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Abstract  
Combinatorial Testing (CT) strategy is one of the well-known methods to achieve high code 
coverage rates during testing for safety critical systems. While generating test data in CT, we 
often encounter the problem of test case explosion, especially for the systems with multiple 
parameters and values. To overcome this challenge, search-based CT (CSST) strategies are 
introduced. In this study, we propose a new algorithm that inspires from a binary variant of 
Black Hole Algorithm (BBH) in CSST and adopt BBH according to the CT challenges in an 
industrial context. The proposed BBH version, BH-AllStar, aims the following: (1) obtaining 
higher condition coverage, (2) avoiding being stuck in local minima and (3) handling discrete 
input values. We finalize the solution space of BH-AllStar by reassessing the previously 
removed stars and incorporating the useful ones into it. We evaluate our approach on a real-life 
software project in the safety-critical domain with respect to condition coverage, number of test 
cases and execution time. Compared to BBH, BH-AllStar generates more test cases which 
achieve up to 43% increase in condition coverage.  
 
Keywords  1 
Combinatorial Search-based Software Testing (CSST), Test Data Generation, Meta-heuristic  
  

1. Introduction 

The complexity and the criticality of the safety 
critical systems in the defense industry are 
growing [1, 2], hence, these systems require more 
thorough and efficient testing technologies, such 
as test automation and regression test 
selection/prioritization [3] and continuous 
integration. The software testing field in the 
defense industry needs to develop more efficient 
and qualified techniques to meet security-critical 
requirements. [1]. For instance, various test 
techniques such as Boundry-Value Analysis and 
Equivalence Partitioning are used to meet the DO-
178 Standard to ensure safety-critical 
requirements, which has been imposed by the U.S. 
Federal Aviation Administration (FAA). [4, 5]. 
To assess the effectiveness of these methods, 
different coverage criteria are employed [6]. 
During functional testing, Combinatorial Testing 
(CT) methods are widely utilized especially for 
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software systems in which there exist many 
parameters and conditions that take a combination 
of multiple input values [7, 8]. CT method such as 
t-way testing executes the software using test 
cases with the interaction of the possible input 
values [9]. The radar software in our industrial 
context, for instance, takes 12 input parameters 
each takes two to six values. If we would like to 
test this software with full input coverage, we 
would end up executing 63.34.24.5=1,399,680 
test cases. This is an impossible goal to reach, and 
instead in practice, we follow t-way testing with 
the IPOG strategy [10]: select the t value as high 
as possible with the cost of increasing the number 
of test cases. The current limitation of the 
employed t-way testing in our industrial setting is 
the lack of relationship between the selected test 
cases and their code coverage, because the 
strategy of selecting the test inputs is not 
dependent on the covered branches/conditions of 
the software system.  
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To address this challenge, combinatorial 
search-based software testing (CSST) approaches 
are suitable [11]. One of the studies by Al-
Sammarraie and Jawawi [9] inspired our work. 
The authors propose three new approaches 
namely Binary Black Hole (BBH), Multiple Black 
Hole (MBH) and Binary Multiple Black Hole 
(BMBH) based on the Black Hole Algorithm 
(BHA), which is first introduced in [12] as an 
alternative to Particle Swarm Optimization 
(PSO). Their aim was generating test inputs with 
respect to the number of test cases and code 
coverage. The authors also aim to avoid being 
stuck in local minima and they propose a novel 
energy mechanism for MBH that helps to choose 
useful black hole populations only. The results 
show that MBH outperforms PSO and BHA in 
terms of the number of test cases, consistency and 
high coverage rates.  

