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Abstract

Al applications to health related processes include the adoption of robotic platforms for rehabilitation,
aiming at the delivery of highly intensive, repeatable and accurate motion therapies and able to constantly
monitor the patient and provide the suitable assistance levels. However, a comprehensive approach to
robot-aided rehabilitation requires also a social level of interaction with the patient that implies cognitive
modeling and linguistic communication. It is worth noticing that robotic platforms providing both
physical and cognitive support to patients have not been proposed so far. In the HeAL9000 project an
intelligent robot for rehabilitation of patients affected by musculoskeletal disorders is proposed with
cognitive and linguistic abilities. It relies strongly on machine learning technologies whose aim is to
support cost effective engineering of the platform as well as evolving capabilities across time. In the
paper early experimental evidence is acquired through quantitative evaluation.
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1. Introduction

The adoption of robotic devices in rehabilitation is widely increased in recent years since
robots can deliver highly intensive, repeatable and accurate motion therapy for neurological
and musculoskeletal disorders [1]. The goal of rehabilitation is the functional recovery of the
body area of interest, the restoration of the functional range of motion and the recovery of
muscle strength[2]. Robot-aided motor therapy has further advantages, such as the possibility
of objectifying patient performance, modulating appropriately the level of assistance and
providing feedback during treatment [3]. Several studies have been conducted to evaluate
the effectiveness of robot-aided rehabilitation. The first clinical study was carried out in 1997
using the commercial robot MIT-MANUS on post-stroke patients [4]. In more recent studies,
robotic assistance has been dynamically changed based on the subject’s needs, evaluated by
bio-mechanical and psycho-physiological monitoring systems [5]. These platforms establish
a purely physical interaction with the patient, but they generally do not include a cognitive
interaction, although it can be a fundamental tool for the user motivation and engagement [6].
However, robotic platforms capable of providing both physical and cognitive support to the
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patient with neurological or musculoskeletal disorders did not emerge from the analysis of the
state-of-the-art. A platform capable of providing an adequate level of assistance, tailored to
the individual patient’s needs, favoring her participation may deliver a more effective training
session.

The project HeAL9000 (“Healthcare Agents and Learning robots”) is funded by Regione Lazio
and aims at designing, developing and validating in the operative scenario a smart robotic
platform to deliver rehabilitation to a patient affected by musculoskeletal disorders. The platform
should be able to promote and facilitate the patient’s motor recovery through a human-robot
interaction exploiting communication channels typically used in therapist-patient interaction, i.e.
verbal, physical, cognitive. HeAL9000 is a Service Oriented architecture that integrates a Robotic
Platform and cognitive services whose aim is to control the verbal and non-verbal interaction
between the robot and the patient. The cognitive components implement a Dialogue system
that interprets the utterances of the patient, the non-verbal stimuli (e.g., the physiological input
from dedicated devices, such as the heart rate or patient temperature) and plans the interaction.
We modeled the interaction in the overall rehab session, by i) demonstrating the exercises to be
performed, ii) observing and evaluating the patient during its practice and eventually correcting
him with verbal signals, iii) actively supporting him with the robotic arm as a therapist would
do. The entire interaction is also expected to account for emotional information, implicitly
shown by the patient through Computer Vision (here devoted to Face Emotion Recognition [7])
and language processing according to the automatic analysis of the spoken utterance to extract
Emotional stimuli both from the patient tones and the sentence contents. This allows to improve
a more natural interaction with the robot and improve engagement. This paper is thus focused
on presenting the overall architecture that is under development, with particular emphasis on the
specific modules devoted to the Dialogue Management and the Natural Language Understanding,.
A dedicated experimental evaluation of these specific modules shows that they can be adopted
for a more robust and effective HRI.

In the rest of the paper, Section 2 provides an overview to the HeAL9000 architecture, while
Section 3 reports the experimental evaluation of some of the Al components and Section 4
draws the conclusions.

