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Abstract
Software requirements are exposed to many changes during their software development life-cycle. These changes namely
additions, modifications or deletions are defined as requirements volatility. Prior requirement volatility prediction studies
utilize different requirement volatility measures. In this study we predict number of changes per software requirement as
requirement volatility for a large scale safety-critical avionics project in ASELSAN. We employ a comprehensive metric set to
explain requirements volatility: requirement quality measures, project specific factors and requirement interdependencies.
Predictive models are created through combining input metric sets with machine learners. Success of models in predicting
requirement changes, the best performing input metric combinations, the best performing machine learners and success of
models in predicting highly-volatile requirements are evaluated in this study. The best prediction results are obtained with
the model employing quality metrics, project specific metrics, network metrics altogether with k-nearest neighbour machine
learner (MMRE=0.366). Also the best model correctly identifies 63.2% of highly volatile requirements which are exposed to
80% of the total requirement changes. Our study results are encouraging in terms of creating requirement change prediction
tools to prevent requirement volatility risks prior to the requirement review process.
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1. Introduction
Although software engineering has experienced signifi-
cant advancements in the last decades, majority of the
large-scale software projects still try to cope with re-
quirement changes during their software development
life cycle due to dynamic nature of software develop-
ment activities [1]. Changes for requirements namely
additions, deletions or modifications are defined as re-
quirements volatility [2]. Continual requirement changes
during software development have tremendous impact
on the cost, the schedule and the quality of the final
product. Unfortunately, significant number of software
projects cannot be completed successfully or completed
partially because of requirements’ high volatility [2].

According to a survey conducted by Thakurta [3],
project managers use various requirement volatility mea-
sures: number of changes to the identified use cases,
number of changing requirements identified within the
issued change requests, realized requirements out of total
requirements, and amount of budget the project had to
spent on the changing requirements. Alsalemi et al. [4]
also report a literature review on requirements volatility
prediction. Accordingly, ten studies have employed ma-
chine learning methods to predict requirements volatil-
ity until 2017. These studies utilize different require-
ment volatility measures such as number of requirement
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changes [5], requirement stability index of the project [6],
requirements that will be changed in next iteration [7],
requirement change impact [8], the impact of require-
ments changes on project distribution and cost factor
[9], software schedule [10]. Related studies also propose
requirements complexity metrics [6], requirement de-
pendency metrics [8], requirement size metrics [5] and
requirements evolution metrics [7] to predict their own
definition of requirement volatility measure.

In our study we aim to predict number of changes
per software requirement by using requirement quality
measures, project specific factors and requirement in-
terdependencies. We define requirement volatility as
the number of change requests reported for a software
requirement. This change request could be either for
adding a new requirement or modifying an existing re-
quirement. We chose a safety-critical avionics software
project in ASELSAN with more than 20,000 requirements
for our study. Loconsole et al. [5] conducted a similar
study to predict number of requirement changes using
size measures on projects with less than 50 requirements.
Our study complements the prior work bymining a larger
dataset with thousands of requirements and a more com-
prehensive metric set considering quality and interdepen-
dency aspects of requirements as well as project specific
factors. It should be noted that the change requests that
we study in this work occured in any phase of software
development after Software Requirements Specification
(SRS) document has been reviewed and confirmed. Thus
we investigate post-SRS requirements volatility for the
avionics project under study.

The rest of paper is organized as follows. Section 2
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presents related empirical studies carried on for require-
ment volatility prediction. Section 3 explains study de-
sign model in detail. Results and Threats to Validity
of our work discussed in Section 4. Section 5 presents
conclusion and points out possible directions for future
work.

2. Related Work
In this section we present previous studies that aim to
predict volatility for requirements, and we focus on the
input metrics they employed. We report details of five
relevant studies [11, 6, 7, 8, 5] from the literature review
conducted by Alsalemi et al. [4]. We also discuss the
approaches of other recently published, related studies
[12, 13] in this section.