We share the same goal with [9] of generating 
test data using a search-based meta-heuristic, 
which avoids local minima and achieves higher 
coverage than BBH. The approach in [9] could be 
well fitted in our industrial problem because of 
two main motivations: (1) their problem domain 
and data set are similar to our project, i.e., radar 
software, (2) they innovatively apply BHA, which 
is originally a clustering algorithm, to generate 
test data for functional testing. However, 
considering the scale of our radar software under 
test, BBH approach does not fully address our 
challenge. More specifically, BBH concentrates 
on generating minimum number of test cases 
rather than increasing the coverage criteria. Due 
to this, it lacks assessing the generated stars 
except the black hole in terms of their coverage. 
The term star here corresponds to the test case 
(e.g., [3, 5, 7] is an input set, also a test case and 
named as ‘star’), as depicted in Table 2. This in 
turn eliminates some of the useful stars during the 
operations of BBH. In this study, we propose a 
new algorithm called BH-AllStar by modifying 
several strategies in BBH, such as elimination 
mechanism based on distance between stars, 
moving stars in discrete space, and selecting the 
best black hole population from the history. Our 
new approach generates relatively more test cases 
with higher condition coverage than BBH, 
although we cover only 0.14% of 1,399,680 test 
cases in our industrial context. We assess the 
applicability of BBH in [9] and its new variant 
BH-AllStar in an industrial context with respect to 
the number of test cases, coverage rate and 
execution time.  

The remainder of this paper is organized as 
follows: Section 2 presents the related work. We 
report the details of our approach BH-AllStar and 
research methodology in Section 3. Section 4 
shows the results and discussion; Section 5 
explains the threats to validity. Finally, Section 6 
concludes this study with future directions. 

2. Related work 

Combinatorial Search-based Software Testing 
(CSST) is a testing method based on 
Combinatorial Testing (CT). CT aims at 
generating input vectors combining possible input 
values of all input parameters of the Software 
Under Test (SUT) [10]. The SUT can have n input 
parameters: ci (i = 1,2,3…n). Every parameter can 
take a set of values Vi where i can be from 1 to n. 
For example, V1 is the value set of c1 and contains 
m different values. (v1,v2,…,vm ). One test case is 
composed of a set of values from all Vi of all ci 
(e.g. vx ∈ V1, vy ∈ V2, vz ∈ V3) [10]. There are 
different methods to build all combinations of 
input parameters for CT such as t-way testing or 
randomization-based methods in the literature 
[13]. CSST is one of the search-based approaches 
to reduce the large solution space [9]. To find the 
optimum solution of a problem, especially for the 
problems, which contain very large sets of 
solutions and have computational constraints, 
meta-heuristic search techniques are commonly 
implemented [14]. These meta-heuristic search 
techniques are based on initially generated 
random solution space and narrowing down the 
search space based on the evaluation criteria. 

A recent systematic mapping study in [14] 
highlights 260 relevant studies in CSST, and 
narrows down to 42 primary studies to investigate 
the proposed approaches and their test case 
generation accuracy. The authors summarize 
well-known meta-heuristic search techniques as 
follows: Genetic Algorithm (GA), Particle Swarm 
Optimization Algorithm (PSO), Simulated 
Annealing Algorithm (SA), and Ant Colony 
Optimization (ACO). Their mapping strategies 
show that GA is the most popularly applied 
technique, whereas some combine multiple 
algorithms such as GA and SA. They conclude 
that the primary studies provide benefits in terms 
of code coverage and execution time. 

In Table 1, we list a sample of studies obtained 
from [14] that we examine in terms of the 
approach, dataset on which the approaches are 
evaluated, and the fitness criteria. Among the 

71



studies, we selected eight studies targeting a 
similar objective to our industry problem, and 
varying in terms of fitness functions and datasets. 
The studies [15-19] utilize nature inspired 
optimization methods for CSST, whereas [9, 12, 
20] use a heuristic based on black hole 
phenomenon. All studies in Table 1 show that the 
improved versions of nature inspired optimization 
methods outperform original methods with 
respect to code coverage or execution time. All 
the prior studies validate the success of their 
proposed approach on simple functions like the 
source code that calculates the greatest common 
divisor or checking the validity of the date, etc. 
Unfortunately these projects are not 
representative of real programs, and achieving 
high coverage is relatively easier with few test 
cases. Except one study [15], all studies focus on 
branch coverage as one of their evaluation criteria, 
although in practice wıth more complex 
algorithms, multiple conditions need to be taken 
into account with a condition converage criterion. 
Below, we give more description on our baseline 
algorithm BHA [12] and its application on test 
case generation [9]. 

