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Abstract. This paper describes OTMapOnto, an optimal transport-
based ontology matching system. It leverages the techniques developed
in computational optimal transport to match terms across different on-
tologies. The system starts with converting ontology elements into em-
bedding vectors which can incorporate linguistic, structural, and logical
information. It then applies optimal transport to the problem of moving
masses from the source embedding space to the target embedding space.
The solution to the optimal transport problem consists a shape-based
Wasserstein distance and a coupling matrix between the embeddings of
the source and target ontologies. The coupling matrix gives rise to a set of
candidate matchings which can be refined through further process. The
current version of the OTMapOnto system makes use of pre-trained word
embeddings, such as fasttext and BioWordVec, for embedding the labels
of ontology elements. We report that optimal transport is a promising so-
lution to discovering ontology matching with higher recall when provided
with good representations of ontologies1.

Keywords: ontology matching · optimal transport · ontology embed-
ding.

1 Presentation of the System

1.1 State, purpose, general statement

OTMapOnto is an ontology matching system that applies optimal transport to
ontology embeddings for discovering matchings. The system starts with repre-
senting an ontology using a set of numerical vectors/embeddings each of which
can encode the semantic and structural information of an ontology element. If
both the source and target ontologies are embedded in the same vector space,
we can calculate the geometric distances between pairs of source and target on-
tology elements. The distances can be utilized for deriving potential matchings
between ontologies. For example, Kolyvakis et al. [9] report an approach that
first represents ontology elements in numerical embeddings. The approach then

1 Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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applies the Stable Marriage algorithm to deriving candidate matchings based on
the cosine similarity between embedding vectors. Other embedding-based super-
vised [14] and distantly supervised [5] methods have been proposed for matching
ontologies. OTMapOnto differs, with an unsupervised method that formulates
the matching problem as a transformation problem from a source ontology to a
target ontology. Taking the two ontologies as two whole systems of knowledge
encoded in numerical vectors, OTMapOnto first finds an optimal way to trans-
port masses from the source ontology to the target ontology. It then derives
candidate matchings between individual elements from the coupling matrix of
the optimal transport, for instance, by a following Nearest Neighbor or Stable
Marriage algorithm. This paper presents the first version of the system that only
makes use of linguistic information for embedding ontology elements.

1.2 Specific techniques used

Figure 1 illustrates the architecture of the OTMapOnto system. In this paper,
we focus on two main components: ontology embeddings and optimal transport.
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Fig. 1. The Architecture of the OTMapOnto System

Ontology Embeddings. We consider an ontology as a 7-tuple

O = {C,R,G,L,D,S,P},

where C = {C1, C2, ..., Cn, e1, e2, ..., em} is a set of concepts Ci and entities ei,
R = {R1, R2, ..., Rr} is a set of relations corresponding subClassOf, Object and
Datatype properties, G = {V, E} is the graph structure with a set of vertices
V = {V1, V2, ..., Vn+m} and edges E = {E1, E2, ..., Er}, L = {L1, L2, ..., Lk} is
a set of logical formulas, D = {D1, D2, ..., Dd} is a set of textual descriptions,
S = {S1, S2, ..., Ss} is a set of distant evidence sentences, and P is a set of literal
values associated with the Datatype properties.

Various methods have been proposed for representing individual components
in an ontology as embeddings. For example, translational-based methods [4,
19, 10, 12] and graph neural networks (GNN) [8] encode an ontology based on
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its graph structure. Text-enhanced methods for ontology embedddings [11, 16,
2, 17, 18] encode lexical words of ontology elements. Logic-aware methods [15,
7] incorporate logical constraints into ontology embeddings. For the current
OTMapOnto system, we apply pre-trained language models, such as fasttext
[3] and BioWordVec [20], to embedding the labels of the set of ontology con-
cepts, Object and Datatype properties, O = {C1, C2, ..., Cn, R1, R2, ..., Rr}, as a
set of numerical vectors XO = {xi∈Rd, i = 1..n+ r}.

Specifically, for each element in O, the system first normalizes the element’s
label via a sequence of standard text processing steps. The normalized label
is split into individual words which in turn are fed into a pre-trained language
model to obtain their corresponding word embeddings. The embedding of the el-
ement is the average of the embeddings of the individual words in the normalized
label.

