
Mining and Detecting Bugs in Introductory Programs
Wenchu Xu1, Yanran Ma2

1Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
2Nanjing Foreign Language School, 30 East Beijing Road, Nanjing, 210008, China

Abstract
For students who start learning a programming language, bugs in the introductory program hinder the learning progress.
Current introductory program judge systems merely provide a pass or fail by the percentage of passed test cases, while
students may be unaware of potential defects hiding in their programs. It is helpful to provide a bug detection tool for them.
However, state-of-the-art bug detection methods emphasize on precision and scalability, yet developing detection methods
for numerous categories of defects is typically costly. In this paper, we first conducted an empirical study to mine common
bug patterns, and found that (1) most bugs in such programs are simple; (2) bug patterns rely on specific programming tasks
and thus be various. According to our findings, developing precise analysis methods for each bug pattern is unrealistic and
unnecessary. Therefore, this paper further proposes a static detection framework to discover software bugs in order to ease
the development of bug detection while maintaining a fair level of precision. Our framework is extensible by defining bug
specification for bug patterns in a specific input format. The method is then applied to real-world introductory programs
and successfully detect all bugs with a false positive rate of 25.8%.

Keywords
Empirical Study, Introductory Programming, Static Bug Detection, Bug Pattern, Bug Specification

1. Introduction
Introductory programming received increasing attention
both in industry and academia. Such programs, devel-
oped by students when taking introductory program-
ming courses, are only validated by pre-defined test cases.
However, passing all test cases does not guarantee that
programs are free from bugs, leading to students mistak-
enly assume their programs are bug-free. And students
may introduce similar bugs (e.g., integer overflow) in
real-world programs, which may lead to serious conse-
quences [1]. Therefore, detecting bugs in such programs
can help students to better understand programming and
avoid similar bugs in future real-world programs.

Earlier works predominately considered program anal-
ysis for large-scale programs with complex bug patterns [2,
1, 3, 4, 5]. Carrybound [5], based on taint analysis, real-
izes the checking of array index out of bounds defects
through backward data flow analysis. At the same time,
it provides array boundary checking conditions to im-
prove precision. Pinpoint [4] tracks the precision and
scalability dilemma by symbolic expression graph, which
memorizes non-local data dependence relations and path
conditions. At the bug detection step, only bug-related
code is precisely analyzed. This design achieves high
precision and almost linear time growth. Both tools are
capable of analyzing one million lines of code while keep-
ing the analysis accurate in analyzing complex bugs.

Proceedings of 4𝑡ℎ Software Engineering Education Workshop (SEED
2021) co-located with APSEC 2021, 06-Dec, 2021, Taipei, Taiwan
" 929849889@qq.com (W. Xu); ma.yanran@outlook.com (Y. Ma)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

In this paper, we focus on static detection methods, in
order to achieve a sound result and act as a complement
of program judgment systems. Unlike existing software
bugs or security vulnerabilities, bugs in introductory pro-
grams may have various patterns. To better understand
bug patterns in such programs, this paper first conducts
an empirical study of bug patterns that introductory pro-
grams commonly have. The results demonstrate that (1)
most bugs in such programs are simple; (2) bug patterns
rely on specific programming tasks and thus be various.

These results of empirical study show that existing
static analysis methods, albeit conceptually appealing,
are not applicable for detecting bugs in introductory pro-
grams. Students without any programming background
may introduce various kinds of bugs, which only occur
in a certain category of programs. This raises a new chal-
lenge that, notwithstanding, the cause of each bug may
be simple and trivial, detecting all of them is a non-trivial
task. To the best of our knowledge, the reason is that
existing static analysis methods require costly human
effort to implement a sound and precise bug detector for
each bug, so it is impractical to detect all trivial bugs.

In this paper, we present a simple but effective frame-
work that is capable of detecting bugs in introductory
programs. Given a bug specification, this framework first
identifies potential bug locations. Then, it analyzes in-
structions before or after the bug location in control flow
graphs. Finally, it reports a bug if instructions flow from
a bug location do not meet specified constraints.

In summary, this paper makes the following contribu-
tions:

• An empirical study of student programming bugs
whose goal is to find common bug patterns in

8

mailto:929849889@qq.com
mailto:ma.yanran@outlook.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

introductory programs.