 

Table 1 
Summary of studies in the literature 

Study  Baseline 
Method 

Dataset/Project Fitness/Evaluation 
Criteria 

[15] ACO triangleType, gcd, 
calday, 
isValidDate, cal  

Branch coverage  

[16] SA unknown Condition coverage 
[19] PSO triangleType, gcd, 

calday, 
isValidDate, cal  

Branch coverage 

[17] GA triangle 
classification and 
nextDate  

Branch distance 

[18] SA triangle 
classification 

Branch Coverage, 
# of Detected 
Mutants/Defects 

[12] BHA Six-benchmark 
dataset from ML 
databases 

Distance between 
blackhole and the 
star 

[20] BHA Well-known 
mathematical 
functions 

[9] BHA pizza ordering, 
smart mobile, 
heart disease  

k number of test 
cases  

2.1. Black hole algorithm 

BHA has been first introduced in the study 
[12] as a new heuristic algorithm inspired by the 
black hole phenomenon. Based on Newton’s law, 
scientists invented a concept about the stars with 
high power and strong gravitational field [21]. 
They name this star as “black hole”. The reason of 

this name is that any object moving around this 
special star cannot escape and is absorbed into the 
black hole if the objects cross the Schwarzschild 
radius [21]. This special star is described with the 
adjective ‘black’ because light cannot be reflected 
and make this star invisible [21, 22]. With the 
inspiration of the nature of black holes, BHA is 
proposed for data clustering [12]. Fig.1 presents 
the pseudocode of BHA adopted from [9, 12]. 

 

  
Figure 1: BHA pseudocode adopted from [9, 12] 
 
According to the terminology used in [9], a 
population with random stars is initially 
generated, and a fitness value is calculated for 
every star in this population. The best star with the 
best fitness value is selected as the black hole. 
Later, all stars in the population are moved 
towards the black hole as described in Eq.1. The 
new location of the current star x(t+1) is 
calculated by multiplying a random number with 
the difference between the BH Star and the current 
star (BH-currentStar), and adding the result to the 
previous location x(t). The current star is moved 
closer to the BH Star as a result of this operation.  
Movement of the stars towards the black hole 
provides a grouping process and force all the other 
stars to converge to the best fitness value. If a star 
crosses the event horizon (R) of the black hole 
defined in Eq.2, it is destroyed, and a new random 
star is generated and added into the population. 
The R value is calculated as the ratio of the fitness 
value of BH Star and sum of the fitness function 
outcomes of all stars in the population. This step 
leads to adding various stars to the population and 
increases the probability of convergence to the 
desired solution.  

 x(t+1) = x(t) + rand x (BH-currentStar) (1) 

 R = 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)/∑ 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ) (2) 

The searching process stops if the stopping 
criterion is met. This criterion can be the 
maximum number of iterations or a sufficiently 
good fitness criterion [9, 12].  

Hatamlou conducted an experiment on the six-
benchmark dataset [12] and highlights two 
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advantages of BHA: (1) simple and easy to 
implement, (2) applicable to other problem 
domains, and (3) outperforming other clustering 
methods. The performance of BHA is later tested 
in [21] on mathematical functions to reach their 
minimum and maximum values. The authors in 
[21] compare BHA with GA and PSO, and report 
that BHA outperforms others and can be applied 
to other problem domains.  

2.2. The baseline study 

Based on the BHA proposed in [12], Al-
Sammarraie and Jawawi [9] propose three 
variations of BHA for test case generation: BBH, 
MBH and BMBH. Terms and function names 
used in the study [9] are described in Table 2. For 
the inputs that has discrete values like binary 
values (0,1), moveStars operation (Eq. 1) does not 
work because it causes a shift in the continuous 
domain due to the multiplication of the distance 
with a random value. To handle this issue, a 
binary variant of black hole is proposed. This 
approach generates a random value rd between 0 
and 1. This random value is compared against the 
constant value, pr (Eq. 3). If it is greater than rd, 
the new location of the star is going to be equal to 
that of black hole. Otherwise, new location of is 
equal to its own old value [9]. 

