
A Condition Coverage-Based Black Hole Inspired Meta-Heuristic
for Test Data Generation

Derya Yeliz Ulutaş 1,2, Ayşe Tosun 2

1 ASELSAN Inc., Ankara, Turkey
2 Istanbul University, Faculty of Computer and Informatics Engineering, Istanbul, Turkey

Abstract
Combinatorial Testing (CT) strategy is one of the well-known methods to achieve high code
coverage rates during testing for safety critical systems. While generating test data in CT, we
often encounter the problem of test case explosion, especially for the systems with multiple
parameters and values. To overcome this challenge, search-based CT (CSST) strategies are
introduced. In this study, we propose a new algorithm that inspires from a binary variant of
Black Hole Algorithm (BBH) in CSST and adopt BBH according to the CT challenges in an
industrial context. The proposed BBH version, BH-AllStar, aims the following: (1) obtaining
higher condition coverage, (2) avoiding being stuck in local minima and (3) handling discrete
input values. We finalize the solution space of BH-AllStar by reassessing the previously
removed stars and incorporating the useful ones into it. We evaluate our approach on a real-life
software project in the safety-critical domain with respect to condition coverage, number of test
cases and execution time. Compared to BBH, BH-AllStar generates more test cases which
achieve up to 43% increase in condition coverage.

Keywords 1
Combinatorial Search-based Software Testing (CSST), Test Data Generation, Meta-heuristic

1. Introduction

The complexity and the criticality of the safety
critical systems in the defense industry are
growing [1, 2], hence, these systems require more
thorough and efficient testing technologies, such
as test automation and regression test
selection/prioritization [3] and continuous
integration. The software testing field in the
defense industry needs to develop more efficient
and qualified techniques to meet security-critical
requirements. [1]. For instance, various test
techniques such as Boundry-Value Analysis and
Equivalence Partitioning are used to meet the DO-
178 Standard to ensure safety-critical
requirements, which has been imposed by the U.S.
Federal Aviation Administration (FAA). [4, 5].
To assess the effectiveness of these methods,
different coverage criteria are employed [6].
During functional testing, Combinatorial Testing
(CT) methods are widely utilized especially for

QuASoQ’21: 9th International Workshop on Quantitative
Approaches to Software Quality, December 06, 2021, Taipei,
Taiwan
EMAIL: dyulutas@aselsan.com.tr (D.Y. Ulutas);
tosunay@itu.edu.tr (A. Tosun)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

software systems in which there exist many
parameters and conditions that take a combination
of multiple input values [7, 8]. CT method such as
t-way testing executes the software using test
cases with the interaction of the possible input
values [9]. The radar software in our industrial
context, for instance, takes 12 input parameters
each takes two to six values. If we would like to
test this software with full input coverage, we
would end up executing 63.34.24.5=1,399,680
test cases. This is an impossible goal to reach, and
instead in practice, we follow t-way testing with
the IPOG strategy [10]: select the t value as high
as possible with the cost of increasing the number
of test cases. The current limitation of the
employed t-way testing in our industrial setting is
the lack of relationship between the selected test
cases and their code coverage, because the
strategy of selecting the test inputs is not
dependent on the covered branches/conditions of
the software system.

70

mailto:dyulutas@aselsan.com.tr

To address this challenge, combinatorial
search-based software testing (CSST) approaches
are suitable [11]. One of the studies by Al-
Sammarraie and Jawawi [9] inspired our work.
The authors propose three new approaches
namely Binary Black Hole (BBH), Multiple Black
Hole (MBH) and Binary Multiple Black Hole
(BMBH) based on the Black Hole Algorithm
(BHA), which is first introduced in [12] as an
alternative to Particle Swarm Optimization
(PSO). Their aim was generating test inputs with
respect to the number of test cases and code
coverage. The authors also aim to avoid being
stuck in local minima and they propose a novel
energy mechanism for MBH that helps to choose
useful black hole populations only. The results
show that MBH outperforms PSO and BHA in
terms of the number of test cases, consistency and
high coverage rates.

