no cases with missing data
on the reference standard result. Echocardiogram diagnosis was chosen as reference standard
because it is the gold standard for detection of CHD. Additionally, another outcome variable
was created using information from the echocardiogram diagnosis and the cardiology diagnosis
to represent presence or absence of any cardiac pathology.

2.1.1. Variables Computed

𝑂𝑥𝑦𝑔𝑒𝑛𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑅𝑖𝑔ℎ𝑡𝐴𝑟𝑚𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐿𝑒𝑔𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛𝐴𝑟𝑡𝑒𝑟 𝑖𝑎𝑙𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = (2 ∗ 𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝑆𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)/3

𝐵𝑜𝑑𝑦𝑀𝑎𝑠𝑠𝐼 𝑛𝑑𝑒𝑥 = 𝑊 𝑒𝑖𝑔ℎ𝑡𝑘𝑔/(𝐻𝑒𝑖𝑔ℎ𝑡𝑐𝑚2) ∗ 10000

2.1.2. Percentiles Calculated

Body Mass Index, Height, Weight, Arm Circumference, Abdominal Circumference, Systolic
Blood Pressure, Diastolic Blood Pressure, Mean Arterial Pressure, Heart Rate
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2.2. Preprocessing of Heart Sounds and Extraction of Features

The heart sound recordings were obtained during the mass screening programs and included
recordings from four anatomical locations (aortic, pulmonary, mitral and tricuspid). Along with
these were files indicating the beginning and end times for the four main components of a heart
sound (S1, systole, S2, and diastole).

2.2.1. Mel-Frequency Cepstral Coefficients

MFCC is awell-known and used feature for speech recognition systems [31]. These features were
extracted for each heartbeat. However, because there we had incomplete heartbeat segments in
the file annotations and there was a wide range of recording durations, we created functions
to count the number of complete heartbeats present and measure their duration. Standardly,
MFCCs are calculated for a window of 0.025s with 0.010s hops from the start of each window,
with an overlap between frames. From our analysis, the 25th percentile for the number of
heartbeats in each recording was 10, so we decided to extract this number of heartbeats, where
possible, and impute missing values for the missing heartbeat segments in the shorter recordings.
Additionally, the heartbeats measured on average 0.60s, which with standard parameters would
give us 60 frames. Taking this into account and given the fact that we had to correct for the
variation in heartbeat duration, we used formula 4 to calculate the hop time for each heartbeat to
get 60 frames from each and multiplied that value by 2,5 to obtain the window time maintaining
the original standard ratio. A total of 12 MFCCs were extracted for each frame.

ℎ𝑜𝑝𝑡𝑖𝑚𝑒 = ℎ𝑒𝑎𝑟 𝑡𝑏𝑒𝑎𝑡𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛/𝑓 𝑟𝑎𝑚𝑒𝑠

2.2.2. Matrix Profile and Motif Finding

In a parallel process, the whole recording was converted into MFCC frames, and these were
used to obtain the matrix profile with a window size of 60 frames, for the same reason as before.
With this we attempted to identify and extract 3 motifs from each recording, which are 60 frame
segments of all 12 MFCCs. Where motifs could not be extracted, data was imputed as missing.

2.2.3. Principal Components Analysis

PCA is a technique used to obtain the combination of original variables that account for a
certain amount of the total variation [32]. We used this technique to reduce the amount of data
created during the sound feature extraction. For each of three sets of data, conventional MFCC,
motif MFCC, and a combination of both, we identified the variables which represented 80% of
the total variance.

2.3. Decision Trees and Artificial Neural Networks

Decision trees (DT) emerged as the most used approach for data mining because of their
characteristics. In our case, the natural incorporation of a mixture of numerical and categorical
variables and the production of interpretable results were the most important characteristics

94



Solange Belinha et al. CEUR Workshop Proceedings 91–103

Figure 1: Flowchart of participants

[33]. Artificial neural network (ANN) is the most common method of machine learning used for
the classification of cardiac sounds [24]. We trained both types of models using four versions
of the dataset: clinical data alone, with conventional MFCC, with motif MFCC and with both
types of features. Training was performed using bootstrapping as a resampling method with
only one resample. The evaluation of the models produced was achieved through ROC curve
analysis of the bootstrapping resample.