 
Table 2 
Terminology of BBH used in [9] 

Term Meaning 
Parameter x: can take values x1, x2, x3 

y: can take values y1, y2, y3. … 
Star [x1 y2 z3 t4] 
Population [star1, star2…starn] 
updateFitness() Calculate the coverage of every star in the 

population and determine the best star as the 
black hole. 

moveStars() Change location of stars towards the blackhole. 
updateRadius() Update the radius value of black hole. 
replace() Remove the current star and generate a new one. 
R Radius of the black hole (eq.2) 

 𝑥𝑥𝑥𝑥(𝑡𝑡 + 1) = �𝐵𝐵𝐵𝐵
(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑑𝑑 < 𝑝𝑝𝑝𝑝

 𝑥𝑥𝑖𝑖(𝑡𝑡) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (3) 

The authors reach consistent and high 
coverage by extending solution space with the 
help of multiple swarm approach called MBH [9]. 
The main idea in MBH is to generate more than 
one population and in turn, more than one black 
hole in a single iteration to avoid being stuck in 
local minima. At the end of the iterations, final list 
of populations become the solution space. The 
findings showed that their approach suffers from 

being stuck in local minima since there is no 
mutation operation. The authors point that the 
population initialization and moveStars 
operations could be improved.  

Our work complements the previous study [9] 
in several ways: (1)We propose a condition 
coverage-based elimination mechanism instead of 
a distance-based one to keep the test cases that 
likely contribute to total coverage. (2) We 
prioritize achieving higher coverage rates than 
restricting the number of test cases. (3) We 
propose two new approaches within BHA to 
assess all the generated stars and black holes and 
to extend the selected population without being 
stuck in local minima.  (4) We apply the BHA 
method to a real-life software system for test case 
generation.  

3. Our methodology 

The software under test in this study is part of 
a large-scale radar software developed for the 
defense industry. Due to its confidentiality 
constraints, we are not able to give the details of 
the algorithm or its pseudocode. We can briefly 
describe the complexity of our SUT: it takes 12 
input parameters with different possible values, 
and outputs an integer value. It contains two 
functions with 17 if and nested if statements with 
up to three levels, two for loops, two switch case 
statements and 72 branches in total. We built a 
technological setup, in order to conduct our 
analysis on BBH and its variants including BH-
AllStar. Our analysis starts by selecting the 
baseline algorithm as shown in Fig 2, namely 
BBH, to generate test cases, i.e., a black hole (BH) 
surrounded with stars, and our software is 
executed against this test case. Then the system 
collects the information of missed conditions 
using Jacoco testing tool. Iteratively, the 
condition coverage information is stored in a file, 
and used in the elimination decision mechanism. 
Based on the decisions, the algorithm generates 
new test cases (stars) and the cycle continues. The 
algorithm terminates after K (10-500) number of 
iterations. 

We modify several operations in [9] and 
propose our approach: BH-AllStar. We use 
initializePopulation() and updateFitness() 
methods as is, but modify moveStars(), and 
created a new star elimination criterion. We also 
propose two new methods to select the final 
population both of which will be described below. 
Our motivation is also determining the best BH in 
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reaching as high coverage rates as possible, and 
shaping the other stars around it without being 
stuck in local minima. During our analysis, we 
noticed that the distance criteria defined in [9] 
removes some stars although they contribute to 
the coverage ratio. It also prioritizes to keep the 
number of test cases as few as possible. Increasing 
the number of test cases is preferable for our 
industrial setting than having low coverage rates. 
Fig. 3 shows the pseudocode of our approach. Our 
contributions are presented in the below 
subsections. 