We share the same goal with [9] of generating
test data using a search-based meta-heuristic,
which avoids local minima and achieves higher
coverage than BBH. The approach in [9] could be
well fitted in our industrial problem because of
two main motivations: (1) their problem domain
and data set are similar to our project, i.e., radar
software, (2) they innovatively apply BHA, which
is originally a clustering algorithm, to generate
test data for functional testing. However,
considering the scale of our radar software under
test, BBH approach does not fully address our
challenge. More specifically, BBH concentrates
on generating minimum number of test cases
rather than increasing the coverage criteria. Due
to this, it lacks assessing the generated stars
except the black hole in terms of their coverage.
The term star here corresponds to the test case
(e.g., [3, 5, 7] is an input set, also a test case and
named as ‘star’), as depicted in Table 2. This in
turn eliminates some of the useful stars during the
operations of BBH. In this study, we propose a
new algorithm called BH-AllStar by modifying
several strategies in BBH, such as elimination
mechanism based on distance between stars,
moving stars in discrete space, and selecting the
best black hole population from the history. Our
new approach generates relatively more test cases
with higher condition coverage than BBH,
although we cover only 0.14% of 1,399,680 test
cases in our industrial context. We assess the
applicability of BBH in [9] and its new variant
BH-AllStar in an industrial context with respect to
the number of test cases, coverage rate and
execution time.

The remainder of this paper is organized as
follows: Section 2 presents the related work. We
report the details of our approach BH-AllStar and
research methodology in Section 3. Section 4
shows the results and discussion; Section 5
explains the threats to validity. Finally, Section 6
concludes this study with future directions.

2. Related work

Combinatorial Search-based Software Testing
(CSST) is a testing method based on
Combinatorial Testing (CT). CT aims at
generating input vectors combining possible input
values of all input parameters of the Software
Under Test (SUT) [10]. The SUT can have n input
parameters: ci (i = 1,2,3…n). Every parameter can
take a set of values Vi where i can be from 1 to n.
For example, V1 is the value set of c1 and contains
m different values. (v1,v2,…,vm). One test case is
composed of a set of values from all Vi of all ci
(e.g. vx ∈ V1, vy ∈ V2, vz ∈ V3) [10]. There are
different methods to build all combinations of
input parameters for CT such as t-way testing or
randomization-based methods in the literature
[13]. CSST is one of the search-based approaches
to reduce the large solution space [9]. To find the
optimum solution of a problem, especially for the
problems, which contain very large sets of
solutions and have computational constraints,
meta-heuristic search techniques are commonly
implemented [14]. These meta-heuristic search
techniques are based on initially generated
random solution space and narrowing down the
search space based on the evaluation criteria.

A recent systematic mapping study in [14]
highlights 260 relevant studies in CSST, and
narrows down to 42 primary studies to investigate
the proposed approaches and their test case
generation accuracy. The authors summarize
well-known meta-heuristic search techniques as
follows: Genetic Algorithm (GA), Particle Swarm
Optimization Algorithm (PSO), Simulated
Annealing Algorithm (SA), and Ant Colony
Optimization (ACO). Their mapping strategies
show that GA is the most popularly applied
technique, whereas some combine multiple
algorithms such as GA and SA. They conclude
that the primary studies provide benefits in terms
of code coverage and execution time.

In Table 1, we list a sample of studies obtained
from [14] that we examine in terms of the
approach, dataset on which the approaches are
evaluated, and the fitness criteria. Among the

71

studies, we selected eight studies targeting a
similar objective to our industry problem, and
varying in terms of fitness functions and datasets.
The studies [15-19] utilize nature inspired
optimization methods for CSST, whereas [9, 12,
20] use a heuristic based on black hole
phenomenon. All studies in Table 1 show that the
improved versions of nature inspired optimization
methods outperform original methods with
respect to code coverage or execution time. All
the prior studies validate the success of their
proposed approach on simple functions like the
source code that calculates the greatest common
divisor or checking the validity of the date, etc.
Unfortunately these projects are not
representative of real programs, and achieving
high coverage is relatively easier with few test
cases. Except one study [15], all studies focus on
branch coverage as one of their evaluation criteria,
although in practice wıth more complex
algorithms, multiple conditions need to be taken
into account with a condition converage criterion.
Below, we give more description on our baseline
algorithm BHA [12] and its application on test
case generation [9].

