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Abstract
Many autonomous Cyber-Physical Systems (e.g., devices for Internet of Things, Unmanned
Autonomous Vehicles, medical devices, etc) are mission-critical (i.e., errors result in loss
of money) or safety-critical (i.e., errors result in damage or even death for humans). This
motivates research on efficient formal verification methods for such Cyber-Physical Systems.

Unfortunately, this is not an easy task, as verifying a Cyber-Physical System entails evalu-
ating a huge number of scenarios (scenario explosion). Furthermore, a unified mathematical
model for the (discrete) cyber part and the (continuous) physical part is currently not available.
Such obstructions may be mitigated by using Statistical Model Checking, which uses statistical
methods to sample the set of scenarios while basing on possibly black-box models of the System
Under Verification.

In this paper, we review 5 recent real-world and industry-relevant case studies from the
literature that involved usage of Statistical Model Checking. Such case studies range on very
different application areas, namely: i) intelligent services for peak shaving in smart grids, ii)
In-Silico Clinical Trial for medical services, iii) applications for wireless sensor networks; iv)
aircraft data networks; v) plug-in electric vehicles. This shows the maturity, feasibility and
flexibility of Statistical Model Checking when applied to real-world case studies.

1. Introduction
A Cyber-Physical System (CPS) is a system where a (continuous) physical system (plant)
is controlled and/or monitored by a (discrete) software. The deployment of autonomous
CPSs [3], such as, e.g., devices for Internet of Things (IoT) [11, 88], Unmanned Au-
tonomous Vehicles [35] and medical devices [20], has been speeding up for the last decades,
with a projected 1.1 trillion USD global speding on IoT only [81]. For many of such
CPSs, it is important to rule out errors [21, 22], especially bugs in the software part,
since such bugs may lead to:

• loss of money in mission-critical systems [8]. This is the case, e.g., in aerospace: as
an example, in 1996 the Ariane 5 [4] rocket was destroyed after launch due to a
type conversion error in the software, resulting in a 500 M$ loss;
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• death of serious injury for people in safety-critical systems [66]. This is the case,
e.g., for medical devices.

As standard testing could not provide the required degree of correctness assurance,
this motivates research on efficient formal verification methods [16]. There are multiple
challenges to overcome when formally verifying a CPS [17], e.g., the huge number of
scenarios to be evaluated (scenario explosion, e.g., [49, 53, 52, 54]), which is hard to
tackle also using High-Performance Computing (HPC) [55, 56, 51, 60]. Furthermore,
much research must still be done in order to find a unified mathematical model for the
discrete cyber part and the continuous physical part [38, 45]. Such issues make it hard
to apply analytical approaches based on logics (e.g., [14, 26, 47, 13, 48]) or automata
(e.g., [19, 46, 62]).

Statistical Model Checking (SMC) [41] holds the promise to overcome this obstacle
by using statistical methods to sample the set of scenarios up to desired accuracy
and precision [27, 28, 18], while possibly relying on black-box models of the System
Under Verification (SUV) (i.e., the full system encompassing both the software and the
plant) [2, 5].

In this paper, we review 5 recent real-world and industry-relevant case studies from
the literature that involved usage of SMC. Such case studies range on very different
application areas, namely:

• verification of an intelligent service for peak shaving in smart grids;

• generation of Virtual Patients (VPs) to enable In-Silico Clinical Trial (ISCT) for
medical services (Virtual Physiological Human [31, 36]);

• parameter estimation for an application to stream audio in wireless sensor networks;

• computation of network latency under different system parameters for an aircraft
network;

• computation of confidence intervals for the probability of failures in the recharging
process of a Plug-in Electric Vehicle (PEV).

This shows the feasibility and flexibility of SMC when applied to real-world case studies.
A preliminary version of this paper has been presented in [68]. Here we discuss more case
studies, by also providing more details about methodologies and results. For a complete
survey of SMC methodologies themselves, see, e.g., [69, 1, 74, 7].