• A static detection framework that is extensible to
detect student programming bugs.

• An implementation, DBI, which we use to bugs in
existing bug datasets. Results show that (1) DBI
is fast, taking on average less than 2 seconds to
analyze all programs; (2) DBI is effective, giving
on average less than 25.8% false-positive rate in
real-world programs.

The remainder of this article is presented as the following.
Section 2 presents the detailed results of our empirical
study. Section 3 details our analysis framework. Section 4
present our evaluation of DBI. Section 5 presents related
works. Finally, section 6 gives the conclusion.

2. Mining Bugs in Introductory
programs

In this section, we show the setup and result of our empir-
ical study about common bugs in introductory programs.

2.1. Learning from practice
Source code written by novice programmers is not free
from bugs even though it passes the testing of the on-
line judge system. Such hidden bugs may make them
assume that their programs are bug-free. Therefore, in
order to find such hidden bugs and design an extensible
bug detection framework for these bugs, we conduct an
empirical study to mine common bug patterns in existing
bug datasets. Such bug patterns help us to understand
how they are introduced, and how to detect them.

To survey the bug patterns, we manually inspect two
kinds of programs in CodeForce1: the first kind passes
test cases and the second one does not.

2.2. Results of the empirical study
Table 1 depicts the results of our empirical study. The
first column is the category of bugs. The second column
is the pattern of each bug. The third column shows an
example, followed by how to fix the bug. The last column
shows how to fix such kinds of bugs.

According to Table 1, we find that all bugs cannot be
detected in compile-time and their occurrence heavily
relies on test cases. However, the test cases, provided
by online judge systems, cannot cover all possible paths,
resulting in missing potential bugs.

Therefore, these results demonstrate that detecting
bugs is an urgent task. However, existing static analy-
sis methods usually focus on scalability and precision.

1https://codeforces.com/problemset/status

1 void secretFunction() {
2 printf("Danger zone!\n");
3 }
4 void echo() {
5 char buffer[20];
6 printf("Enter some text:\n");
7 scanf("%s", buffer);
8 printf("You entered: %s\n", buffer);
9 }

10 int main() {
11 echo();
12 return 0;
13 }

Figure 1: A program with buffer overflow.

Source Code CFG Construction

Pre-Analysis Analysis Mode

Post-Analysis

Bug Reports

Bug
Specification

Figure 2: The framework of our method.

Specifically, their methods are proposed to analyze large-
scale programs in an acceptable time budget while keep-
ing high precision including flow-, context- and field-
sensitive. Such methods are not suitable for detecting
bugs in introductory programs because they require ex-
perts to develop a new bug checker. To tackle this chal-
lenge, we present an extensible framework that can detect
a new bug pattern with a little human cost.

3. Detecting Bugs in Introductory
programs

In this section, we first give a motivating example to show
a buggy program. Then, we present an overview of DBI,
followed by a detailed description of each component.

3.1. Motivating example
The code in Figure 1 looks quite safe for novice pro-

grammers. But in fact, we can call the secretFunction
by just feeding the input with a dedicated string whose
length is larger than 20. Because the vulnerable program
has a buffer overflow bug introduced by scanf. Detect-
ing such bugs and other kinds of bugs is a human-cost
task, thus we propose our method – DBI.

3.2. Framework Overview
Figure 2 depicts the overall framework of our proposed
method. It takes input as source code and bug specifi-
cation, and outputs bug reports. The method consists

9

Table 1
Common bug patterns in the dataset.

Category Bug patterns Example Bugfix

Memory related bugs

Incorrect use
of memset

int a[16]; memset(a, 1, sizeof(a));
//a[0] is not 1.

Use other API

Buffer overflow
int a[4]; strcpy(a, "hello world");
//Buffer overflow

Check the length of
source and dest string

Missing checks
against external input

scanf("%d", &nLen);
for (int i = 0; i < nLen; i++)
aVal[i] = octs[i]; //Buffer overflow

Add checks for external input

Use after free

struct node *ptr = head;
for (; ptr != NULL; ptr = ptr->next)

free(ptr);
//ptr is freed when accessing ptr->next.