Table 1
Summary of studies in the literature

Study Baseline
Method

Dataset/Project Fitness/Evaluation
Criteria

[15] ACO triangleType, gcd,
calday,
isValidDate, cal

Branch coverage

[16] SA unknown Condition coverage
[19] PSO triangleType, gcd,

calday,
isValidDate, cal

Branch coverage

[17] GA triangle
classification and
nextDate

Branch distance

[18] SA triangle
classification

Branch Coverage,
of Detected
Mutants/Defects

[12] BHA Six-benchmark
dataset from ML
databases

Distance between
blackhole and the
star

[20] BHA Well-known
mathematical
functions

[9] BHA pizza ordering,
smart mobile,
heart disease

k number of test
cases

2.1. Black hole algorithm

BHA has been first introduced in the study
[12] as a new heuristic algorithm inspired by the
black hole phenomenon. Based on Newton’s law,
scientists invented a concept about the stars with
high power and strong gravitational field [21].
They name this star as “black hole”. The reason of

this name is that any object moving around this
special star cannot escape and is absorbed into the
black hole if the objects cross the Schwarzschild
radius [21]. This special star is described with the
adjective ‘black’ because light cannot be reflected
and make this star invisible [21, 22]. With the
inspiration of the nature of black holes, BHA is
proposed for data clustering [12]. Fig.1 presents
the pseudocode of BHA adopted from [9, 12].

Figure 1: BHA pseudocode adopted from [9, 12]

According to the terminology used in [9], a
population with random stars is initially
generated, and a fitness value is calculated for
every star in this population. The best star with the
best fitness value is selected as the black hole.
Later, all stars in the population are moved
towards the black hole as described in Eq.1. The
new location of the current star x(t+1) is
calculated by multiplying a random number with
the difference between the BH Star and the current
star (BH-currentStar), and adding the result to the
previous location x(t). The current star is moved
closer to the BH Star as a result of this operation.
Movement of the stars towards the black hole
provides a grouping process and force all the other
stars to converge to the best fitness value. If a star
crosses the event horizon (R) of the black hole
defined in Eq.2, it is destroyed, and a new random
star is generated and added into the population.
The R value is calculated as the ratio of the fitness
value of BH Star and sum of the fitness function
outcomes of all stars in the population. This step
leads to adding various stars to the population and
increases the probability of convergence to the
desired solution.

 x(t+1) = x(t) + rand x (BH-currentStar) (1)

 R = 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)/∑ 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)𝑛𝑛
𝑖𝑖=1) (2)

The searching process stops if the stopping
criterion is met. This criterion can be the
maximum number of iterations or a sufficiently
good fitness criterion [9, 12].

Hatamlou conducted an experiment on the six-
benchmark dataset [12] and highlights two

72

advantages of BHA: (1) simple and easy to
implement, (2) applicable to other problem
domains, and (3) outperforming other clustering
methods. The performance of BHA is later tested
in [21] on mathematical functions to reach their
minimum and maximum values. The authors in
[21] compare BHA with GA and PSO, and report
that BHA outperforms others and can be applied
to other problem domains.

2.2. The baseline study

Based on the BHA proposed in [12], Al-
Sammarraie and Jawawi [9] propose three
variations of BHA for test case generation: BBH,
MBH and BMBH. Terms and function names
used in the study [9] are described in Table 2. For
the inputs that has discrete values like binary
values (0,1), moveStars operation (Eq. 1) does not
work because it causes a shift in the continuous
domain due to the multiplication of the distance
with a random value. To handle this issue, a
binary variant of black hole is proposed. This
approach generates a random value rd between 0
and 1. This random value is compared against the
constant value, pr (Eq. 3). If it is greater than rd,
the new location of the star is going to be equal to
that of black hole. Otherwise, new location of is
equal to its own old value [9].