 
Figure 2: Our experiment setup 

 

 
Figure 3: Pseudocode of our proposed approach 

3.1. Condition coverage-based 
elimination mechanism 

We calculate condition coverage for each 
branch existing in our testing code. For example, 
an “if” statement with one condition, e.g. x<5, 
contains two branches, true or false, and the 
condition coverage for this branch can be 0, 50% 
or 100%. If an “if” statement has two conditions, 
e.g. x<5 && y>10, then it has 4 conditions (TT, 
TF, FT, FF). With the input set (x=3, y=11; x=3, 
y=9; x=6, y=9), the condition coverage for this 
branch is calculated as 75%. Only traditional 
branch coverage is not enough for our study since 
we need to cover all the conditions of each branch 
in our testing code. Therefore, we replace the 
distance based mechanism, which calculates to 
what extent the distance between current star and 
black hole exceeds the R value to decide whether 

to destroy the star or keep it alive, with our 
condition coverage based mechanism, as shown in 
Fig.3 described as isBestAtLeastOnOneBranch() 
and calculateBranchRatio() methods. With this 
condition coverage-based mechanism for all 
branches of our SUT, we give chance to the stars 
with lower coverage ratios then the BH Star to 
cover uncovered branches. We have two steps in 
our decision mechanism: 

isBestAtLeastOnOneBranch We control if the 
current star is the best among all stars in the 
population in terms of covering at least one more 
branch. This operation would keep an efficient 
star, even if it has a smaller coverage ratio 
compared to other stars. 

calculateBranchRatio We compare current star 
and black hole in terms of covering all branches 
one by one and calculate the ratio of the number 
of branches that current star covers better than 
black hole, and the number of branches that 
current star covers worse than black hole. We use 
here a coefficient=3 to multiply the number of 
better covered branches in order to give a star 
more chance (see Eq. 4). We have made several 
tests with different coefficients and chosen the 
value 3 as the optimum value for deciding the 
stars to be accepted or not. 

 #𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒∗3
#𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒

 (4) 

Fig. 4 illustrates a sample of stars: An 
eliminated star (purple), a previously eliminated 
but later revived star (yellow), and an always alive 
star (orange) with their coverage values in the 
timeline, when our proposed mechanism is 
applied. The total coverage significantly increases 
at the end of the iterations as we let a previously 
killed star (yellow) to be included into the final 
population. Eliminating a star (purple) also 
increase total coverage during 18th iteration.  

 
Figure 4: The x-axis is the number of iterations 
and the y-axis is condition coverage rate. 
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3.2. Moving Discretely 

In moveStars() operation, to shift the stars 
towards the black hole, we propose an index-
based method for discrete-valued parameters, 
similar to ‘Binary Variants’ in [9]. We store our 
input parameters in an array and we generate a 
random index value between the input value index 
of the current star and the BH. Then we move 
current star to this index and assign the value to 
the current star as the updated input parameter. 

3.3. Choosing the best population 
over history 

In keepPopulationWithMaxTotalCoverage(), 
we keep the population generated in all iterations 
of BBH including coverage rates and alive/dead 
states of each star. At the end of the iterations, we 
select the population that has the highest coverage 
ratio, not the last population according to BH. 

3.4. All Star operation 

In allStar() method, we compare all the stars 
between t0 and tend against the BH at tn, and add 
the best stars in terms of condition coverage into 
our final population. Although this causes an 
increase in the number of test cases, it also 
increases the coverage of the final population.  

The variants of BBH are as follows: (1) Best 
BBH (BBH*): We incorporate “Choosing Best 
Population from History” approach into BBH. (2) 
BBH with Condition Coverage (BBHCC): We 
use “Condition Coverage-Based Elimination 
Mechanism”. (3) Best BBH with Condition 
Coverage (BBHCC*): We add “Choosing Best 
Population over History” onto BBHCC. (4) BH-
AllStar: We add “AllStar Operation” onto 
BBHCC*. We assess all according to condition 
coverage of the population, number of test cases, 
and execution time.  