2. Real-World Case Studies for Statistical Model Checking
This section discusses some recent real-world and industry-relevant problems that have
been solved by using SMC or SMC-based methodologies. Namely, Section 2.1 shows an
application in the field of intelligent services for smart grids, Section 2.2 presents an
SMC-based methodology used for enabling ISCT in Virtual Physiological Human (VPH),



Section 2.3 illustrates how SMC may be used in the field of wireless sensors networks,
Section 2.4 discusses results on verifying network latency of an aircraft data network and
finally Section 2.5 computes the probability of failures in PEV recharging.

2.1. Peak Shaving in Smart Grids
An Electric Distribution Network (EDN) [71] is composed of several substations, where
each substation serves a set of residential houses. By using the measurements taken
from the home electricity mains (Advanced Metering Infrastructure, AMI), we know each
house power demand, with periodicity at least one hour. Our objective is to reduce costs
for the Distribution System Operator (DSO), by limiting the demand drawn at some or
all substations of the EDN at times of peak demand (peak shaving [73]). In fact, this
reduces costs of buying energy from the market at times of peak electricity price (which
involves usage of peak power plants [65]), and reduces overloading of network components
during times of peak demand (thus reducing substations aging), or during periods when
the system is weakened due to line/transformer maintenance or other outages [83].

Many work in the literature address the problem above, see, e.g., [34, 23, 86, 32, 77].
In this paper, we focus on the methodology in [29, 58, 59, 64], for which a verification
based on SMC techniques is available. Namely, in that line of research the problem of
achieving peak shaving is counteracted by proposing the two following intelligent services
(for an high-level schema, see Figure 1).

1. The first service (EDN Virtual Tomography, EVT) computes time-varying upper
bounds for the aggregated electricity demand resulting from the residential houses
𝑈 connected to a given EDN substation 𝑠. As a result, if the aggregated demand
of 𝑠 is kept below such upper bounds, the DSO will save in the maintenance costs
for 𝑠, as well as in energy production costs.

2. The second service (Demand-Aware Price Policy, DAPP) computes individualised
time-varying upper bounds for each residential house in 𝑈 . If a residential user
keeps its demand below the bounds computed by DAPP, then a low energy tariff is
applied, otherwise an high tariff is applied. Note that, in order to do this, residential
users must perform load shifting, by consuming more electricity when the bound is
high and less electricity when the bound is low. As a result, if all residential users
succeeds in keeping their demand below the given bounds, the aggregated demand
on 𝑠 will be below the bound computed by EVT.

However, there is no guarantee that residential users will be able to perform load shifting
so as to stay below the bounds computed by DAPP. In [57], a domain-specific statistical
model checker named Aggregated Power Demand-Analyzer (APD-A) is designed, in order
to compute the probability of violations of the bounds on the aggregated demand on
𝑠, given probabilistic deviations from the expected power demand (again, computed by
DAPP) of each single house. More in detail, APD-A takes in input:

1. the time 𝑇 on which to perform the evaluation (usually, one month divide in
time-slots of one hour);
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Figure 2: Results for Aggregated Power Demand-Analyzer from [57].
2. for each user 𝑢 ∈ 𝑈 , the Expected Power Profile (EPP) 𝑝𝑢 : 𝑇 → R, i.e., a function

taking as input a time-slot in 𝑡 ∈ 𝑇 and returning the power demand 𝑝𝑢(𝑡) (in kW)
of user 𝑢 in 𝑡; such demand is a further output of DAPP and is always below the
power bound for 𝑢 in 𝑡 (i.e., 𝑝𝑢(𝑡) ≤ 𝑃𝑢(𝑡), being 𝑃𝑢(𝑡) the upper bound output by
DAPP, for all 𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 ;

3. a probabilistic model dev𝑢 for users deviations from deviations from EPPs, i.e.,∫︀ 𝑏
𝑎 𝑑𝑒𝑣𝑢(𝑥)𝑑𝑥 = is the probability that actual power demand of 𝑢 in any time-slot

𝑡 ∈ 𝑇 is in [(1 + 𝑎)𝑝𝑢(𝑡), (1 + 𝑏)𝑝𝑢(𝑡)] (e.g.,
∫︀ 0.02

−0.02 𝑑𝑒𝑣𝑢(𝑥)𝑑𝑥 = probability that
actual power demand of 𝑢 in any time-slot 𝑡 ∈ 𝑇 deviates at most by 2% from EPP
of 𝑢);

4. the substation safety requirements, i.e., 𝑝𝑠 : 𝑇 → R s.t., for each 𝑡 ∈ 𝑇 , the DSO
wants the aggregated demand on 𝑠 to be below 𝑝𝑠(𝑡);

5. parameters for the output probability distribution 0 < 𝛿, 𝜀 < 1 and 𝛾 ∈ R, i.e., the
output values must be correct up to tolerance 𝜀 with statistical confidence 1 − 𝛿,
and the output probability distribution is discretized with step 𝛾.