Add checks for external input

String related bugs
Missing ’\0’

char str[5] = {’h’,’e’,’l’,’l’,’o’};
printf("str=%s\n",str);
printf("strlen(str)%d\n",strlen(str));
// Incorrect output

Add ’\0’

Missing checks
after modification

while (n[0]==’0’ && n.size()>1)
n=n.substr(1);

Check string length
after modification.

Float related bugs
Different precision of
floating point data types

float a=0.1+0.2;
if(a==0.1+0.2) return true; return false;

Replace the condition with
abs(a-b) < epsilon

.

Numerical calculations

double sap[100] = 3.14e10; int n = 100;
double sum, sqresum ;
for (int i; i < n; i ++) {

sum += sap [i];
sqresum += sap [i] * sap [i];

} return (sqresum - sum*sum/n) / n;
// Should be zero but is 9.761004× 1018

Rewrite code

Integer related bugs
Integer overflow

if(a+b<=c||a+c<=b||c+b<=a)
return true; // Incorrect result when

a, b, c are all INT_MAX

Check whether math
operations may
cause overflow

.

Conversion between
Unsigned and signed

unsigned int a = 0; int b = -1;
if((a+b)>=0) return true;
return false;
// Should return fale but it returns true.

Rewrite code

Divided by zero
scanf("%d", &x); x = x - 5;
int y = 100/x; // x may be zero.

Add checks for
division and modulo

Pointer related bugs Null pointer dereference
int *p = NULL; int q = *p;
// Dereferencing p leads to crash.

Rewrite code

Misuse modulo operator
Modulo negative

number
int a[10] = 0, b = -5; int c = a[b%10];
// Array index should be larger than 0.

Change to (b+10)%10.

Compare modulo results
if(100>5); if(100%10 < 5%10);
// The comparison result is incorrect.

Rewrite code

of 4 main components: CFG Construction, Pre-Analysis,
Analysis Mode, and Post-Analysis.

CFG Construction produces inter-procedure CFGs for
programs. The reaming three components, acting as
the main procedure, perform the analysis against a bug
specification. Its intuition is straightforward: we first
search instructions that satisfy a pre-defined bug pattern.
Then for each of these instructions (denoted by 𝐼𝑝𝑟𝑒),
we analyze instructions before or after 𝐼𝑝𝑟𝑒 according to
the pre-defined analysis mode. Finally, a bug is reported
if there is an instruction (denoted by 𝐼𝑝𝑜𝑠𝑡) along the
paths from 𝐼𝑝𝑟𝑒 to 𝐼𝑝𝑜𝑠𝑡 that fails to meet a pre-defined
constraint.

3.3. Inputs
The inputs of the framework are the source code of a
program and bug specification. The bug specification
is a 4-tuple: 𝑆𝑝𝑒𝑐 := <𝐵𝑃,𝐷,𝑀,𝐶>, where 𝐵𝑃 de-

notes a bug pattern, 𝐷 denotes directions (forward or
backward), 𝑀 indicates whether all paths (i.e., forall) or
only one path (i.e., exists) should satisfy 𝐶 , and 𝐶 is a
constraint whose violation will lead to a bug report. The
four elements are used for Pre-Analysis (𝐵𝑃), Analysis
Mode (𝐷 and 𝑀), and Post-Analysis (𝐶), respectively.

𝐵𝑃 and 𝐶 are written according to the syntax of a pro-
gramming language in first order logic [6]. Specifically,
𝐵𝑃 and 𝐶 are defined by first order logic. Variables in
𝐵𝑃 and 𝐶 are from the syntax grammar of a program-
ming language (e.g., C++).We describe these variables
by the kind of statements and expressions (e.g.., IfStmt,
ForStmt, BinaryOperator, etc.). For example, 𝐼𝑝𝑜𝑠𝑡 =
𝐼𝑓𝑆𝑡𝑚𝑡 means 𝐼𝑝𝑜𝑠𝑡 is an if statement.