Table 2
Terminology of BBH used in [9]

Term Meaning
Parameter x: can take values x1, x2, x3

y: can take values y1, y2, y3. …
Star [x1 y2 z3 t4]
Population [star1, star2…starn]
updateFitness() Calculate the coverage of every star in the

population and determine the best star as the
black hole.

moveStars() Change location of stars towards the blackhole.
updateRadius() Update the radius value of black hole.
replace() Remove the current star and generate a new one.
R Radius of the black hole (eq.2)

 𝑥𝑥𝑥𝑥(𝑡𝑡 + 1) = �𝐵𝐵𝐵𝐵
(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑑𝑑 < 𝑝𝑝𝑝𝑝

 𝑥𝑥𝑖𝑖(𝑡𝑡) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3)

The authors reach consistent and high
coverage by extending solution space with the
help of multiple swarm approach called MBH [9].
The main idea in MBH is to generate more than
one population and in turn, more than one black
hole in a single iteration to avoid being stuck in
local minima. At the end of the iterations, final list
of populations become the solution space. The
findings showed that their approach suffers from

being stuck in local minima since there is no
mutation operation. The authors point that the
population initialization and moveStars
operations could be improved.

Our work complements the previous study [9]
in several ways: (1)We propose a condition
coverage-based elimination mechanism instead of
a distance-based one to keep the test cases that
likely contribute to total coverage. (2) We
prioritize achieving higher coverage rates than
restricting the number of test cases. (3) We
propose two new approaches within BHA to
assess all the generated stars and black holes and
to extend the selected population without being
stuck in local minima. (4) We apply the BHA
method to a real-life software system for test case
generation.

3. Our methodology

The software under test in this study is part of
a large-scale radar software developed for the
defense industry. Due to its confidentiality
constraints, we are not able to give the details of
the algorithm or its pseudocode. We can briefly
describe the complexity of our SUT: it takes 12
input parameters with different possible values,
and outputs an integer value. It contains two
functions with 17 if and nested if statements with
up to three levels, two for loops, two switch case
statements and 72 branches in total. We built a
technological setup, in order to conduct our
analysis on BBH and its variants including BH-
AllStar. Our analysis starts by selecting the
baseline algorithm as shown in Fig 2, namely
BBH, to generate test cases, i.e., a black hole (BH)
surrounded with stars, and our software is
executed against this test case. Then the system
collects the information of missed conditions
using Jacoco testing tool. Iteratively, the
condition coverage information is stored in a file,
and used in the elimination decision mechanism.
Based on the decisions, the algorithm generates
new test cases (stars) and the cycle continues. The
algorithm terminates after K (10-500) number of
iterations.

We modify several operations in [9] and
propose our approach: BH-AllStar. We use
initializePopulation() and updateFitness()
methods as is, but modify moveStars(), and
created a new star elimination criterion. We also
propose two new methods to select the final
population both of which will be described below.
Our motivation is also determining the best BH in

73

reaching as high coverage rates as possible, and
shaping the other stars around it without being
stuck in local minima. During our analysis, we
noticed that the distance criteria defined in [9]
removes some stars although they contribute to
the coverage ratio. It also prioritizes to keep the
number of test cases as few as possible. Increasing
the number of test cases is preferable for our
industrial setting than having low coverage rates.
Fig. 3 shows the pseudocode of our approach. Our
contributions are presented in the below
subsections.