Nakatani et al. [11] propose a method to predict re-
quirement volatility using social relations between execu-
tives, competitors, cooperative organizations, and the nat-
ural environment. Those measures can be applied to cus-
tomer requirements easily but it would take some effort
to associate them with software requirements. Christo-
pher et al. [6] present requirements complexity metrics
to define volatility. Functional requirement complex-
ity, non-functional requirement complexity, input-output
complexity, interface and file complexity measures are
used to calculate whole project’s stability, whereas we
seek to predict requirement volatility for each software
requirement. Shi et al. [7] present a model to predict fu-
ture requirement changes by using previous requirement
change metrics. They generated six history metrics for
requirements that contain information about volatility of
topic, frequency of changes and time duration between
changes. History metrics can be used to predict require-
ments that will be changed in next iteration, but has little
use in predicting requirements volatility for new projects.
Pedrycz et al. [13] also employ the following change logs
as input metrics: created version of requirement, last de-
veloper, number of modifications, requirement lifetime
duration. Change logs are created on later phases of soft-
ware development thus they are again not very useful
to predict requirements volatility for projects in earlier
development phases. Goknil et al. [8] and Hein et al. [12]
use requirements interrelations for volatility prediction.
Goknil et al. [8] utilize formal semantics of requirement
relations as input features, whereas Hein et al. [12] create
network metrics by using syntactical natural language
data. We have combined both measures and created
network metrics by using links between system and soft-
ware requirements instead of lingual relations between
requirement texts. Regarding network metrics we em-
ploy degree centrality, eigenvector centrality, closeness
centrality and betweenness centrality metrics, whereas
Hein et al. [12] used 40 network metrics.

According to the literature review, only one study con-
ducted by Loconsole et al. [5] present an empirical study
to predict number of changes per requirement, so this
study is the most relevant to our work. Following size
measures are used to predict number of requirement
changes: number of actors interacting with use cases,
number of words in each file, number of revisions of files,
number of lines per file. In our study, size measures are
also used to represent requirement quality but we also
enriched our metric set with project specific metrics and
network metrics. It should be noted that we do not take
deletion requests and deleted requirements into consider-
ation while defining requirements volatility, because in
our industrial context we rarely encounter such requests
for the safety-critical software. Finally, we applied our
model on more than 20,000 requirements that help us
assess the generalizability of our findings on predicting
volatility on every software requirement using different
metrics sets.

3. Study Design
In this section we explain our empirical study design in
detail. In Section 3.1 research questions are explained.
The analyzed project for which a model would be pro-
posed is described in Section 3.2. In Section 3.3 selected
input metrics for requirement volatility prediction are de-
scribed. Section 3.4 describes the output measure of the
prediction model. The used tools are explained in Section
3.5. Machine learning techniques employed in this study
are presented in Section 3.6. Finally in 3.7, performance
evaluation measures are defined for our model.

3.1. Research Questions
Our main goal is to predict requirements volatility at
earlier stages of development lifecycle, and accordingly
two research questions are defined.

Research Question(RQ) 1: To what extent do re-
quirement quality metrics, project specific metrics and
network metrics predict the volatility of a software re-
quirement?

Previous studies used different metric sets to predict
requirements volatility. In this study we aim to use a
comprehensive set of input metrics, and observe their
individual effects on requirement volatility prediction.
While predicting the volatility, we use the number of
change (addition and modification) requests on a soft-
ware requirement. Being inspired by the metric sets used
in the literature, we form a group of requirement qual-
ity metrics and network metrics. Additionally, project
specific metrics for this particular safety-critical avionics
project are defined and utilized throughout this study.
During model assessment, the performance of each in-
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Table 1
Release based AVPRJ statistics

Release Number
of REQs

Mean CR
per REQ

Median CR
Per REQ

Release 1 8,640 0.7457 1
Release 2 11,401 1.1165 1
Release 3 2,730 0.5267 0
Total 22,771 0.9051 1

put metric set and the combination of those are reported.
Detailed sub-questions related to RQ 1 are also listed
below:

RQ 1.1: Which metric group is a better indicator of
the number of requirement changes?

RQ 1.2: Which machine learning algorithm is better
at predicting the number of requirement changes?

RQ 2: How successful are the proposed models in
predicting highly volatile software requirements?

Software requirements have a history of varying num-
ber of changes during software development life cycle.
Some requirements do not change at all; however, some
requirements expose to multiple changes and pose risks
to a software project. Practically, our model should pre-
dict highly volatile requirements, so those requirements
will be reviewed by experienced reviewers in detail. For
this research question (RQ 2) we measure the success of
our models on highly volatile requirements based on a
technique in [14].