As an output, APD-A returns the probability distribution for the aggregated demand
on 𝑠 resulting from EPPs disturbed with the given probabilistic disturbance model dev𝑢.
To this aim, APD-A relies on a parallel version (for cluster of computers with distributed
memory) of the Optimal Approximation Algorithm (OAA) from [28]. Figure 2 shows the
resulting output of APD-A for a group of 186 real-world houses in Denmark.

2.2. Virtual Patients for In-Silico Clinical Trials
One of the most complex problems in Medicine is assessing safety and efficacy of pharma-
cological drugs, medical devices and, more in general, treatment strategies [76]. In the



last years, a wide research area called ISCT has been developed [70, 6], with the aim to
approach such a problem via Computer Science techniques. By prioritizing the successive
in vivo experimentations, this would decrease time and cost of the overall process, reduce
animal and human testing, and enable precision medicine [37, 24, 84, 85].

A key enabler to carry out an ISCT is the availability of a population of VPs, i.e.,
a set computational models of the physiology of interest and of the Pharmacokinet-
ics/Pharmacodynamics (PK/PD) of the relevant pharmacological compounds on which
to perform computer simulations.

However, to guarantee compelling evidence of safety and efficacy of the therapy under
assessment, such a population of VP must be representative of the entire spectrum of
human phenotypes. This includes the possible individual differences in physiology and
the different possible reactions to the external stimuli (e.g., drug administrations).

Such computational, quantitative, personalized models of the human physiology and
drugs PK/PD are typically derived in two steps. First, quantitative inter-individual VPH
models are derived from qualitative knowledge from, e.g., available repositories [33, 25],
and are often formalized in terms of systems of parametric differential equations (for
continuous-time models) or different equations (for discrete-time models). Different
assignments to such (real valued) parameters yield different time courses (aka trajectories)
of the modeled biological quantities, and different reactions to the same stimuli. Thus,
a quantitative VPH model combined with a parameter assignment is regarded as a
Virtual Patient (VP), representing a human phenotype. Such VPs can then be simulated
(typically as black-box systems via numerical simulators, given the complexity of the
differential equations) to assess the values of proper metrics of the therapy of interest,
e.g., expected safety and efficacy (In-Silico Clinical Trials, ISCT).

Unfortunately, computing VPs is all but easy. Indeed, most of the legal assignments to
a VPH model do yield model trajectories which clearly violate human physiology. This
is because such models are often over-parameterised, and unknown inter-dependency
constraints among the various parameters do exist. Also, parameters are often introduced
to model not-well-understood biological mechanisms (see, e.g., [82, 61]), or to abstract
away details that are not needed to be modeled accurately to perform the planned
verification activity. Also in this case, a random assignment to such parameters would
yield, with very high probability, an overall model behavior which is clearly non-admissible
from a biological standpoint.

The major obstacle is thus to automatically recognize whether a model parameter
assignment is a (physiologically admissible) VP, and to search for such VPs in the
(typically huge real-valued) space of model parameter assignments.

However this is not enough. Indeed, since, in order to carry out an ISCT we need a
population of VPs representative of the entire spectrum of the phenotypes entailed by
the VPH model, we need to search for all VPs satisfying the physiological admissibility
criterion. Furthermore, since complex VPH models are often non-identifiable, it is often
the case that several parameter assignments yield VPs which have indistinguishable
(with respect to some given tolerance) trajectories under all time series of external
stimuli (e.g., drug administrations). The presence, in the computed population, of such
indistinguishable VPs would be a major source of redundancy, hence inefficiency of the