3.4. CFG Construction
The first component in the framework is CFG Construc-
tion, which is a preprocessing step that generates control

10

flow graphs (CFG) for the input source code. Specifically,
it parses the source code, constructs CFG for each func-
tion, and connects each CFG to an inter-procedure CFG
(ICFG). Worth noting that we do not perform alias analy-
sis in this step because our method naturally traces all
possible aliases when analyzing bugs in each path.

3.5. Pre-Analysis
The component identifies a set of buggy instructions de-
fined by 𝐵𝑃 . We analyze each instruction in the ICFG to
determine whether the instruction meets the bug pattern.
If so, the instruction is denoted as 𝐼𝑝𝑟𝑒 and the variable
that saves the buggy content is denoted as 𝑉 𝑎𝑟.

For example, in order to detect the bug in Figure 1,
we design 𝐵𝑃 := 𝐼 = 𝐹𝑢𝑛𝐶𝑎𝑙𝑙 ∧ 𝐼.𝐶𝑎𝑙𝑙𝑒𝑒 = 𝑠𝑐𝑎𝑛𝑓 .
It means that we will find all instructions with scanf
because input from users is regarded as unsafe. Therefore,
a function call scanf("%s", buffer); is 𝐼𝑝𝑟𝑒 and its
𝑉 𝑎𝑟 is buffer because the buffer saves the content
of unsafe input.

3.6. Analysis Mode
We design two kinds of analysis modes: forward/back-
ward (i.e., 𝐷) and forall/exists (i.e., 𝑀).

Forward/Backward. 𝐷 indicates the direction of our
analysis: forward or backward. Forward (resp., Backward)
means analyzing the instructions after (resp., before) the
bug pattern. The reason is to analyze two kinds of bugs:
the first kind occurs when condition 𝐶 is before the bug
pattern while the second one is after the bug pattern.
For example, given a user input, we check whether the
input is valid and discard invalid input. Such checks, if
exist, only be valid after the bug pattern (i.e., a variable
provided by users).

Forall/Exists. 𝑀 indicates whether all paths or at least
one path should satisfy 𝐶 . The intuition of 𝑀 is because
one situation only requires that at least one path (denoted
as 𝑝𝑎𝑡ℎ) that satisfies condition 𝐶 to avoid introducing
the bugs. In contrast, the other situation requires that all
paths should satisfy condition 𝐶 to avoiding introducing
the bugs. Therefore, we design forall and exists modes to
support the two situations.

For example, to detect the bug in Figure 1, we should
check that all paths after the scanf should check whether
the input string is valid. So 𝐷 is forward and 𝑀 is forall

3.7. Post-Analysis
The component checks whether variable 𝑉 𝑎𝑟 in each
instruction that flows from 𝐼𝑝𝑟𝑒 satisfies constraint 𝐶 .
𝐼𝑝𝑟𝑒 is the buggy instruction from the Pre-Analysis. For
each 𝐼𝑝𝑟𝑒, we analyze instructions after (or before) 𝐼𝑝𝑟𝑒

along the ICFG. For each of these instructions (denoted as
𝐼𝑝𝑜𝑠𝑡), we construct a path (denoted as 𝑝𝑎𝑡ℎ) from 𝐼𝑝𝑟𝑒
to 𝐼𝑝𝑜𝑠𝑡, then check whether 𝐼𝑝𝑜𝑠𝑡 satisfies condition 𝐶 .
If it does and the analysis mode 𝑀 is exists, then we
finish the analysis. If the analysis mode 𝑀 is forall, then
we continue analyzing other paths until all paths satisfy
condition 𝐶 or some path fails to meet 𝐶 . If the condition
𝐶 is satisfied in at least one path (resp., all paths) in exists
(resp., forall), we will not report the bug. Otherwise, we
regard 𝐼𝑝𝑟𝑒 as a buggy instruction.

For the example in Figure 1, we will not report the
instruction if each path that starts from the 𝐼𝑝𝑟𝑒 (i.e.,
scanf at line 7) has corresponding 𝐼𝑝𝑜𝑠𝑡 that satisfies
𝐶 := 𝐼𝑝𝑜𝑠𝑡 ∈ 𝐼𝑓𝑆𝑡𝑚𝑡.𝐶𝑜𝑛𝑑. In other words, we
will not report the bug if 𝑉 𝑎𝑟 (i.e., buffer) in 𝐼𝑝𝑜𝑠𝑡 is
checked in a condition (e.g., a if branch), regardless of
whether the condition is correct or not.