2. Integrating robot-aided rehabilitation and language learning

The role of the therapist is paramount in motor rehabilitation. The healthcare operator has to
establish a physical and cognitive relationship with the patient and his intervention cannot
ignore the patient’s clinical and emotional state. The HeAL9000 project aims at replicating
the interaction between therapist and patient established during a conventional rehabilitation
session, to improve the effectiveness of the rehabilitation treatment. Such a platform could
represent a disruptive source of technological innovation in modern robot-aided rehabilitation
and it can be an enormous step forward in terms of human-robot interaction, robot autonomy,
safety for the patient, reliability of the robot and effectiveness of the rehabilitation treatment.
To do this, HeAL9000 robotic platform will (i) consist of a service robot capable of replicating
the behavior of the human therapist thanks to the use of Machine Learning and Learning by
Demonstration techniques; (ii) have a highly adaptive behavior concerning the characteris-
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Figure 1: HeAL9000 Architecture

tics of the patient and the context thanks to the multi-modal monitoring of the patient; (iii)
establish physical and cognitive interaction with the patient, similar to the one observed in the
combination therapist-patient. It has the twofold purpose of motivating the patient to actively
participate in the treatment and to strongly personalize the rehabilitation session according to
the physical and cognitive state of the patient.

Figure 1 summarizes the overall architecture. The patient physically and verbally interacts
with the Robotic component that is also devoted to measuring her physiological and bio-
mechanical information, while visually tracking the patient’s movements and emotional status.
This body of information is provided to the so-called cognitive component, which processes
such input, plans the interaction (through dedicated sub-modules presented hereafter) and
provides instruction to the robot, both in terms of actions to be performed or utterances to be
pronounced. Both components and their communication are orchestrated by the HeAL9000
Controller, which also stores the shared information. Moreover, the controller provides the
Monitoring and Administration console (also for security purposes) and interfaces with external
repositories (with clinical information about patients and exercises) or external modules such
as Speech to Text modules. The Robotic Components are implemented on the adopted TIAGo
robot! based on the ROS (Robot Operating System) middleware, while the other components
are implemented as Service Oriented Architectures hosted in a dedicated Cloud.

2.1. Machine Learning for Patient-therapist interaction

The natural interaction between the patient and a therapeutic robot is crucially dependent on
the ability to integrate learning at the physical level (as adaptive control mechanisms and data-

'https://robots.ieee.org/robots/tiago/
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driven machine vision are involved) and at a cognitive level, related to the ability to recognize
people, profile them and support linguistic communication with them.

Cognitive aspects. Starting from the analysis of the conventional rehabilitation sessions,
it is possible to distinguish the roles played by the patient and the therapist. They assume
dynamic behaviors based on circumstances and stimuli that the two exchange reciprocally. At
the beginning of the rehabilitation session, the clinician carries out the demonstration: the
therapist explains to the patient the task to be performed, not only verbally but also with the
help of his/her own body. In this context, the patient is a listener: he/she does not perform any
movement. However, the patient may asks for clarifications about the activity to be performed.
At the end of the demonstration, the therapist starts the second phase of the treatment: the
observation. At this time, the patient plays the role of the main actor as he/she is asked to
perform the proposed exercise independently. In turn, the therapist monitors the subject
and encourages and/or warns him/her to carry out the assigned motor task in the best way.
Whenever the therapist decides to intervene to correct any patient error and/or the patient
complains of pain or fatigue, the role of the therapist turns into the helper one. In this context,
the real physical interaction between the two actors begins and takes place. As soon as the
exercise is completed, the cycle can start over and iteratively continue until the rehabilitation
session is completed [8]. In order to develop an effective robot-aided system for rehabilitation,
it is necessary to implement such roles onto a robotic platform, able to handle both physical
and cognitive interactions, as shown in Figure 2.
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Figure 2: Proof-of-concept of patient-robot interaction.

Physical interaction. The robotic platform will be able to play one role among demonstrator,
observer and helper, as reported in Figure 2. In the first scenario, the robot will demonstrate the
motor task to be performed by the patient. When the patient will try to execute the task, the
robot will constantly evaluate the motor performance of the patient exploiting RGB-D cameras
and the skeleton tracking algorithm. In this way, the robot will be aware of patient errors, pain
and/or risk conditions to assist him/her when needed. In the helper role, the robot will guide
the limb of the patient to correctly execute the assigned task. To do this, it is essential to model
the physical interactions of the traditional rehabilitation treatment to tune the optimal behavior
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Figure 3: The workflow behind the cognitive interaction

of the robotic platform. Learning by demonstration approaches based on Dynamic Movement
Primitives [9] will allow encoding the therapists-patient physical interaction to re-target the
recorded motions onto the robotic platform.