2.4. Statistical Software

We used R 4.0.5 software in every stage of this study. The packages were used for the calculation
of percentiles (package childsds [34]), the descriptive and comparative analyses (packages
gmodels [35] and lattice [36]), the sound file import and MFCC extraction (package readr [37],
tuneR [38], stringr [39] and foreach [40]), the matrix profile calculation and motif detection
(package tsmp [41]), the model training and validation (packages caret [42]), and the ROC curve
analysis (package pROC [43]).

3. Results

3.1. Participants

The first mass screening yielded 1019 participants and the second yielded 915. Due to three
individuals participating in both screenings, the final collected data only comprised 1934 partic-
ipants. By applying the exclusion criteria for this study, the final dataset analyzed had 1655
participants. This is graphically represented in the flowchart on Fig. 1.
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Table 1
Socio-demographic and clinical characteristics of participants

With CHD Without CHD Overall p value Missing
(n=459) (n=1196) (n=1655)
n(%) n(%) n(%) n(%)

Gender (female) 225(49.0) 550(46.0) 775(46.8) .293 0(0)
Age Group <.001 14(0.85)

Neonate 8(1.8) 5(0.4) 13(0.8)
(0-1 month)

Infant 119(26.1) 235(19.8) 354(21.6)
(1-24 month)

Child 276(60.5) 848(71.6) 1124(68.5)
(2-12 years)
Adolescent 50(11.0) 89(7.5) 139(8.5)
(12-16 years)
Young Adult 3(0.7) 8(0.7) 11(0.7)
(16-21 years)

Ethnicity .004 0(0)
Asian 0(0) 1(0.1) 1(0.1)
Black 8(1.7) 9(0.8) 17(1.0)

Mixed Race 337(73.4) 964(80.6) 1301(78.6)
White 114(24.8) 222(18.6) 336(20.3)

BMI for age <.001 96(5.80)
Underweight 57(13.2) 65(5.8) 122(7.8)

Normal 242(55.9) 631(56.0) 873(56.0)
Overweight 50(11.5) 149(13.2) 199(12.8)

Obese 84(19.4) 281(25.0) 365(23.4)
Murmur <.001 51(3.08)

Present 345(78.8) 340(29.2) (685(42.7)
Absent 93(21.1) 826(70.8) 919(57.3)

In terms of the target pathology, we included 1196 (72.3%) healthy individual and 459 (27.7%)
individuals with CHD. The socio-demographic and clinical characteristics of the participants
are reported on Table 1. The differences in distribution of these variables within the primary
outcome groups are also included in the table. For gender, there are no significative differences
in terms of the presence of CHD. There were statistically significative difference in age group
proportions, with CHD being more common in neonates, infants and adolescents than in the
child and young adult groups. In terms of ethnicity, it is relevant to note the lesser proportion
of mixed race individuals having CHD, when compared to other ethnicities.
Looking at clinical characteristics, there is a significant difference in the proportion of

individual with CHD according to BMI, with this group presenting a higher proportion of
underweight patients than the group without CHD. Additionally, in the group with CHD there
were individuals with a murmur as there were more individuals without a murmur in the group
without the disease.