3.8. Outputs
The output of our method is bug reports, each of which is
denoted by a 4-tuple: 𝐵𝑅 := <𝐿𝑜𝑐, 𝑉 𝑎𝑟, 𝑇𝑦𝑝𝑒, 𝑝𝑎𝑡ℎ>.
𝐿𝑜𝑐 is the line of 𝐼𝑝𝑟𝑒, 𝑉 𝑎𝑟 is the variable cause the bug
in 𝐼𝑝𝑟𝑒, 𝑇𝑦𝑝𝑒 specifies the bug pattern of the bug (e.g.,
buffer overflow) and 𝑝𝑎𝑡ℎ gives a path from 𝐿𝑜𝑐 to the
line of 𝐼𝑝𝑜𝑠𝑡.

4. Implementation and Evaluation

4.1. Implementation
Our method is implemented by Clang2, in order to use
its basic analysis infrastructure such as parsing ASTs,
constructing CFGs, analyzing instructions and analyzing
paths.

4.2. Implemented bug specifications
We design bug specifications and apply it to existing in-
troductory programs. As shown in Table 2, we implement
seven bug specifications for bugs in Table 1. We explain
the first two specifications in detail:

Check string length after modification. The specifi-
cation is 𝑆𝑝𝑒𝑐 := <𝐵𝑃,𝐷,𝑀,𝐶> where 𝐵𝑃 := 𝑛[𝑖]
(𝑖 is an integer variable), 𝐷 is set to backward, 𝑀 is forall,
and 𝐶 := 𝑛.𝑠𝑖𝑧𝑒() > 1. An example of the buggy state-
ment is while (n[0]==’0’ && n.size()>1)
n=n.substr(1); . The correct one should swap the
two predicates, resulting in while (n.size()>1 &&
n[0]==’0’) n=n.substr(1);.

Modulo negative number. As for detecting Modulo
operation with negative numbers, the bug specification
is 𝑆𝑝𝑒𝑐 := <𝐵𝑃> where 𝐵𝑃 := 𝑎%𝑝 without 𝐶 , 𝑀 ,

2https://clang.llvm.org/

11

Table 2
Bug specifications.

Bug patterns 𝐵𝑃 𝐷 𝑀 𝐶

Check string length after modification 𝑛[𝑖] backward forall
𝐼𝑝𝑜𝑠𝑡 = 𝐼𝑓𝑆𝑡𝑚𝑡

∧𝑠𝑡𝑟𝑙𝑒𝑛(𝑛) > 1 ∈ 𝐼𝑝𝑜𝑠𝑡.𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Modulo negative number 𝑎%𝑝 NA NA NA

Missing checks against external input
𝐼 = 𝐹𝑢𝑛𝐶𝑎𝑙𝑙 ∧ 𝐼.𝐶𝑎𝑙𝑙𝑒𝑒
∈ {𝑠𝑐𝑎𝑛𝑓(𝑝), 𝑔𝑒𝑡(𝑝)} forward forall

𝐼𝑝𝑜𝑠𝑡 = 𝐼𝑓𝑆𝑡𝑚𝑡
∧𝑝 ∈ 𝐼𝑝𝑜𝑠𝑡.𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Divided by zero 𝑎/𝑝 forward forall
𝐼𝑝𝑜𝑠𝑡 = 𝐼𝑓𝑆𝑡𝑚𝑡

∧𝑝 ! = 0 ∈ 𝐼𝑝𝑜𝑠𝑡.𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Integer overflow
𝑣1 + 𝑣2 ∧ 𝑣1 * 𝑣2∧

𝑣1 ++ ∧ 𝑖 ∈ {𝑣1, 𝑣2}
forward forall

𝐼𝑝𝑜𝑠𝑡 = 𝐼𝑓𝑆𝑡𝑚𝑡
∧𝑖 < 𝐼𝑁𝑇_𝑀𝐴𝑋 ∈ 𝐼𝑝𝑜𝑠𝑡.𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Null pointer dereference *𝑝 forward forall
𝐼𝑝𝑜𝑠𝑡 = 𝐼𝑓𝑆𝑡𝑚𝑡