Figure 2: Our experiment setup

Figure 3: Pseudocode of our proposed approach

3.1. Condition coverage-based
elimination mechanism

We calculate condition coverage for each
branch existing in our testing code. For example,
an “if” statement with one condition, e.g. x<5,
contains two branches, true or false, and the
condition coverage for this branch can be 0, 50%
or 100%. If an “if” statement has two conditions,
e.g. x<5 && y>10, then it has 4 conditions (TT,
TF, FT, FF). With the input set (x=3, y=11; x=3,
y=9; x=6, y=9), the condition coverage for this
branch is calculated as 75%. Only traditional
branch coverage is not enough for our study since
we need to cover all the conditions of each branch
in our testing code. Therefore, we replace the
distance based mechanism, which calculates to
what extent the distance between current star and
black hole exceeds the R value to decide whether

to destroy the star or keep it alive, with our
condition coverage based mechanism, as shown in
Fig.3 described as isBestAtLeastOnOneBranch()
and calculateBranchRatio() methods. With this
condition coverage-based mechanism for all
branches of our SUT, we give chance to the stars
with lower coverage ratios then the BH Star to
cover uncovered branches. We have two steps in
our decision mechanism:

isBestAtLeastOnOneBranch We control if the
current star is the best among all stars in the
population in terms of covering at least one more
branch. This operation would keep an efficient
star, even if it has a smaller coverage ratio
compared to other stars.

calculateBranchRatio We compare current star
and black hole in terms of covering all branches
one by one and calculate the ratio of the number
of branches that current star covers better than
black hole, and the number of branches that
current star covers worse than black hole. We use
here a coefficient=3 to multiply the number of
better covered branches in order to give a star
more chance (see Eq. 4). We have made several
tests with different coefficients and chosen the
value 3 as the optimum value for deciding the
stars to be accepted or not.

 #𝑜𝑜ℎ𝑒𝑒𝑒𝑒∗3
#𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒

 (4)

Fig. 4 illustrates a sample of stars: An
eliminated star (purple), a previously eliminated
but later revived star (yellow), and an always alive
star (orange) with their coverage values in the
timeline, when our proposed mechanism is
applied. The total coverage significantly increases
at the end of the iterations as we let a previously
killed star (yellow) to be included into the final
population. Eliminating a star (purple) also
increase total coverage during 18th iteration.

Figure 4: The x-axis is the number of iterations
and the y-axis is condition coverage rate.

74

3.2. Moving Discretely

In moveStars() operation, to shift the stars
towards the black hole, we propose an index-
based method for discrete-valued parameters,
similar to ‘Binary Variants’ in [9]. We store our
input parameters in an array and we generate a
random index value between the input value index
of the current star and the BH. Then we move
current star to this index and assign the value to
the current star as the updated input parameter.

3.3. Choosing the best population
over history

In keepPopulationWithMaxTotalCoverage(),
we keep the population generated in all iterations
of BBH including coverage rates and alive/dead
states of each star. At the end of the iterations, we
select the population that has the highest coverage
ratio, not the last population according to BH.

3.4. All Star operation

In allStar() method, we compare all the stars
between t0 and tend against the BH at tn, and add
the best stars in terms of condition coverage into
our final population. Although this causes an
increase in the number of test cases, it also
increases the coverage of the final population.

The variants of BBH are as follows: (1) Best
BBH (BBH*): We incorporate “Choosing Best
Population from History” approach into BBH. (2)
BBH with Condition Coverage (BBHCC): We
use “Condition Coverage-Based Elimination
Mechanism”. (3) Best BBH with Condition
Coverage (BBHCC*): We add “Choosing Best
Population over History” onto BBHCC. (4) BH-
AllStar: We add “AllStar Operation” onto
BBHCC*. We assess all according to condition
coverage of the population, number of test cases,
and execution time.

4. Results and discussion

The results over different iterations and with
variants of BBH, reported in Table 3, show that
higher code coverage rates are obtained compared
to BBH. For instance, with 500 iterations,
coverage values are 69.4% in BBH, whereas 75%
in BBH*, 70.8% in BBHCC, 73.6% in BBHCC*
and 76.8% in BH-AllStar. We observe that same

coverage rates can be achieved with fewer test
cases but higher execution time for different
number of iterations. The maximum code
coverage rate is approximately 76% in iterations
150 and 500 with BH-AllStar. Solution space
consists of 190 test cases for 150 iterations and
executes in 327 secs. However, for 500 iterations,
only 19 test cases are used but execution time is
815 secs.