4. Results and discussion 

The results over different iterations and with 
variants of BBH, reported in Table 3, show that 
higher code coverage rates are obtained compared 
to BBH. For instance, with 500 iterations, 
coverage values are 69.4% in BBH, whereas 75% 
in BBH*, 70.8% in BBHCC, 73.6% in BBHCC* 
and 76.8% in BH-AllStar. We observe that same 

coverage rates can be achieved with fewer test 
cases but higher execution time for different 
number of iterations. The maximum code 
coverage rate is approximately 76% in iterations 
150 and 500 with BH-AllStar. Solution space 
consists of 190 test cases for 150 iterations and 
executes in 327 secs. However, for 500 iterations, 
only 19 test cases are used but execution time is 
815 secs. 

In addition, the baseline algorithm, BBH has a 
better coverage (72.2%) than our condition 
coverage based BBH approach (65.3%) for 300 
iterations. However, our additions help to increase 
the coverage from 65.3% to 75% in BH-AllStar. 
BBH* always reaches better coverage rates than 
BBH. When the coverage criterion is set as 
condition (BBHCC), we do not always see a better 
convergence than BBH. But choosing the best 
population and adding all the “good” stars 
eventually converge to much higher coverage 
ratios. Instead of defining multiple black hole as 
in [9], we stick to the single black hole 
phenomenon but we give a certain flexibility to 
the star selection and achieve a similar 
improvement like in [9]. We can confirm the prior 
finding that a black hole inspired meta-heuristic 
could be successful at generating test data for 
software systems with too many parameters. 

Table 3 
Performance of BBH Variants and BH-Allstar 

Iteration 
BBH BBH* 

BBH
CC 

BBH
CC* 

BH-
AllStar 

10
 Stars (#) 10 10 10 10 12 

Cov. (%) 51.4 70.8 68.1 72.2 73.6 
Time  19 19 22 22 22 

15
0 Stars (#) 10 10 10 10 190 

Cov. (%) 68.1 73.5 68.7 75 76.8 
Time 320 320 372 372 372 

30
0 Stars (#) 10 10 10 10 14 

Cov. (%) 72.2 75.0 65.3 73.6 75 
Time  460 460 476 476 476 

50
0 Stars (#) 10 10 10 10 19 

Cov. (%) 69.4 75 70.8 73.6 76.4 
Time 782 782 815 815 815 

 

Table 4 
Coverage for different number of iterations 

C
ov

er
ag

e 
 

 

#iter 
BH 
Star 

Alive Stars BH-AllStar 
Min Max Median  

10 51.4 25 51.4 37.5 73.6 
150 51.4 23.6 51.4 43 76.8 
300 51.4 23.6 51.4 37.5 75 
500 51.4 25 51.4 38.8 76.4 

Considering the number of test cases, we 
observe that BH-AllStar may take higher values 
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with respect to the positions of the stars, condition 
coverage ratios of each star and the black hole 
star. In 150 iterations, we generate 190 test cases, 
which is a higher value compared to the other 
experiment results. Since we pick the best stars in 
terms of coverage during All-Star operation, there 
may be many “best” stars in the population 
compared to the selected black hole. We did not 
perform any filtering on these best stars like 
pruning, but it might be possible to reduce those 
that cover similar conditions as a final step. 

Table 4 presents the coverage rate of the BH 
Star, Alive Stars and BH-AllStar in the final 
solution space. In both BBH and our proposed 
approach, the black hole has the same coverage 
rate (51.4%). Alive stars in the solution space 
have a minimum of 23.6%, a maximum of %51.4 
(BH itself) and a median of 43% coverage ratios. 
A star with less coverage ratio than the BH Star is 
acceptable in our study because it might have a 
higher coverage on any branch compared to the 
BH star.  

Fig. 5 presents the coverage rates of all the 
branches according to 190 stars in the solution 
space for 150 iterations. As depicted in Fig.5, 
there are still some branches (e.g., 19th to 27th) 
which are not sufficiently covered although we 
increase the total coverage ratio. This is partly due 
to the fact that BH algorithm essentially revolves 
around the black star that is picked. So, some of 
the areas in the search space might be missed 
during the iterations. 