2.2. The role of Dialogue

The cognitive dimension of the therapist-patient interaction is supported by managing natural
dialogue able to integrate control aspects (e.g. the visual detection of critical phenomena for the
patient, such as wrong positions or expressions of pain) into natural managed by a dedicated
set of modules devoted to the acquisition of input from the environment (from verbal input to
physical stimuli acquired through the dedicated sensors), to the tracking of the whole dialogue
and the planning of individual reactions. The workflow is depicted in Figure 3.

When a verbal input is provided by the patient, the neural architecture discussed in [10]
is applied for Speech to Text transcription. Let us consider a patient during the exercise who
says “My arm hurts” to express some difficulties due to the requested movements. Content is
processed by the Natural Language Understanding module that implements the inductive method
described in [11]: here the semantic interpretation in terms of Frames Semantics [12] that models
input sentences into meaning representation graphs is also coupled with the recognition of the
user intent. The semantic graph is then provided to the Dialogue Management Module used to
recognize user states on Dialogue State Tracking, to plan the robot reactions to the input, to
update current states, accordingly, and finally to compile the requested linguistics output. In
the workflow, the resulting semantic frame is Bopy_MOVEMENT that ask the patient to move its
arm (the BonpY_PART as argument of the input frame) for a given DURATION, i.e. a while. The
output frame is compiled by the Natural Language Generation into a sentence like “Lift it up for
a while” used to feed the robot text-to-speech module. The cognitive architecture in HeAL9000
integrates inductive modules such as the language understanding one with knowledge-based
components, strongly dependent on domain-specific pragmatic (e.g dialogue state tracking)
resources as well as medical knowledge bases.

The tasks of Dialogue Manager (DM) and Dialogue State Tracking (DST) in recent years
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are often addressed with the use of end-to-end methods for example using transformers to
encode the input, like user sentences, and generate the output, the response of the system. This
emerges also from the different dialogue state tracking challenges [13] such as the last of these,
the DST9 2 in which most of the systems use the technologies mentioned above. In HeAL9000
the Dialogue Manager has the ambition to controlling the interaction between a robot and a
patient in a critical scenario. Based on this consideration we decide to adopt a system that was
i) as controllable as possible in terms of dialogues produced and actions performed by the robot;
ii) flexible and adaptable to new scenarios. The DM was modeled as a set of State Machines,
each of which performs a specific activity within the flow of the physical therapy session, i.e.
in the initial phase a state to welcome the patient or during the execution of the exercise a
state to stop the patient when he/she makes mistakes. Each state represents a specific action
(verbal or not) to be performed by the robot, each edge can be used for state change if and
only if the conditions of the edge are satisfied. Examples of conditions can be a combination
of particular user utterances, a set of information in the knowledge base, or different events
such as sensor data or facial expressions of the user. Thus, the response of a patient who is
performing a physical therapy exercise, to feedback requested by the system, can be processed
by considering a wide set of signals, not only the vocal one, as in the following example:

HeAL9000: are you okay?
Patient: yes, everything is fine!
sensor: Patient HeartRate High
sensor: Patient BloodPressure High
sensor: Patient Sad
HeAL9000: please take a break and breathe deeply.

Information from the sensors is added to the linguistic features for the Natural Language
Understanding module, similarly to [11]. The model is thus trained on data containing a mixture
of linguistic and sensory features in order to be able to distinguish events as in the example
above.

The Dialogue Management module is modeled as a set of non-deterministic finite state
machines. The dialogue can be represented as a set of quintuple (I, S, sy, T, F) where:

« Iis the input user utterances, sensors or other signals and knowledge base information.

« Sis the set of states of dialogue.

« g is the initial states of each dialogue phase.

« Tis the function that makes each state and input to correspond a sub-set of possible states:
T :SxI— U whereU CS.

« Fis the set of final states.

Figure 4 shows a simplified version for the demonstration phase in which the robot shows
the video of the exercise (START_VIDEO_EXERCISE), confirms that the user has understood
the exercise to be performed (CoNFIRM_EXERCISE) and asks the patient to start the activity
(REQ_AcTIviTY_START). If the patient does not start the exercise, a second explanation of the

*https://dstc9.dstc.community/
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exercise is provided (EXPLAIN_EXERCISE). Where the user fails to start the activity, the system
provides a special end state and then calls a human operator (END_cALL_OPERATOR). In order to
avoid not planned behaviors, there is always an error state (END_w FAILURE). When the system
is not able to understand the intentions of the user, it enters in a special state (CLARIFICATION)
with which the intentions of the user are clarified.