3.2. Analyzed Project
We chose a safety-critical avionics software project to
perform our analysis. We will refer to this project with
AVPRJ in the rest of this paper. AVPRJ has many releases
from which three releases are selected. Software require-
ments for those releases are related since they all belong
to the same project; however they are partially distinct
since each release consists of implementation of different
software components developed by many software devel-
opers. AVPRJ has a total of 22,771 software requirements.
Some release based descriptive statistic for AVPRJ are
given in Table 1. CR is used as an abbreviation for change
request, REQ is used as an abbreviation for a single re-
quirement. Most of the employed requirements belong to
second release and this release has highest mean change
request per software requirement value. Third release
has relatively fewer software requirements and less addi-
tion or modification is performed on requirements belong
to this release. More than half of the requirements are
modified at least once for this project; 9,848 out of 22,771
requirements are not changed which complies with Stan-
dish Group’s survey results overmore than 8,000 software
projects [15].

3.3. Input Metrics
We have employed several metrics to predict the volatil-
ity of each software requirement in AVPRJ. The metrics
represent three dimensions: requirement quality metrics,
project specific metrics and requirement network met-
rics. Requirement quality metrics extracted by NASA
Automated Requirements Measurement(ARM) tool have
been used to predict faulty modules previously [16]. Ini-
tially, we believed the way requirements are documented
will affect requirements volatility besides fault proneness
of modules. Some requirement quality size metrics are
already utilized in predicting requirements volatility [5],
therefore we decided to include requirement quality met-
ric set in our study. Network metrics are employed to
predict requirement change volatility in a recent study
[12]. This sparked the idea of utilizing network metrics
for requirements volatility prediction. Initial observation
of various change request notes confirmed that software
requirements that are changed within a particular change
request have a tendency to be linked to similar system re-
quirements. Accordingly, we employed network metrics
created by traceability information. In order to enrich
input metric set with a new metric group we focused on
safety-critical avionics project characteristics under this
study. Features are evaluated separately and the ones
would provide information on requirements volatility are
selected as project specific metrics. Rationales of project
specific metric selection are given in detail in subsection
3.3.2. Detailed explanations for each group are given in
the following subsections.

3.3.1. Quality Metrics

While selecting requirement quality metrics to predict
volatility, we have inspired by two studies. The first study
propose requirement metrics in the context of NASA
Metrics Data Program(MDP) to predict software faults
[16]. These metrics are calculated by automatically go-
ing through requirements documents to highlight vague,
ambiguous, long, complex requirements. The second
study also reports requirement quality metrics [17] to
find out which requirement quality analyze tool is more
successful regarding measurement of those metrics.

Combining both studies’ list and customizing that to
the requirements document templates in our industrial
context, we present 20 quality metrics in Table 2. All of
these metrics take numeric values, e.g. number of flow
sentences in a requirement, number of directives in a
requirement.

During the preprocessing, stage, we had to remove
three metrics from our analysis since they gave little to
no information for AVPRJ: Conditional, Rationale and
Subjective. Only one requirement contains conditional
expressions, three requirements contain rationale expres-
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Table 2
Requirement Quality Metrics

Acronyms The number of abbreviations in a software requirement. For AVPRJ permitted acronym
list is used to extract this metric.

Actions The number of actions to be performed if conditions of a software requirement are
satisfied.

Ambiguity The number of ambiguous expressions in a software requirement, e.g. adequate,
sufficiently, optimal, slow.

Chars between punctuation Average character count between punctuation marks. Long sentences without punc-
tuation marks decrease readability.