 

 
Figure 5 Coverage Density Graph based on Star ID 
and Branch ID 
 

Fig. 6 illustrates the change in the total 
coverage ratio of BBH and BH-AllStar for 150 
iterations. It is seen that one or more populations 
were found with BBH (around 60th and 100th 
iterations) that reach a higher coverage, but there 
were later lost. The final coverage ratio was also 

smaller at the end. On the other hand, in our 
approach, a peak can be seen just after all the 
iterations are executed, at t=151. The population 
with the best coverage has been kept and the good 
stars over the history are added to that population.  

The results show that our Choosing Best 
Population from History approach always 
provides better coverage rates. Since the nature of 
the movement to the black hole and random 
generation of stars might cause a decrease in total 
coverage in BBH, we handle this problem by 
keeping the population with maximum coverage. 
The main reason that BH-AllStar outperforms 
BBH is that the latter eliminates stars because it is 
too close to the black hole star. However, it does 
not mean that these stars do not contribute to total 
coverage. 

5. Threats to validity 

We highlight several issues that might 
jeopardize the validity of our findings, and discuss 
these in this section. The first issue is related to 
the construct defined as the fitness criteria of our 
proposed algorithm. We aim to improve the final 
population of the algorithm by assessing the 
condition coverage ratio, which is calculated 
through Jacoco tool for each branch of the tested 
algorithm. Jacoco gives a condition coverage ratio 
for each branch, but it does not specifically say 
which conditions are satisfied in that branch. 
When two stars having 50% condition coverage 
for the same branch are evaluated, we consider 
those the same. But we do not know whether both 
cover different conditions and complement each 
other. This might have caused to falsely eliminate 
some stars from the population. We plan to work 
on this issue in our future studies by checking 
other unit testing tools. 

The second issue is related to the binary 
strategy applied to turn BHA to BBH algorithm. 
In Section III, we describe how the movement of 
the stars happens on a discrete scale. 
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Unfortunately, the description in [9] was not 
detailed enough and we had to make some 
assumptions. This might cause a deviation 
between BBH in [9] and BBH we developed here. 
It does not affect our comparisons between BBH, 
its variants and BH-AllStar on the software under 
test in this paper.  

The third issue is related to the internal validity 
of the experimental design. We are aware that 
choosing a different coefficient value in Eq.4 in 
BH-AllStar would impact our results, in fact, we 
tried multiple values and observed the 
convergence of the algorithm in terms of 
condition coverage to pick the final value as 3. We 
also think the randomness in the initial 
population, and the selection of best stars from all 
the iterations could affect the final results. We 
plan to work on these as future works as both 
require empirical analysis of different strategies. 
Finally, our results are limited to a single 
industrial context because we chose to solve the 
problem of our industrial partner through an 
improved CSST method. The prior works often 
assess their approaches on simple programming 
exercises, which suffer from generalization of the 
results on real life projects. We believe our study 
validates the real application of Black Hole 
inspired approaches adopted to condition 
coverage criterion. 

6. Conclusion 

In this study, we present a new approach to 
generate test data by implementing a previously 
proposed meta-heuristic searching technique 
BBH on a real-life engineering problem that 
we face for our safety critical systems in the 
industry. Our BBH variants and new algorithm 
BH-AllStar perform better than BBH in terms of 
condition coverage up to 43%. Although BH-
AllStar generates more test cases compared to 
BBH, we achieve extending search space and 
obtaining higher condition coverage rates in the 
same execution time. As a future work, we plan 
new experiments to compare Multiple Black Hole 
Approach reported in [9] and our BH-AllStar. We 
also plan to decrease the number of test cases in 
our current approach, the selection of best stars for 
each branch in BH-AllStar can be limited by 
selection only one among the best stars. We also 
intend to conduct further research on every 
condition in a decision to be covered of the SUT, 
rather than having higher condition coverage, 
which is known as MC/DC (Modified 

Conditon/Decision Coverage). We think that our 
proposed approach can be applied to other 
problems, such as testing algorithms with 
different level of complexity, nested conditions 
and line of codes. Initialization of the population, 
which is the first step of BBH can also be 
optimized to start with a better population rather 
than a random start as in its current setting.  
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