During the entire dialogue, the system acquires information and exploits the data in its
possession to choose and generate the answers to be provided to the user. All data is stored in a
knowledge base structured as an RDFS/OWL ontology. Ontologies are often used in the context
of dialogue systems, such as in [14]. Within the knowledge base, we defined several concepts so
that the system would be able to use patient information such as first name, last name, birth date.
The information about the exercises such as the correct movements to perform, the number
of repetitions, the series, the parts of the body involved in the exercise and other information
useful to the system to help the patient to perform the exercise through the use of dialogue.
This technological choice has two main advantages, i) the use of ontologies allows a formal
and explicit description of the concepts of the domain of interest, and this allows the system
to query structured data and ii) the Open World Assumption of OWL allows the system to
progressively enrich its knowledge with information from the web.

confirm_exercise
video_end: true

start_video_exercise

confirm: true

confirm: false

\4

. . firm: t ..
\/\/) START explain_exercise Con: Tree » req_activity_start
confirm: true

confirm: false confirm: false
{ !

END w/failure END call_operator ‘ END w/success

Figure 4: State Machine for Demonstration phase.

3. Evaluating learning robots in therapeutic scenarios

Natural Language Understanding as an emerging ability. Machine learning for natural
language has been traditionally applied to induce cognitively plausible interpretation models,
usually based on theories about the nature and semantics of human communication. Frame
semantics [15] has played often the role of reference theory for semantic interpretation and
representation. Frames [15] are cognitive devices able to represent and encode properties of
eventualities, i.e. situations, world states and subject’s personal state, and support interpretation
and reasoning about a context and a domain. They play at the same time the role of formalism
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for the representation of the operational context of a robot and of a knowledge repository to
express world knowledge.

Frames are thus useful during dialogue as they can express (and constraint) the intentions and
content related to a patient utterance, as a guide of the interpretation process, as well as a storage
device for maintaining the dialogue state. Frames have been often used for automatic Information
Extraction through Machine Learning ([16]) whereas interpretation is seen as a structured
sentence classification process. In line with this perspective, we propose an interpretation
framework consisting of a cascade of classification steps aiming at recognizing purposes and
content semantics in support of meaningful dialogue. Firstly, a sentence classification step
(namely Intent Classification) is applied to input (i.e. the patient’s) utterances and then sequence
labeling is applied for automating Semantic Role Labeling (SRL) as in [17]. In Intent Classification
each sentence is associated with the intent, consisting of a label such as REQUEST or INFORM):
the objective is that we need to detect the patient’s intent of a sentence during the dialogue to
understand his goal or state, i.e. if he’s asking for something or providing information to the
system.

During Semantic Role Labeling words are associated with labels expressing the role they play
in the semantic frame vehiculated by the sentence. Roles establish the differences between
predicates f, the so-called Lexical Units denoting the frame, and arguments, that are the roles r;,
called Frame Elements of f, activated by the sentence. Multiple frames in a sentence are the
norm and establish ways of detecting and storing contextual knowledge during the dialogue. For
its complexity, Semantic Role Labeling is further divided into three subtasks: Frame Prediction
predicts which Frames fis expressed by an input sentence and labels the words (lexical units)
responsible for evoking f, Boundary Detection detects the starting and ending positions of
individual arguments of each recognized frame f; Argument Classification assigns the semantic
roles, i.e. the Frame elements associated with the predicted Frame f, to the arguments detected
in the previous step. In the example of Figure 3, the sentence “my arm hurts” evokes the frame
EXPERIENCE_BODILY_HARM through the lexical unit hurt. Then the notion of BoDY_PART is
expressed by the fragment “my arm” as the injured part of the EXPERIENCER, here implicitly
referred to the speaker, i.e. the patient.

Semantic Role Labeling acts on the entire sentence and is modeled as a Markovian formu-
lation of a structured SVM (SVM"™™ as in [18, 11]). The learning algorithm combines a local
discriminative model, which estimates the individual observation probabilities of a sequence,
with a global generative approach to retrieve the most likely tag sequence that better explains
the semantics of the whole sequence. The labeling obtained by the SV M"™™ onto the example
sentence “my arm hurts” is as follows:

[Speaker |pxperipncer [MY ar m]BODY_PART [hurts]LU:EXPERIENCE_BODILY_HARM

where the pseudo token [Speaker] is used to denote the implicit argument EXPERIENCER not
related to any text portion.