In addition, the baseline algorithm, BBH has a
better coverage (72.2%) than our condition
coverage based BBH approach (65.3%) for 300
iterations. However, our additions help to increase
the coverage from 65.3% to 75% in BH-AllStar.
BBH* always reaches better coverage rates than
BBH. When the coverage criterion is set as
condition (BBHCC), we do not always see a better
convergence than BBH. But choosing the best
population and adding all the “good” stars
eventually converge to much higher coverage
ratios. Instead of defining multiple black hole as
in [9], we stick to the single black hole
phenomenon but we give a certain flexibility to
the star selection and achieve a similar
improvement like in [9]. We can confirm the prior
finding that a black hole inspired meta-heuristic
could be successful at generating test data for
software systems with too many parameters.

Table 3
Performance of BBH Variants and BH-Allstar

Iteration
BBH BBH*

BBH
CC

BBH
CC*

BH-
AllStar

10
 Stars (#) 10 10 10 10 12

Cov. (%) 51.4 70.8 68.1 72.2 73.6
Time 19 19 22 22 22

15
0 Stars (#) 10 10 10 10 190

Cov. (%) 68.1 73.5 68.7 75 76.8
Time 320 320 372 372 372

30
0 Stars (#) 10 10 10 10 14

Cov. (%) 72.2 75.0 65.3 73.6 75
Time 460 460 476 476 476

50
0 Stars (#) 10 10 10 10 19

Cov. (%) 69.4 75 70.8 73.6 76.4
Time 782 782 815 815 815

Table 4
Coverage for different number of iterations

C
ov

er
ag

e

#iter
BH
Star

Alive Stars BH-AllStar
Min Max Median

10 51.4 25 51.4 37.5 73.6
150 51.4 23.6 51.4 43 76.8
300 51.4 23.6 51.4 37.5 75
500 51.4 25 51.4 38.8 76.4

Considering the number of test cases, we
observe that BH-AllStar may take higher values

75

with respect to the positions of the stars, condition
coverage ratios of each star and the black hole
star. In 150 iterations, we generate 190 test cases,
which is a higher value compared to the other
experiment results. Since we pick the best stars in
terms of coverage during All-Star operation, there
may be many “best” stars in the population
compared to the selected black hole. We did not
perform any filtering on these best stars like
pruning, but it might be possible to reduce those
that cover similar conditions as a final step.

Table 4 presents the coverage rate of the BH
Star, Alive Stars and BH-AllStar in the final
solution space. In both BBH and our proposed
approach, the black hole has the same coverage
rate (51.4%). Alive stars in the solution space
have a minimum of 23.6%, a maximum of %51.4
(BH itself) and a median of 43% coverage ratios.
A star with less coverage ratio than the BH Star is
acceptable in our study because it might have a
higher coverage on any branch compared to the
BH star.

Fig. 5 presents the coverage rates of all the
branches according to 190 stars in the solution
space for 150 iterations. As depicted in Fig.5,
there are still some branches (e.g., 19th to 27th)
which are not sufficiently covered although we
increase the total coverage ratio. This is partly due
to the fact that BH algorithm essentially revolves
around the black star that is picked. So, some of
the areas in the search space might be missed
during the iterations.

Figure 5 Coverage Density Graph based on Star ID
and Branch ID

Fig. 6 illustrates the change in the total
coverage ratio of BBH and BH-AllStar for 150
iterations. It is seen that one or more populations
were found with BBH (around 60th and 100th
iterations) that reach a higher coverage, but there
were later lost. The final coverage ratio was also

smaller at the end. On the other hand, in our
approach, a peak can be seen just after all the
iterations are executed, at t=151. The population
with the best coverage has been kept and the good
stars over the history are added to that population.

The results show that our Choosing Best
Population from History approach always
provides better coverage rates. Since the nature of
the movement to the black hole and random
generation of stars might cause a decrease in total
coverage in BBH, we handle this problem by
keeping the population with maximum coverage.
The main reason that BH-AllStar outperforms
BBH is that the latter eliminates stars because it is
too close to the black hole star. However, it does
not mean that these stars do not contribute to total
coverage.