∧𝑝 ! = 𝑁𝑈𝐿𝐿 ∈ 𝐼𝑝𝑜𝑠𝑡.𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Use after free *𝑝 forward forall
𝐼𝑝𝑜𝑠𝑡 = 𝐹𝑢𝑛𝐶𝑎𝑙𝑙𝑆𝑡𝑚𝑡
∧𝐹𝑢𝑛𝐶𝑎𝑙𝑙 ! = 𝑓𝑟𝑒𝑒(𝑝)

Table 3
Evaluation results of synthetic programs. CSLAM is Check
string length after modification, and MNN is Modulo nega-
tive number.

Subjects LoC
CSLAM MNN

Time (seconds)
of reports # of bugs # of reports # of bugs

Digits 41 2 1 1 1 0.1
Checksum 35 2 1 1 1 0.1
Smallest 29 2 2 2 1 0.1
Grade 31 1 1 1 1 0.1

and 𝐷. (𝑎 + 𝑏)%𝑝 is deemed to satisfy the 𝐵𝑃 , but
(𝑎%𝑝+ 𝑝)%𝑝 is deemed as a bug-free statement because
𝑎%𝑝+ 𝑝 must be positive.

4.3. Subjects
We evaluated DBI against synthetic and real-world pro-
grams. First, we apply it to existing introductory pro-
grams in IntroClass [7]. We randomly select four pro-
grams and inject bugs into each of them. To evaluate
the real-world programs, we use programs from GitHub3,
these programs consist of known bugs to help us to eval-
uate the performance of DBI in a more general way.

4.4. The results of synthetic programs
Table 3 depicts the results of our method in analyzing 4
introductory programs. In all 4 programs, our method,
which achieves an average 25% false-positive rate, is pre-
cise in detecting bugs. We found that one reason of
false positives for the pattern of check string length after
modification is caused by incomplete bug specification
(e.g., length = strlen(n); length>1; is semanti-
cally equivalent but not equal to strlen(n)>1;). For ex-
ample, the buggy instruction is length = strlen(n);
length>1; instead of strlen(n)>1;, thus no instruc-
tion that meets constraint 𝐶 := 𝑠𝑡𝑟𝑙𝑒𝑛(𝑛) > 1. The rea-
son of false positive for Modulo negative number is also

3https://github.com/piggy10086/Nasac_benchmark

Table 4
Evaluation results of real-world programs.

Subjects LoC # of reports # of bugs Time (seconds)
Buffer_Overflow 1395 14 10 6

Divide_By_Zero_Test 249 14 9 2
Integer_Overflow_Case 51 14 10 0.1

Null_Point_Case 87 8 7 0.1
Use_After_Free 152 12 10 1

caused by imprecise 𝐵𝑃 . The instruction in the false-
positive program matching the 𝐵𝑃 is 𝑑𝑥 = 𝑛𝑢𝑚%10;
, but the data type of num is unsigned int. To get rid of
this, we need to refine bug specification to meet more
situations.

4.5. The results of real-world programs
Table 4 depicts the results of our method in analyzing real-
world programs. In all programs, our tool runs relatively
fast, and thousands of lines of code can be analyzed in a
few seconds. The total false-positive rate is 25.8%, which
is relatively low. And most of false-positive situations
are caused by imprecise 𝐵𝑃 or 𝐶 .

5. Related work

5.1. Static analysis
We found two strands of static methods, the first one
analyzes programs with theoretical guarantee [5, 4] and
the second uses deep learning models to predict bugs [2].

Carrybound [5], a static analysis tool based on taint
analysis, realizes the checking of array index out of bounds
bugs through backward data flow analysis and provides
array boundary checking conditions to be added. Value
flow analysis is way of precise static analysis, but it is not
efficient enough for checking large-scale programs. To
tackle this problem, Pinpoint [4] first builds fast and pre-
cise local data dependence, then it creates a new type of
SVFG, i.e., symbolic expression graph, which memorizes

12

the non-local data dependence relations and path condi-
tions. At the bug detection step, only relevant parts were
further analyzed for high precision. GINN [2] predicts
bugs by learning semantics program embeddings. GINN
generalizes from a curated graph representation obtained
through an abstraction method. It focuses exclusively on
intervals. Also, it operates on a hierarchy of intervals for
scaling the learning to large graphs.