Figure 3: Results for Virtual Patients coverage from [79]

verification process, and should be avoided.
In [79], SMC-based techniques are used to drive global search (intelligently guided by

an heuristic) in the VPs parameters space. Namely, starting from a (non-identifiable)
VPH model and suitable biological and medical knowledge elicited from experts to
formally define what a physiologically admissible trajectory is, such techniques compute a
population of VPs which is representative of the entire spectrum of phenotypes entailed by
the model and does not contain indistinguishable VPs, up to the user-requested statistical
guarantees. Namely, given user-defined constants 𝜀, 𝛿 ∈ (0, 1), when the algorithm
terminates, the probability that further sampling will yield a VP showing an unknown
phenotype (i.e., a phenotype not already included in the population computed so far) is
≤ 𝜀 with statistical confidence ≥ 1 − 𝛿.

The effectiveness of such approach has been proven on GynCycle [75], a non-identifiable
model of the female Hypothalamic Pituitary Gonadal (HPG) axis, consisting of 33 highly
non-linear stiff ordinary differential equations. Namely, a population of 4,830,264 VPs
(each one being an assignment to 75 real-valued parameters) was generated and stratified
into 7 levels (at different granularity of behaviours). The representativeness of such VPs
was assessed against 86 retrospective health records from Pfizer, Hannover Medical School
and University Hospital of Lausanne. Figure 3 shows that the datasets are respectively
covered by such VPs within Average Normalised Mean Absolute Error (ANMAE) of 15%,
20%, and 35%.

The computed population of VPs was then used in [50, 80] to compute, again in
silico, optimal robust personalised treatments for assisted reproduction, an area currently
showing many factors that can be hardly kept under full control [40, 30, 39]. Namely,
digital twins of human patients were computed by selecting those VPs best matching
clinical measurements on them, and a black-box simulator of the VPH model in [75] was
driven [78] via intelligent backtracking on such digital twins.



Figure 4: SBIP model of the wireless sensor network from [67]

Figure 5: Results for properties 𝜑1 and 𝜑2 from [67]

2.3. Wireless Sensors Network
In this section we discuss a low-level engineering application, namely an audio streaming
application over a Wi-Fi network. Such an application is representative of a wide area
of applications on networked systems [43, 44]. In such a network, several nodes are
equipped with microphones which produce different audio streams and are transmitted
to a base station equipped with a speaker to play the received audio. The goal is
to ensure the synchronization between the different nodes of the network, in order to
guarantee a consistent audio output. To this extent, in [42, 67] a Phase Locked Loop
(PLL) synchronization master-slave protocol [15] is designed so that all nodes in the
network agree on a synchronized clock, within a 1𝜇𝑠 tolerance.

In order to show that the PLL synchronization protocol fulfills the main design
requirement, as well as to perform a parameter tuning of the main protocl parameters, the
SBIP statistical model checker [63] is used, which is based on the Behaviour, Interaction,
Priority (BIP) framework [10]. A schema of the SBIP model for the PLL is shown in
Figure 4. Namely, the following three properties were verified:

𝜑1 the size of the slave buffer must be below its maximum capacity (no overflow);

𝜑2 the master buffer must be not empty (no underflow);

𝜑3 it must hold that the difference between the Master clock 𝜃𝑚 and the software clock,
computed in every Slave 𝜃𝑠, must be within a given bound Δ with high probability



Figure 6: An AFDX architecture from [9]. E.S. stands for “end-system”, which is a source of
information

and accuracy.

For 𝜑1, many verifications were run, by varying the size of the slave buffer. Analogously,
for 𝜑2 the initial playout (i.e., the delay after which the master starts consuming from
its buffer), was varied. The results are shown in Figure 5, as a function of the size of the
buffer and of the initial delay, respectively. Of course, in both cases we are interested in
the probability of 𝜑1 and 𝜑2 to be as close to 100% as possible. From the verification
results it is possible to conclude that the optimal value for the slave buffer is 400 slots,
while the optimal value for the inital playout is 1430 ms.

Finally, as for 𝜑3, again many verifications were run, by varying Δ as the specific time
bound between the master clock and the software clock. The obtained result was that, for
the considered setting, the smallest bound that ensures the synchronisation is Δ = 76𝜇𝑠.