5. Threats to validity

We highlight several issues that might
jeopardize the validity of our findings, and discuss
these in this section. The first issue is related to
the construct defined as the fitness criteria of our
proposed algorithm. We aim to improve the final
population of the algorithm by assessing the
condition coverage ratio, which is calculated
through Jacoco tool for each branch of the tested
algorithm. Jacoco gives a condition coverage ratio
for each branch, but it does not specifically say
which conditions are satisfied in that branch.
When two stars having 50% condition coverage
for the same branch are evaluated, we consider
those the same. But we do not know whether both
cover different conditions and complement each
other. This might have caused to falsely eliminate
some stars from the population. We plan to work
on this issue in our future studies by checking
other unit testing tools.

The second issue is related to the binary
strategy applied to turn BHA to BBH algorithm.
In Section III, we describe how the movement of
the stars happens on a discrete scale.

BranchID

St
ar

ID

3231302928272625242322212019181716151413121110987654321

190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

>
–
–
–
–
–
< 0,0

0,0 0,2
0,2 0,4
0,4 0,6
0,6 0,8
0,8 1,0

1,0

Coverage

Coverage Density Graph based on StarID and BranchID (Contour Plot)

Figure 6 Coverage in the timeline of BBH

76

Unfortunately, the description in [9] was not
detailed enough and we had to make some
assumptions. This might cause a deviation
between BBH in [9] and BBH we developed here.
It does not affect our comparisons between BBH,
its variants and BH-AllStar on the software under
test in this paper.

The third issue is related to the internal validity
of the experimental design. We are aware that
choosing a different coefficient value in Eq.4 in
BH-AllStar would impact our results, in fact, we
tried multiple values and observed the
convergence of the algorithm in terms of
condition coverage to pick the final value as 3. We
also think the randomness in the initial
population, and the selection of best stars from all
the iterations could affect the final results. We
plan to work on these as future works as both
require empirical analysis of different strategies.
Finally, our results are limited to a single
industrial context because we chose to solve the
problem of our industrial partner through an
improved CSST method. The prior works often
assess their approaches on simple programming
exercises, which suffer from generalization of the
results on real life projects. We believe our study
validates the real application of Black Hole
inspired approaches adopted to condition
coverage criterion.

6. Conclusion

In this study, we present a new approach to
generate test data by implementing a previously
proposed meta-heuristic searching technique
BBH on a real-life engineering problem that
we face for our safety critical systems in the
industry. Our BBH variants and new algorithm
BH-AllStar perform better than BBH in terms of
condition coverage up to 43%. Although BH-
AllStar generates more test cases compared to
BBH, we achieve extending search space and
obtaining higher condition coverage rates in the
same execution time. As a future work, we plan
new experiments to compare Multiple Black Hole
Approach reported in [9] and our BH-AllStar. We
also plan to decrease the number of test cases in
our current approach, the selection of best stars for
each branch in BH-AllStar can be limited by
selection only one among the best stars. We also
intend to conduct further research on every
condition in a decision to be covered of the SUT,
rather than having higher condition coverage,
which is known as MC/DC (Modified

Conditon/Decision Coverage). We think that our
proposed approach can be applied to other
problems, such as testing algorithms with
different level of complexity, nested conditions
and line of codes. Initialization of the population,
which is the first step of BBH can also be
optimized to start with a better population rather
than a random start as in its current setting.

7. References

[1] J. Park, H. Ryu, H.-J. Choi, and D.-K.
Ryu, A survey on software test maturity in
Korean defense industry. 2008, pp. 149-
150.

[2] R. Kenett, F. Ruggeri, and F. Faltin,
"Analytic Methods in Systems and
Software Testing," 07/01 2018, doi:
10.1002/9781119357056.

[3] V. Garousi, R. Ozkan, and A. Betin-Can,
"Multi-objective regression test selection
in practice: An empirical study in the
defense software industry," Information
and Software Technology, 06/01 2018,
doi: 10.1016/j.infsof.2018.06.007.