The input of the models is composed, besides the linguistic features in line with [11], also of
other features such as the intent of the patient’s sentence and the requested information (i.e. the
frames and arguments that HeAL9000 expects). In addition, information from the sensors the
patient wears, the tone and intensity of the voice volume and the emotion recognized through
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the Face Emotion Recognition Model are added. This composes a more complete picture of
what the patient communicates to the robot, both verbally and non-verbally. Finally, each
model adds the result of the previous models as a feature to the input. During the dialogue, the
system needs to store and use some information about the interlocutor. When HeAL9000 is a
Demonstrator (i.e. in the Demonstrator stage, Figure 3) it can be effective to use the patient’s
real name and always be aware of the body part involved during the rehabilitation session.
During the Observer part of the session, the robotic platform should consider the age of the
patient to better evaluate the movements (for example, an older patient may not be able to
fully execute some exercises). Finally, in the Helper stage HeAL9000 needs to consider the body
part involved, whether the patient is in pain and, eventually, the intensity to better help him
complete the session.

The Frames are thus adopted to model the knowledge about the stages and knowledge
incoming through sentences. We studied the involved frames over the current repository
created by the Framenet® project [12]. In particular, we focused on medical and informational
aspects according to the existing frames, an excerpt of which is provided below:

« BEING_NAMED: Concerns Entities (PATIENT) conventionally being referred to by particular
names (NAME and SURNAME).

« MEDICAL_ CONDITIONS: Medical conditions or diseases that a PATIENT suffers from. Con-
tains the part or area of the body (Bopny_prART) affected by the condition, the CAUSE of
the condition, a prominent SympToM and others.

o ACTIVITY_START: An Agent (renamed PATIENT for our case) initiates the beginning of an
ongoing AcTIvITY in which he will be continuously involved. Used to model the exercise
activity during the rehab session.

+ ACTIVITY_RESUME: An Agent (PATIENT) resumes participation in an ACTIVITY.

« AcTiviTY_FINISH: An Agent (PATIENT) finishes an AcTIviTy, which can no longer logically
continue.

« EXPERIENCE_BODILY_HARM: An EXPERIENCER is involved in a bodily injury to a BopY_PART,
even though in some cases, no Bopy_PART need be indicated.

« MEDICAL_INTERACTION_SCENARIO: A PATIENT interacts with one or more MEDICs, usually,
the PATIENT has an AFFLICTION.

+ LEVEL_OF_FORCE_EXERTION: An EXERTER, ACTION or FORCE is capable of exerting or
does exert a physical force at a level specified by the target. The Frame could be used in
the Helper phase to describe the force used by the robotic arm.

+ INHIBIT_MOVEMENT: An AGENT (the physical robot in our case) restricts the movement of
a THEME (may be the patient’s arm) despite the THEME’s desire, plan, or tendency towards
motion; the AGENT may also use an INSTRUMENT (robotic arm).

Some simulated interactions between a patient and a robotic therapist were registered in a
Wizard-of-Oz (WoZ) method and manually labeled to train the machine learning algorithm,
whose evaluation is reported hereafter.

Evaluating Semantic Role Labeling. The dataset used to train the SVM models consists
of about 2,000 sentences representing interactions between a patient and a therapist, equally

*https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
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distributed among the various stages of the dialogue and split into train and test sets with
an 80/20 ratio. All steps are modeled as classification tasks. Intent classification corresponds
to a multi-class classification where each sentence has to be assigned to one possible class
(from 8 total classes) reflecting the user’s intent. Frame Prediction corresponds to a multi-
label classification task, where each sentence has to be assigned to zero, one or more classes
reflecting the evoked linguistic predicates f (here 10 possible frames are considered). Boundary
detection is modeled as a sequence labeling task where arguments are annotated according to
the BIO notation®. Finally Argument classification is a multi-class classification task where
each informative chunk has to be associated one of the 28 possible classes. The system was
evaluated according to different metrics as the two tasks (i.e., Intent Classification and SRL) have
different objectives and needs. Accuracy simply calculates the ratio between correct prediction
and total predictions. Sentence Level Accuracy is similar to Accuracy, but for a sentence to
be considered correct, it is necessary for all its word labels to be correctly predicted to make
a perfect match. This is the case with the subtasks of Semantic Role Labeling. We have also
reported Precision and Recall metrics to evaluate the performance of the models at the level of
the entirety of the entities (Frames, Boundaries or Arguments) to be predicted. As far as the
Frames Prediction model is concerned, it is necessary that all the words belonging to the Frame
are correctly labeled in order for it to be considered correct.