Conditions The number of conditions need to be satisfied to perform a software requirement.
Conditional The number of phrases that give the developers freedom to whether or not to imple-

ment a software requirement, e.g. maybe, can’t, would.
Connectors The number of connectors that are employed to link multiple sentences or group of

words, e.g. and, or, as well as.
Directives The number of directive expressions to refer a table, a note, a figure or an example.
Flow sentences The number of expressions that semantically bond a sentence to another one, e.g.

although, but, else.
Imperatives The number of phrases that command to perform particular actions in a software

requirement, e.g. shall, must, will.
Implicitness The number of pronouns that make the software requirement difficult to understand,

e.g. this, that, it. A software requirement should be defined explicitly.
Incompleteness The number of expressions that indicate a software requirement is yet incomplete, e.g.

and so on, tbd, etc.
In links The number of incoming links to a software requirement from other documents. For

AVPRJ test cases are linked to software requirements, so the number of in links refer
to the number of linked test cases.

Negative Sentences The number of phrases that give negative meaning, e.g. doesn’t, none, can’t.
Nested levels For AVPRJ nested level metric value is the greatest level in hierarchical nesting structure

of a software requirement.
Out links The number of out links of a software requirement. In AVPRJ software requirements

are linked to system requirements. Therefore the number of out links is the total
number of linked system requirements by a software requirement.

Rationale The number of expressions that give justification in a software requirement, e.g. thus,
in order to.

Speculative Sentences The number of speculative phrases which lead to question necessity of a software
requirement, e.g. normally, eventually, almost.

Subjectivity The number of subjective expressions presenting personal opinion rather than objec-
tivity e.g. I think, in my opinion.

Text length The total number of characters in a software requirement.

sions and none of the requirements have subjective ex-
pressions. Thus we ended up having 17 metrics repre-
senting the quality aspect of requirements for predicting
their volatility.

3.3.2. Project Specific Metrics

Project specific metrics may differ regarding the scope
of a software project, but the metrics we chose to use
are not so specific to the development environment, pro-
gramming language, or domain in which the software is
developed. We believe project specific metrics would pro-
vide information about development characteristics in an
organization, and hence the factors affecting the change
proneness of requirements. Table 3 list these project spe-

cific metrics employed in this study. If the project follows
an inspection activity on requirements, it is more likely
that the team would find the ambiguities and inconsis-
tencies on the requirements. Since derived requirements
are not part of customer needs, they cannot be validated
through user acceptance tests. If a requirement has a
safety aspect, more comprehensive software tests will be
performed, thus exposure of a potential change is highly
probable. Number of related components is a measure
of impact of a software requirement on general prod-
uct, thus more feedback will be given to requirements
affecting many components by development team. Each
software release has different dynamics that affect re-
quirements maturity e.g. release schedule, experience of
developers, complexity of system. For example if sched-
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Table 3
Project Specific Metrics

Inspection Indicates if a software requirement is
evaluated through an inspection activ-
ity. This procedure might be preferred
to complement functional tests.

Derived Software requirements that are not ex-
plicitly stated in system requirements
but derived based on design decisions
[18].

Safety Shows if a software requirement is
safety critical.

No. of Re-
lated Com-
ponents

Number of isolated software compo-
nents that a requirement is related.

Release
Number

Release number that the software re-
quirement belongs to.

Table 4
Network Metrics

Degree cen-
trality

Gives score to requirements based
on the number of links.

Betweenness
centrality

Measures howmany times a require-
ment is on the shortest path in the
graph.

Closeness
centrality

Indicates how close a requirement
to other requirements considering
the whole graph.

Eigenvector
centrality

Measures how a node influences
other nodes in network through con-
nections.

ule is too tight to complete SRS document, requirements
could be immature and more requirements changes could
be performed in the future for this release.

3.3.3. Network Metrics

Hein et al. [12] earlier utilized 40 network metrics to pre-
dict requirements change volatility. On the other hand,
Valente et al. [19] present correlations between degree,
betweenness, closeness, eigenvector centrality measures,
and indicate that those measures are distinct but notion-
ally related. Thus in this work instead of employing 40
metrics, we chose the metrics suggested in [19] to pre-
dict requirements volatility for AVPRJ. These centrality
metrics give each software requirement a value regard-
ing their position in network. Brief explanations of the
employed network metrics are given in Table 4.