[4] S. Nidhra, "Black Box and White Box
Testing Techniques - A Literature
Review," International Journal of
Embedded Systems and Applications, vol.
2, pp. 29-50, 06/30 2012, doi:
10.5121/ijesa.2012.2204.

[5] W. Youn, S. Hong, K. Oh, and O. Ahn,
"Software Certification of Safety-Critical
Avionic Systems: DO-178C and Its
Impacts," Aerospace and Electronic
Systems Magazine, IEEE, vol. 30, pp. 4-
13, 04/01 2015, doi:
10.1109/MAES.2014.140109.

[6] M.-H. Chen, M. Lyu, and W. Wong,
"Effect of code coverage on software
reliability measurement," Reliability,
IEEE Transactions on, vol. 50, pp. 165-
170, 07/01 2001, doi:
10.1109/24.963124.

[7] L. Hu, W. Wong, D. Kuhn, and R.
Kacker, "How does combinatorial testing
perform in the real world: an empirical
study," Empirical Software Engineering,
vol. 25, 07/01 2020, doi: 10.1007/s10664-
019-09799-2.

[8] D. R. Kuhn, R. N. Kacker, and Y. Lei,
Introduction to Combinatorial Testing
(Chapman & Hall/CRC Innovations in
Software Engineering and Software

77

Development Series). Taylor & Francis,
2013.

[9] H. Al-Sammarraie and D. Jawawi,
"Multiple Black Hole Inspired Meta-
Heuristic Searching Optimization for
Combinatorial Testing," IEEE Access,
vol. PP, pp. 1-1, 02/13 2020, doi:
10.1109/ACCESS.2020.2973696.

[10] y. Lei, R. Kacker, D. Kuhn, V. Okun, and
J. Lawrence, IPOG: A general strategy
for T-way software testing. 2007, pp. 549-
556.

[11] C. Nie and H. Leung, "A Survey of
Combinatorial Testing," ACM Comput.
Surv., vol. 43, p. 11, 01/01 2011, doi:
10.1145/1883612.1883618.

[12] A. Hatamlou, "Black hole: A new
heuristic optimization approach for data
clustering," Information Sciences, vol.
222, pp. 175–184, 02/01 2013, doi:
10.1016/j.ins.2012.08.023.

[13] K. Zamli, "T-Way Strategies and Its
Applications for Combinatorial Testing,"
International Journal of New Computer
Architectures and their Applications
(IJNCAA), vol. 2, pp. 459-473, 01/01
2011.

[14] D. Y. Ulutas, "The Generation of
Optimized Test Data: Preliminary
Analysis of a Systematic Mapping
Study," 2020.

[15] C. Mao, X. Yu, J. Chen, and J. Chen,
Generating Test Data for Structural
Testing Based on Ant Colony
Optimization. 2012, pp. 98-101.

[16] N. Tracey, J. Clark, K. Mander, and J.
McDermid, "An automated framework
for structural test-data generation," in
Proceedings 13th IEEE International
Conference on Automated Software
Engineering (Cat. No.98EX239), 13-16
Oct. 1998 1998, pp. 285-288, doi:
10.1109/ASE.1998.732680.

[17] A. El-Serafy, G. El Sayed, C. Salama, and
A. Wahba, Enhanced Genetic Algorithm
for MC/DC test data generation. 2015,
pp. 1-8.

[18] K. Wang, Y. Wang, and L. Zhang,
Software testing method based on
improved simulated annealing algorithm.
2014, pp. 418-421.

[19] C. Mao, X. Yu, and J. Chen, Swarm
Intelligence-Based Test Data Generation
for Structural Testing. 2012.

[20] M. Farahmandian and A. Hatamlou,
"Solving optimization problem using
black hole algorithm," Journal of
Advanced Computer Science &
Technology, vol. 4, 12/25 2015, doi:
10.14419/jacst.v4i1.4094.

[21] E. Curiel, "The many definitions of a
black hole," Nature Astronomy, vol. 3,
01/08 2019, doi: 10.1038/s41550-018-
0602-1.

[22] E.-G. Talbi, Metaheuristics: From
Design to Implementation. 2009.

78