Optimal Transport. Given two sets of embeddings X = {xi ∈ Rd, i = 1..n}
and Y = {yj ∈ Rd, j = 1..m}, where each embedding is represented as a vector
xi or yj ∈ Rd. Let µ =

∑n
i=1 p(xi)δxi

and ν =
∑m
j=1 q(yj)δyj

be two probability
distributions defined on the two sets X and Y, respectively, with δx as the
Dirac at the point x. p(xi) and q(yj) are probability weights associated with
each set. Usually, we consider uniform weights, e.g., p(xi) = 1

n , for i = 1..n,
and q(yj) = 1

m , for j = 1..m. However, if additional information is provided,
p(xi) and q(yj) can incorporate the information as non-uniform distributions.
Optimal transport (OT) defines a distance between two distributions analogous
to an optimal plan for mass transportation. Specifically, let C = [c(xi,yj)]i,j be
a cost matrix with c(xi,yj) measuring a ground distance between the individual
embeddings xi and yj . Let T = [T (xi,yj)]i,j be a matrix of a transport plan
(or couplings) with T (xi,yj) specifying how much mass will be transported from
point xi to point yj . Let Π(µ, ν) be the set of all feasible transport plans defined

as: Π(µ, ν)
def
= {T ∈ Rn×m+ |T1n = µ,T>1m = ν}, where 1n and 1m are all one

vectors, T1n = µ and T>1m = ν are marginal constraints on feasible plans.
The Optimal Transport problem is to find the map T : X→ Y, where

T = argmin
T∈Π(µ,ν)

n∑
i=1

m∑
j=1

c(xi,yj) · T (xi,yj), s.t.,T1n = µ,T>1m = ν (1)

The map T also gives rise to a distance measure between the two distributions
called Wasserstein distance:

W (µ, ν)
def
= min

T∈Π(µ,ν)
〈C,T〉= min

T∈Π(µ,ν)

n∑
i=1

m∑
j=1

c(xi,yj) · T (xi,yj) (2)

The objective is a linear programming problem where the time complexityO(N3)
is prohibitively large for large N . The common speedup is to replace the objective
with an entropy regularized objective function. As a result, the problem can be
solved efficiently using Sinkhorn iterations [6].
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Driving and Refining Ontology Matchings. Both the source and target
ontologies are embedded through the same pre-trained language model. For the
ground distance C = [c(xi,yj)]i,j , where i = 1..n, j = 1..m, we experimented
with following two approaches:

– Using Euclidean distances between the embeddings of pairs of source and
target ontology elements.

– Using Wasserstein distances between the immediate neighborhoods of source
and target ontology elements. The immediate neighborhood of an element
includes parents and children in the subClassOf hierarchy, domain and range
elements in direct relations, and the synsets in WordNet.

The solution, T = [T (xi,yj)]i,j , i = 1..n, j = 1..m, to the optimal transport
problem provides the most efficient way to transform the entire source ontology
to the entire target ontology. Obviously, not every coupling in T = [T (xi,yj)]i,j
corresponds to an ontology matching. We derive a set of candidate matchings as
follows:

– Mutual Nearest Neighbor (MNN): for a xp ∈{xi ∈ Rd, i = 1..n}, find
yq ∈{yj ∈ Rd, j = 1..m}, such that, T (xp,yq) = max{T (xp,yj), j = 1..m}
and T (xp,yq) = max{T (xi,yq), i = 1..n}.

– Top-K Targets (TopK): for a xp ∈{xi ∈ Rd, i = 1..n}, find k tar-
gets {yq1 ,yq2 , ..,yqk} ⊂ {yj ∈ Rd, j = 1..m}, such that, T (xp,yqz ) ≥
max{T (xp,yj), j 6= q1..qk}, for z = 1..k.

The set of candidate matchings will go through a sequence of refinement
steps including exact label string checking, synonym verification, and context
distance measurement.