Hein et al. [12] used language processing to create
network for requirements. In this study instead we used
traceability information to create network graph for soft-
ware requirements. Traceability links from software re-
quirements to system requirements are used for this pur-
pose. We assigned weights between software require-

ments regarding system requirement traceability links.
Software requirements which are derived from similar
system requirements are tend to be closer in our model.
Weight assignment formula is given below (Equation 1).
W is weight between software requirements, NCLINK
is the number of common system requirement links be-
tween two software requirements and NTOTLINK is the
total number of system requirements linked from those
two software requirements. After weight assignment,
a symmetrical 𝑛 × 𝑛 matrix is created where n denotes
the number of software requirements. Then the network
metrics are computed over this matrix.

𝑊𝑖𝑗 =
𝑁𝐶𝐿𝐼𝑁𝐾𝑖,𝑗

𝑁𝑇𝑂𝑇𝐿𝐼𝑁𝐾𝑖,𝑗
(1)

3.4. Model Output
Our proposed model output is the number of change re-
quests per software requirement. After the SRS document
is reviewed and completed for AVPRJ, change requests
linked to each software requirement are reported in the
issue management system, and the document is modified
accordingly by the analysis team. Thus we define require-
ments volatility in our industrial context with respect
to number of change requests that have been applied
to add a new requirement or to modify an existing re-
quirement in the associated SRS document. Please note
that our model outputs decimal values, but number of
change request per requirement in practice can only get
integer values. Therefore we round fractional parts to
the nearest integer.

3.5. Tools
We wrote scripts to extract requirement quality and
project specific metrics from SRS documents. Later,
UCINET tool [20] is used to create network metrics from
the matrix that we extracted based on software and sys-
tem requirements. Regression models with different ma-
chine learners are trained using WEKA tool [21]. Pre-
diction results are further post-processed in MATLAB to
obtain the performance measures regarding all RQs.

3.6. Machine Learning Techniques
We train models using linear regression, random for-
est regression, support vector regression and k-nearest
neighbor regression methods. Linear regression was uti-
lized in [5], whereas classifier version of the other three
techniques were used in [12].

For k-nearest neighbor regression, inversely propor-
tional weighting option is selected. Higher weights are
assigned to closer training samples which resulted in bet-
ter prediction results for our model. For support vector

55



regression commonly used radial basis function kernel
is selected. Increasing gamma parameter too much may
result in over-fitting [22] and we also experienced a great
computational cost with little to no prediction success
gain for large gamma. Thus C and gamma parameters
are assigned as 1.

In this study 10-fold cross validation technique is used
to split training and test sets. Firstly, the dataset contain-
ing all software requirements is shuffled randomly and
split into 10 groups of approximately equal size. One
group is labeled as a test set and other groups are used
to train machine learning models. This procedure is re-
peated 10 times until each unique group is used as test
set once.

3.7. Performance Evaluation
For RQ 1, the following measures are used for perfor-
mance evaluation: Mean Magnitude of Relative Error
(MMRE), Median Magnitude of Relative Error (MdMRE),
Pred(0.5) and Pred(0.25) [23]. Relative error is calculated
according to Equation 2. 𝐸𝑟𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 is relative error, 𝑉 𝑎𝑙𝑎𝑐𝑡
is the actual value, whereas 𝑉 𝑎𝑙𝑝𝑟𝑒𝑑 is the predicted value.

𝐸𝑟𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
|𝑉 𝑎𝑙𝑎𝑐𝑡 − 𝑉𝑎𝑙𝑝𝑟𝑒𝑑|

|𝑉 𝑎𝑙𝑎𝑐𝑡|
(2)

There are requirements with zero change requests.
Thus division by zero problem arises while calculating
relative error. We made an assumption for unchanged
requirements as presented in Equation 3.

If 𝑉 𝑎𝑙𝑎𝑐𝑡 = 0 𝐸𝑟𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
|𝑉 𝑎𝑙𝑎𝑐𝑡 − 𝑉𝑎𝑙𝑝𝑟𝑒𝑑|

1
(3)

Pred(k) is a measure of variance of the error distribu-
tion. This measure is based on relative error and it shows
the percentage of predictions whose errors are less than
or equal to k.

For RQ2, we aim to predict highly volatile require-
ments, and thus, we first employ a method to identify
those among the set of requirements:

• Step 1: Rank requirements by their actual number
of change requests in descending order and record
their rank as 𝑅𝑎𝑐𝑡𝑢𝑎𝑙.

• Step 2: Obtain regression prediction results for
each software requirement.

