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Abstract. Instance matching has attracted a wide range of research
attentions. A systematic literature review captures knowledge regarding
the state-of-the-art systematically, to analyze and report it in the form of
reusable knowledge. It is difficult to compare the performance of different
instance matching methods, even when the same benchmarking dataset
is used.

1 Introduction

Instance matching identifies instances from different data sources that refer to
the same real-world entity [7]. It is difficult to identify the state-of-the-art solu-
tion since the every instance matching approach is tailored for specific data and
its properties.

2 Overview of the State of the Art Approaches

Existing knowledge graph instance matching approaches rely on embeddings to
represent data in the form of vectors. They aim to capture the semantic meaning
of the data by placing semantically similar inputs close together in the vector
space. Figure 1 shows the output of a literacture study on instance matching
approaches.

3 Conclusion

This study reviews the latest instance matching research. The approaches are
often tested on different benchmarking datasets. Importantly, even when the
same dataset is used, there is no single instance matching approach that performs
well with every metric. Since some methods perform well on one subset and worse
on the others, it is difficult to compare their performance. Future research can
possibly explore ways for reducing human feedback while preserving its benefits,
for example by combining supervised and self-supervised approaches.

* Copyright (© 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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Fig. 1. Generalization of the workflow pipelines: RNM [7], CEAFF [6], DGMC [1],
COTSAE [4], BERT-INT [3], SelfKG [2], UEA [5)].
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