1.3 Link to the system and parameters file

https://github.com/anyuanay/otmaponto django

1.4 Link to the set of provided alignments

https://github.com/anyuanay/otmaponto django/tree/master/results

2 Results

2.1 Anatomy

For this track, we applied two different pre-trained models, BioWordVec [20]
and fasttext [3] . The BioWordVec was trained on 28 millions PubMed articles
and 2 millions MIMIC III Clinical notes. By a combination of optimal transport
and MNN, we achieved a 87% precision and 85% recall. By retrieving the Top10
targets, the recall was 93%, while the precision is very low. However, the size
of the BioWordVec is very large (26G). It is infeasible to submit the system for
evaluation. Instead, we created a running Web service with pre-loaded fasttext
model (6G). Our own evaluation results is 64% precision an 81% recall.
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2.2 Conferences

For this track, we applied fasttext model. We achieved a precision of 23% and
a recall of 73% which is higher than the recall of most of the systems in the
OAEI2020 report. By just encoding the labels of elements, OTMapOnto has
shown it was able to retrieve more matchings based on the optimal transport
strategy. Improving the precision will be our future focus.

2.3 Material Sciences and Engineering

This is a new track without previous evaluation results. There are three test
cases. For the first test case, OTMapOnto was able to achieve a precision of
23% and a recall of 39%. For the second case, OTMapOnto achieved a precision
of 32% and a recall of 55%. For the third test case, OTMapOnto achieved a
precision of 14% and a recall of 90%. Compared to the methods used in Engy’s
thesis [13], OTMapOnto could achieve better recall in most of the cases.

2.4 Large Biomedical Ontologies

For this track, OTMapOnto encountered out of memory errors. It was only able
to perform matching on two small cases. For the FMA-SNOMED small, the
precision was 38% and recall was 67%. For the FMA-NCI small, the precision
was 45% and recall was 84%.

2.5 Disease and Phenotype

For this track, we evaluated OTMapOnto on two tasks: HP-MP 2017 and DOID-
ORDO 2017 task. For the HP-MP 2017 task, OTMapOnto achieved a precision
of 11% and a recall of 99.1%. For the DOID-ORDO 2017 task, OTMapOnto
achieved a precision of 16% and a recall of 99.3%. The recalls are consistently
better than the results in the OAEI2020 report.

2.6 Common Knowledge Graphs

For this track, the precision was 90% and the recall was 84%. No previous results
are available. We look forward to the evaluation results in OAEI2021.

3 General Comments

3.1 Comments on the results (strengths and weaknesses)

The coupling matrix returned by the optimal transport solver contains mappings
from all n source elements to all m target elements. The current OTMapOnto
derives candidate matchings from the n ×m matrix mainly through retrieving
mutual nearest neighbors. On one hand, it is inevitably that the set of can-
didate matchings still contain many spurious ones. On the other hand, it is
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expected that the process of optimal transport can discover the majority of ac-
curate matchings. This phenomenon has been shown in several tasks, where the
results have lower precision and higher recall compared to the previous results
of other systems.

3.2 Discussions on the way to improve the proposed system

In this paper, we report a work demonstrating that just with the embeddings of
the labels of ontology elements, the optimal transport-based method is promis-
ing for discovering more matchings to improve recall. In future work, we will
develop a method for representing an ontology as a set of embedding vectors by
integrating individual components including hyperbolic embeddings [1] for bet-
ter representing tree structures in ontologies. We also aim to improve precision
by developing a method to rank the TopK candidate matchings for each source
element. The ranking method will be based on the structural and semantic con-
text of the elements in each pair of candidate matching. The third improvement
is to modify the distributions defined on the sets of source and target ontology
embeddings for optimal transport. Instead of using uniform distributions for all
points, we will consider a distribution reflecting the ground distances between
the two sets. For example, if the ground distances from a source point to all tar-
get points are consistently large, the measure of the source point should be very
small or nil in terms of mass transportation. Finally, for large scale ontologies,
we need to break down the ontologies into smaller chunks for computing the op-
timal transport couplings. We will first partition the embeddings into clusters.
Consequently, we will find candidate matchings from the pairs of clusters that
have shorter Wasserstein distances.
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5. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Antonyrajah, D., Hadian, A., Lee, J.:
Augmenting ontology alignment by semantic embedding and distant supervision.
In: Verborgh, R., Hose, K., Paulheim, H., Champin, P.A., Maleshkova, M., Corcho,
O., Ristoski, P., Alam, M. (eds.) The Semantic Web (ESWC). pp. 392–408. Springer
International Publishing, Cham (2021)

6. Cuturi, M.: Sinkhorn Distances: Light speed Computation of Optimal Transport.
Master’s thesis, Red Hook, NY, USA (2013)
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