• Step 3: Rank requirements by their predicted
number of change requests in descending order
and record their rank as 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑.

• Step 4: Evaluate results according to the listing
in Table 5. P denotes percentage of requirements
which are perceived as highly volatile, and 𝑁𝑟𝑒𝑞
denotes total number of requirements in valida-
tion set.

Table 5
Requirements volatility rank results evaluation

Condition Evaluation

𝑅𝑎𝑐𝑡𝑢𝑎𝑙,𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≤ 𝑁𝑟𝑒𝑞 × 𝑃 True Positive
𝑅𝑎𝑐𝑡𝑢𝑎𝑙,𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 > 𝑁𝑟𝑒𝑞 × 𝑃 True Negative
𝑅𝑎𝑐𝑡𝑢𝑎𝑙 ≤ 𝑁𝑟𝑒𝑞 × 𝑃, 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 > 𝑁𝑟𝑒𝑞 × 𝑃 False Negative
𝑅𝑎𝑐𝑡𝑢𝑎𝑙 > 𝑁𝑟𝑒𝑞 × 𝑃, 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≤ 𝑁𝑟𝑒𝑞 × 𝑃 False Positive

• Step 5: Calculate recall, accuracy and false alarm
rate.

Table 5 can be interpreted as follows: True Positive in-
stances are requirements that are actually highly volatile
and the model also categorizes those as highly volatile.
In the case of True Negatives, a requirement is actually
less volatile, so is its prediction. False Negatives occur
when highly volatile requirements are regarded as less
volatile by the predictor. Finally, False Positives indicate
less volatile requirements predicted as highly volatile.

To answer RQ2, recall, accuracy and false alarm rate
measures are computed. Recall result shows how suc-
cessful model in predicting highly volatile requirements.
According to us this measure is the most important one
regarding RQ2. Accuracy measure shows the prediction
success for both highly volatile and less volatile require-
ments. False alarm rate presents how much effort has
put in vain by mis-evaluating less volatile requirements.

4. Results and Discussion
We present and discuss the performance of the models
with respect to two RQs in this section. We also compare
the performance of the prediction models proposed in
this study with the prior work [5] .

4.1. RQ 1
After obtaining processed data, machine learning regres-
sion methods are applied to answer the question if re-
quirement quality metrics, network metrics, project spe-
cific metrics can be used to predict the number of changes
on each software requirement by employing machine
learning methods. Model performance results are gath-
ered for all input metric and machine learning method
combinations separately.

Results for RQ 1 is given in Table 6. The following
abbreviations are used: ML for machine learning, Q for
requirement quality metrics, P for project specific met-
rics, N for network metrics, KNN for k-nearest neighbor
regression, LR for linear regression, RF for random forest
regression and SVR for support vector regression.

In terms of input metric combinations, the best MMRE
results are achieved with Q&P&N(0.366), Q&N(0.381) and
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Table 6
Performance evaluation results for RQ 1

Metrics+ML
method

MMRE MdMREPred(0.5) Pred(0.25)

Q&P&N+KNN 0.366 0 0.681 0.57
Q&P&N+LR 0.53 0.5 0.524 0.411
Q&P&N+RF 0.392 0 0.663 0.545
Q&P&N+SVR 0.392 0 0.662 0.554
Q&P+KNN 0.402 0 0.641 0.529
Q&P+LR 0.513 0.5 0.541 0.428
Q&P+RF 0.45 0.333 0.6 0.486
Q&P+SVR 0.459 0.5 0.584 0.479
P&N+KNN 0.422 0 0.632 0.52
P&N+LR 0.55 0.667 0.484 0.372
P&N+RF 0.454 0.5 0.595 0.48
P&N+SVR 0.469 0.5 0.561 0.475
Q&N+KNN 0.381 0 0.665 0.553
Q&N+LR 0.534 0.5 0.52 0.407
Q&N+RF 0.394 0 0.662 0.545
Q&N+SVR 0.426 0 0.621 0.515
Q+KNN 0.443 0.333 0.598 0.488
Q+LR 0.512 0.5 0.542 0.43
Q+RF 0.455 0.5 0.594 0.483
Q+SVR 0.483 0.5 0.556 0.446
P+KNN 0.555 0.667 0.483 0.37
P+LR 0.548 0.667 0.485 0.373
P+RF 0.556 0.667 0.483 0.371
P+SVR 0.516 0.5 0.512 0.417
N+KNN 0.448 0.5 0.596 0.482
N+LR 0.549 0.667 0.484 0.372
N+RF 0.485 0.5 0.561 0.446
N+SVR 0.53 0.5 0.5 0.392