5.2. Dynamic analysis
BovInspector [1] automatically validates static buffer
overflow warnings and provides repair suggestions by
warning reachability analysis and guided symbolic exe-
cution. SDRacer [3], following the similar spirit of BovIn-
spector, detects race conditions in interrupt-driven em-
bedded software by pipelining static analysis, symbolic
execution and dynamic validation. AddressSanitizer [8]
is a new memory access checker that uses an efficient
way to encode and map shadow memory. In addition
to detecting heap space bugs, the tool can find out-of-
bounds memory access bugs in the stack, global objects.

5.3. Program analysis for introductory
programs

For java introductory programs, Nghi et al.. developed
a static analysis framework ELP (Learning to Program)
based on good programming practice experience [9]. The
tool implements software metric analysis and structural
similarity analysis, including cyclomatic complexity, re-
dundant logic expression, etc., to improve programming
quality and give feedback. The Investigating [10] was
conducted on nearly 10 million static analysis errors in
student java programs collected by Web-CAT. The re-
sults show that formatting and documentation errors
are the most frequent errors. However, the two kinds
of bugs, albeit frequently occur, will not lead to serious
consequences. In contrast, DBI focuses on bugs hidden
in programs.

6. Conclusion
This paper first conducts an empirical study showing
common bug patterns written by novice programmers.
However, it also finds that such bug patterns are usu-
ally simple and easy to detect but the bug patterns may
rely on specific programming tasks. Therefore, to easily
develop a new bug checker while keeping a reasonable
precision, this paper also presents a bug detection frame-
work for introductory programs. This method reports
bugs by checking whether variables that flow from a bug
pattern do not meet an expected constraint. In addition,
we implement a prototype tool and conduct a case study

to demonstrate the effectiveness of our approach. In fu-
ture we want to improve our method to be applicable
to more elaborate scenarios such as recursion and apply
some more precise alias analysis algorithms to our tool.

References
[1] F. Gao, L. Wang, X. Li, Bovinspector: automatic

inspection and repair of buffer overflow vulner-
abilities, in: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software
Engineering, 2016, pp. 786–791.

[2] Y. Wang, K. Wang, F. Gao, L. Wang, Learning se-
mantic program embeddings with graph interval
neural network, Proceedings of the ACM on Pro-
gramming Languages 4 (2020) 1–27.

[3] Y. Wang, L. Wang, T. Yu, J. Zhao, X. Li, Auto-
matic detection and validation of race conditions
in interrupt-driven embedded software, in: Pro-
ceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017,
pp. 113–124.

[4] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, C. Zhang,
Pinpoint: Fast and precise sparse value flow anal-
ysis for million lines of code, in: Proceedings of
the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2018,
pp. 693–706.

[5] F. Gao, T. Chen, Y. Wang, L. Situ, L. Wang, X. Li,
Carraybound: Static array bounds checking in c
programs based on taint analysis, in: Proceedings
of the 8th Asia-Pacific Symposium on Internetware,
2016, pp. 81–90.

[6] R. M. Smullyan, First-order logic, Courier Corpora-
tion, 1995.

[7] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, W. Weimer, The manybugs
and introclass benchmarks for automated repair of
c programs, IEEE Transactions on Software Engi-
neering 41 (2015) 1236–1256.

[8] K. Serebryany, D. Bruening, A. Potapenko,
D. Vyukov, Addresssanitizer: A fast address sanity
checker, in: 2012 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 12), 2012, pp. 309–318.

[9] N. Truong, P. Roe, P. Bancroft, Static analysis of stu-
dents’ java programs, in: Proceedings of the Sixth
Australasian Conference on Computing Education-
Volume 30, Citeseer, 2004, pp. 317–325.

[10] S. H. Edwards, N. Kandru, M. B. Rajagopal, In-
vestigating static analysis errors in student java
programs, in: Proceedings of the 2017 ACM Con-
ference on International Computing Education Re-
search, 2017, pp. 65–73.

13