Table 1
Results of Sentence level task and Semantic Role Labeling tasks.
Task Span Level Sentence Level
Precision | Recall Accuracy
Frame Prediction 0.85 0.83 0.86
Boundary Detection 0.93 0.92 0.91
Argument Classification 0.99 0.98 0.96

In terms of Accuracy, 96% of the time the system correctly predicts the Intent of a user
sentence. Table 1 then shows the results of the Semantic Role Labeling (SRL) tasks that more
straightforward. Indeed, in the SRL pipeline, each model assumes that the predictions in the
previous step are correct. As a consequence, Argument Classification is almost perfect, as it
takes advantage of such a gold standard input, where informative chunks (i.e. arguments) are
already perfectly matched.

Evaluating Dialogue. We demonstrate by simulation that the Dialogue Manager is robust
to adversarial interactions with the system and that it tries to complete the conversation in
a successful end state with as few turns as possible. We thus prepare an experimental setup
consisting of a dialogue made up of 4 phases, in three of which the robot plays the 3 roles shown
in Figure 2. The remaining phase (called Information Gathering) is used when the interaction
starts to welcome the patient and collect her personal information. In the Demonstration phase,
HeAL9000 shows the exercise to be performed. In Observation phase, the patient is observed
performing the exercise and HeAL9000 responds to stimuli coming from sensors and user

*As an example: [my] [left], [arm], [hurts] , where _ denotes a non informative chunk, B is the beginning of a

chunk, I is used for the elements in the middle and 0 is for the last element of the informative chunk.
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verbal input. In Helping phase, HeAL9000 physically helps the patient to execute the exercise.
For each output of the dialog manager, during all phases, we created 3 categories of possible
responses. A category of consistent answers to simulate a user collaborating with the system.
The second category reflects answers that only partially help the system to continue the dialogue,
by introducing not completely consistent answers, or requests for further explanations (thus
increasing the length of dialogue). The last category reflects not consistent responses to simulate
an adversarial user.

Simulated data are made of conversations where, in each turn, we select with probability p
an answer uniformly at random among the consistent answers and with probability 1 — p select
an answer among the other categories. We simulated 100 dialogues Vp € {0.0,0.1,0.2, ..., 1.0} for
a total number of 1100 dialogues. Dialogue ending states fall into three categories: dialogues
that correctly terminate in the final state of the system (Success in Figure 5), with an average
length of 51 dialogue turns; dialogues that correctly terminate in final states but anticipating
the end of the therapy session, e.g., the patient feeling pain (Early Termination in Figure 5),
with an average length of 44 dialogue turns; finally, dialogues that terminate in an error state
not handled by the system or conversations that are too long (more than 100 dialogue turns)
and therefore terminated early (Reset in Figure 5). Figure 5 shows the percentage of the three
categories of dialog termination (Success, Early Termination, Reset) as the probability value
p increases. Tests showed the system to be tolerant of misinterpretation of user sentences, even
with low probability p values all dialogues, indicated with a reset termination, were terminated
for reaching the maximum allowed length. The system never needed to make use of special
termination states for unexpected errors such as the Reset state of the dialogue.

4. Conclusions

In this paper, a cognitively inspired robotic architecture for orthopedic rehabilitation is de-
scribed. The system integrates motion control capabilities with dialogue and natural language
understanding in order to harmonize and personalize the relationship with the patients. The ap-
proach discussed in the paper is strongly focused on the adaptive abilities supported by Machine
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Learning algorithms. The results obtained in the acquisition of language processing abilities and
in the dialogue control are more than encouraging, and pave the way to a robotic system able to
support operational adoption of this technology, data acquisition and incremental improvement
over time. This is a core property in the enabling of rapid and beneficial penetration of this
technology in daily practices.
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