2.4. Avionics Full-Duplex Switched Ethernet
Avionics Full-Duplex Switched Ethernet (AFDX) is a network architecture used in many
aircrafts, such as Airbus, Boeing, AgustaWeistland, Comac and many others. It has been
patented by Airbus in order to provide data network connection inside aircrafts while
maintaining deterministic quality of service.

In [9], SMC is used in order to estimate AFDX performances under various assumptions
(scenarios), by focusing on a given AFDX architecture (see Figure 6, though the method
may be easily generalized). The main idea is to model the network by replacing the
network switches with a probability distribution for the delay experienced by a packet
which traverses a given switch. Then, the network latency is estimated, when varying
the following network parameters:



Figure 7: Results for AFDX verification (scenario 2 from [9]): left is for 10 VLs, center is for 20 VLs
and right is for 30 VLs

• number of Virtual Links (VLs), i.e., of logical unidirectional connections from one
transmitter end-system to one or many receiver end-systems;

• number of frames (i.e., packets);

• size of the Bandwidth Allocation Gap (BAG), i.e., the time interval allocated for
the transmission of one packet.

We review one of the main results of SMC usage on such case study from [9]. Three
experiments are performed with increasing number of VLs (let 𝑋 be such number),
namely 10, 20, and 30 links. For all VLs we have that BAG is 4 ms while the frame size
varies from 100 (for end-system number 1) to 500 bytes (for end-system number 5). Note
that end-system number 6 is not considered in this scenario. For each 𝑋 ∈ {10, 20, 30},
the task is to compute the probability that the total delivery time for packets (network
latency) is smaller than a given bound, until we reach probability one. The results are
given in Figure 7. We note that, for end-system 1 (which only traverses one switch), the
results are better, i.e., the network latency is always below 500 𝜇s (𝑋 = 10), 1000 𝜇s
(𝑋 = 20) and 1500 𝜇s (𝑋 = 30). All other end-systems have the same (worse) results,
as they traverse two switches. Namely, the network latency is always below 1100 𝜇s
(𝑋 = 10), 2000 𝜇s (𝑋 = 20) and 3000 𝜇s (𝑋 = 30).

2.5. Recharging of a Plug-in Electric Vehicle
PEVs are being increasingly used in the last decade all over the world [87]. Being able
to efficiently recharge PEVs is of great importance, and has impacts on the smart grids
field again.

In this case study, we consider a Tesla Model S with a battery capacity of 90kWh which
must be charged at a charging station. The model consider we consider here (see [12, 72])
provides several features, such as:

1. charging may be probabilistically delayed, modeling that the grid is currently
congested;
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2. the amount of time after which the PEV is disconnected is unknown, so it is
modeled as a normal probability distribution;

3. the charging processes starts from an empty battery, goes through a “good” charging
state after a given time interval and end up in a “full” charging state after another
time interval;

4. it is possible to charge the PEV multiple times;

5. one entire week of operation is considered, where recharging is also started in the
night and the PEV has to be found fully recharged on the next morning (at an
unknown time, as discussed above);

6. we want to compute the probability that the recharging process fails at least
𝑛𝑓𝑎𝑖𝑙 ∈ {2, 3, 4, 5} times.

Results for the confidence intervals of the resulting probability is shown in Figure 8,
as a function of the number of failures 𝑛𝑓𝑎𝑖𝑙. Note that probabilities decrease very fast
when increasing 𝑛𝑓𝑎𝑖𝑙.

3. Conclusions
In this work, we have reviewed some recent real-world problems that were solved using
SMC-based techniques. Such problems were taken from very different application areas:

• smart grid intelligent services, in order to compute the probability of EDN sub-
stations to be overloaded, when residential users may deviate from their expected
power profiles;

• Virtual Physiological Human, to generate a population of VPs for ISCT of drugs,
medical devices and treatment strategies, s.t. such population is complete and not
over-representative;



• wireless sensor networks, in order to find the smallest bound for clock synchroniza-
tion accuracy of an audio streaming application;

• aircraft data network (AFDX, Avionics Full-Duplex Switched Ethernet), in order
to estimate network latency under different system parameters such as frame size,
BAG and number of VLs;

• Plug-in Electric Vehicles, in order to estimate the probability of failures during the
recharging process.

This results show that SMC is a mature methodology which can be successfully applied
to real-world meaningful problems.
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