Table 7
Comparison of our performance (RQ 1) against [5]

MMRE MdMREPred(0.25) Pred(0.5)

Q+LR 0.51 0.5 0.43 0.54
Best model 0.36 0 0.57 0.68
NLines+LR [5] 0.58 0.27 0.5 0.63

Q&P(0.402). We may interpret that requirement quality
metrics (Q) are successful at predicting number of change
requests per software requirement, and its combinations
with the other metrics also give good results. With re-
spect to the machine learning algorithm, the three best
performing metric combinations give the highest predic-
tion performance when k-nearest neighbor algorithm is
utilized.

MdMRE is zero for the following metric and ma-
chine learner combinations: Q&P&N+KNN, Q&P&N+RF,
Q&P&N+SVR, Q&P+KNN, P&N+KNN, Q&N+KNN,
Q&N+RF and Q&N+SVR. Number of change requests
for more than half of the software requirements are pre-
dicted correctly with these models. Since many predic-

tion models give the same best result, we do not rank the
best performing models with regard to MdMRE.

The best performance with respect to Pred(0.25) and
Pred(0.5) are obtained with Q&P&N+KNN. Q&N+KNN
and Q&P+KNN report the second and third best results.
Those results indicate that requirement quality metrics
and k-nearest neighbor algorithm are also successful with
respect to Pred measures.

To sum up, best performance results are achieved by us-
ing requirement quality metrics, project specific metrics
and network metrics altogether. Accordingly, K-nearest
neighbor algorithm gives best performance results for
all measures. In all best performing models, quality met-
rics are utilized either as a pair with project or network
metrics or as combination of all three. It seems the way
requirements are documented has a high effect on the
volatility rates.

We compared our findings against the study conducted
by Loconsole et al. [5]. Table 7 reports the performance
of linear regression model with the best metric set in our
study, our best performing model and the best perform-
ing model of [5]. If we compare the findings only on LR,
we observe that using number of lines predicts volatility
better on their commercial setting, while in our context
using quality metrics only does not give the best result.
Other algorithms like KNN in combination with all met-
rics significantly improve the prediction performance by
reducing MMRE down to 0.36 and MdMRE down to 0,
and increasing Pred(0.25) up to 57%.

4.2. RQ 2
RQ 2 aims to measure the success of our model in predict-
ing highly volatile requirements. We present our tech-
nique to identify highly volatile requirements in Section
3.7. We first need to determine change request cover-
age to categorize highly-volatile requirements, and later
calculate recall, accuracy and false alarm rates. Rates
for various change request coverage by most volatile
requirements are given in Table 8. As change request
coverage grows more requirements are labeled as highly
volatile. We chose 80% change request coverage since
approximately 40% percent of reviewers are considered
as well-experienced in AVPRJ. Therefore by applying
this model we could assign review task of 38.6% of total
requirements, which are possibly highly volatile, to ex-
perienced developers in early phase of development. We
did not present other coverage results in this study due
to page limitation.

In Table 9 the best recall results are achieved
with Q&P&N+KNN(0.632), Q&N+RF(0.616) and
Q&P+KNN(0.604). Again, all best performing models
have requirement quality metrics in common, whereas
the best combination consists of all metrics. The best
accuracy results are obtained from Q&P&N+KNN(0.716),
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Table 8
Change request and requirement coverage relation for AVPRJ