Regarding the distribution of the severity of the disease, from those with CHD 409 (89.1%)
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Table 2
AUC values for cardiac pathology models

Clinical data Clinical data Clinical data Clinical data
+ Conventional MFCC + Conventional MFCC + Motif MFCC

+ Motif MFCC

DT 0.733 0.676 0.733 0.712
ANN 0.789 0.784 0.791 0.740

Table 3
AUC values for CHD models

Clinical data Clinical data Clinical data Clinical data
+ Conventional MFCC + Conventional MFCC + Motif MFCC

+ Motif MFCC

DT 0.747 0.713 0.720 0.714
ANN 0.747 0.757 0.761 0.721

had simple CHD, while only 50 (10.9%) had complex CHD. As for cardiac pathologies in general,
there were a total of 628 (37.9%) individuals with a cardiac diagnosis. From those, 459 (73.1%)
had CHD and 169 (26.9%) did not have the disease. Looking at the types of murmurs present in
the population, in terms of timimg, there were 10 (1.5%) continuous murmurs, 4 (0.6%) diastolic
murmurs, 670 (97.8%) systolic murmurs and 1 with missing classification.
Concerning the recordings used in this study, the median of recording duration was 10s,

ranging between 2s and 65s. The median of heartbeats per recording was 16, with a range of 3
to 94 heartbeats, and each heartbeat lasted on average 0.60s, with a minimum of 0.30s and a
maximum of 1.27s.

3.2. Test Results

When detecting cardiac pathology, the clinical data models showed AUC of 0.733 for DT and
0.789 for ANN. When all sound features were included, the AUC fell for both (0.676 and 0.784,
respectively). The best model for this classification was the ANN trained with clinical data and
conventional MFCC (Fig. 2), with its equivalent DT showing an AUC of 0.733. When training
only with motif MFCC the AUC where 0.712 for DT and 0.740 for ANN.

For CHD, both the DT and ANNmodels of the clinical data showed AUC of 0.747. The DT and
ANN models of clinical data with both types of sound features showed AUC of 0.713 and 0.757,
respectively. Nonetheless, the best model for the detection of CHD was also the ANN trained
using clinical data and conventional MFCC, with an AUC of 0.761 (Fig. 3). The equivalent DT
presented an AUC of 0.720. The models trained with clinical data and motif MFCC performed
poorly with AUC of 0.714 for the DT model and 0.721 for the ANN model. Values of AUC for
both cardiac pathology and CHD models are summarised on Table 2 and Table 3, respectively.
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Figure 2: ROC curves of cardiac pathology models using clinical data and conventional MFCC

4. Discussion

4.1. Principal Results

The results show a slight improvement in the performance of the models, particularly when
using solely conventional MFCC. This is in line with their use in previous studies in this area
[24, 25, 26, 27, 28, 29, 30], even though we would expect a more evident improvement on the
models.

Moreover, motif MFCC seem to clearly worsen the performance of the models, this could be
due the algorithm used being optimized for 3 MFCCs per frame. The selection of the cepstrum
which better characterize cardiac sound could improve the quality of the features extracted
through this method.
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Figure 3: ROC curves of CHD models using clinical data and conventional MFCC

4.2. Limitations

There are several limitations to this study. Firstly, the use of a second-hand dataset makes it
difficult to preprocess the data in a more efficient way. Additionally, we had little information
on the manner in which the screening was conducted, and, because of this, there are doubt
on who performed the echocardiograms and the cardiac auscultation. This is turn raises the
question of the observer’s experience. Also, due to the nature of voluntary screenings, there is
probably a selection bias which overestimates the presence of pathology within the population.

Regarding the sound feature extraction, by using MFCC we have limited our analysis of sound
in the frequency domain. Because some pathologies may influence the duration of the heartbeat
components and the loudness of the sound, time and amplitude features could potentially be
added in future works as a way to solve this limitation.

In terms of the models training, these results are limited in the fact that only one bootstrapping
resample was performed. These experiments should be repeat with more resamples to obtain a
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better estimate of the performance of the models.

4.3. Conclusions

There is much room for improvement and experimentation in this field. Further research is
needed on the extraction and selection of features, preferably avoiding the need for segmentation
of heart sound. It is also important to create a tool that is computationally efficient and that can
be used in more basic processing devices. This has the potential to become a useful tool in the
screening of CHD.
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