CR Coverage Percent REQ Coverage

60% 20.5%
70% 29.6%
80% 38.6%
90% 47.7%

Table 9
Performance results of RQ 2 model for 80% CR coverage

Metrics+ML
method

Re-
call

Accu-
racy

False Alarm
Rate

Q&P&N+KNN 0.632 0.716 0.232
Q&P&N+LR 0.531 0.638 0.295
Q&P&N+RF 0.624 0.71 0.237
Q&P&N+SVR 0.591 0.684 0.258
Q&P+KNN 0.604 0.694 0.249
Q&P+LR 0.508 0.62 0.31
Q&P+RF 0.602 0.692 0.251
Q&P+SVR 0.558 0.658 0.278
P&N+KNN 0.574 0.671 0.268
P&N+LR 0.418 0.55 0.366
P&N+RF 0.557 0.658 0.279
P&N+SVR 0.496 0.61 0.318
Q&N+KNN 0.614 0.702 0.243
Q&N+LR 0.53 0.637 0.296
Q&N+RF 0.616 0.703 0.242
Q&N+SVR 0.569 0.667 0.271
Q+KNN 0.586 0.68 0.261
Q+LR 0.508 0.62 0.31
Q+RF 0.582 0.677 0.263
Q+SVR 0.529 0.636 0.296
P+KNN 0.503 0.616 0.313
P+LR 0.423 0.554 0.363
P+RF 0.496 0.611 0.317
P+SVR 0.462 0.584 0.339
N+KNN 0.557 0.657 0.279
N+LR 0.404 0.539 0.376
N+RF 0.565 0.664 0.274
N+SVR 0.498 0.612 0.316

Q&N+RF(0.703) and Q&P+KNN(0.694). The lowest false
alarm rate results are achieved by Q&P&N+KNN(0.232),
Q&N+RF(0.242) and Q&P+KNN(0.249). K-nearest
neighbor and random forest regression methods are
successful in predicting highly volatile requirements for
80% change request coverage.

The most important measure for RQ 2 is recall since
the purpose of this question is to measure success on
predicting highly volatile requirements. We correctly
identify 63.2% of highly volatile requirements which are
exposed to 80% of the total requirement changes.

4.3. Threats to Validity
Internal validity: In this study we present require-
ments volatility in a software project can be predicted to
some extent utilizing requirement qualitymetrics, project
specific factors and networkmetrics altogether. However,
this does not imply causal relationship between input
and output metrics since we did not conduct a controlled
experiment.

External validity: We have conducted the case study
on one project, so results have local validity. However,
the dataset is quite large with more than 20,000 require-
ments from three distinct releases developed by many
software developers. Nonetheless, applying the predic-
tive models on different projects in the future would be
better in terms of generalization of results.

Construct validity: Developers did not use their na-
tive language in software requirements. Thus there could
be some typos which may affect textual requirement qual-
ity metrics. Also there could be some expressions used by
developers in software requirements, e.g. subjective ex-
pressions that should have taken into consideration while
creating requirement quality metrics but we missed. Due
to the size of dataset we couldn’t manually check these
kinds of typos and grammatical errors, but we know that
reviewers are responsible for correcting those. We create
network graphs based on traceability links between soft-
ware and system requirements as indicated in the SRS.
We could have use linguistic data to connect software
requirements as previous study [12] and it may reflect
relationship between requirements in a better way. We
plan to do it as a future work.

Conclusion validity: For RQ 2 only the results of 80%
change request coverage are presented due to page limi-
tation. Regarding the results of other CR coverage, we
observe higher recall and accuracy whereas false alarm
rate grows undesirably as the coverage grows. Therefore
RQ 2 results would differ in that way if we had chosen
other CR coverage rate.

5. Conclusion and Future Work
In this paper, we have carried out an empirical study
to predict number of changes per software requirement
by using requirement quality measures, project specific
factors and requirement interdependencies. 22,771 soft-
ware requirements from a safety-critical software project
in ASELSAN are utilized to build 28 prediction models
and assess the best performing metric suite and algo-
rithm. We conclude that we can predict volatility of
requirements with an average MMRE of 36% by observ-
ing metrics of similar requirements through KNN. We
also observe that measuring requirements from different
aspects like quality, project and network dependencies
gives a much better performance. We plan to integrate
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such a predictor model into requirement management
tools like DOORS to be used prior to the SRS review
activity so that highly-volatile requirements could be au-
tomatically and accurately identified. This way, software
development leads could take precautions beforehand to
reduce requirements volatility related risks. Since there
is not enough empirical studies conducted in related area,
more empirical research should be carried out to validate
the best performing models.
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