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Abstract
The optimization of daily operating room surgery schedule can be problematic because of many con-

straints, like to determine the start time of different surgeries and allocating the required resources,

including the availability of beds in different units. Recently, Answer Set Programming (ASP) has

been successfully employed for addressing and solving real-life scheduling and planning problems in

the health-care domain. In this paper we present an enhanced solution using ASP for scheduling and

rescheduling operating rooms taking explicitly into considerations the availability of beds for intensive

and post-anesthesia care units. We tested our solution on different benchmarks with realistic parameters.

The results of our experiments show that ASP is a suitable methodology for solving also such enhanced

problem.

Keywords
Healthcare, Operating Room Scheduling, Answer Set Programming

1. Introduction

Hospitals have in long waiting times, surgeries cancellation and even worst resource overload,

problems that negatively impact the level of patients satisfaction and the quality of care provided.

Within every hospital, Operating Rooms (ORs) are an important unit. As indicated by [1], the

ORs account for approximately 33% of the total hospital budget because it includes high staff

costs (e..g, surgeons, anaesthetists, nurses) and material cost. Nowadays, in most modern

hospitals, long surgical waiting lists are present because of inefficient planning. Therefore, it is

extremely important to improve the efficiency of ORs management to enhance the survival rate

and satisfaction of patients, thereby improving the overall quality of healthcare system.

To manage the ORs, a solution has to provide the date and the starting time of the surgeries

required, considering the availability of ORs and beds, and the other resources requested. In

particular, after the surgeries, some patients could require to remain in the hospital, either

in the post-anesthesia care unit for some hours or in the intensive care unit, for some days.

The Operating Room Scheduling (ORS) [2, 3, 4, 1] problem is the task of assigning patients to

ORs by considering specialties, surgery durations, shift durations, and beds availability, among
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others. Further, the solution must prioritise patients based on health urgency. In recent years

a solution based on Answer Set Programming (ASP) [5, 6, 7] was proposed and is used for

solving such problem [8, 9], that followed other similar scheduling problems in this context

(e.g., Nurse Scheduling [10, 11]): this is because ASP combines an intuitive semantics [12]

with the availability of efficient solvers [13, 14] put forward by the ASP Competition series

(see, e.g., [15, 16, 17]). We have recently enhanced the previous solutions by incorporating bed

management [18]. In this paper we improve the solution and present an enhanced encoding

that takes into explicit account the availability of beds for post-anesthesia care unit (PACU),

other than for the ward and the intensive care unit (ICU). The problem is expressed in ASP as

modular additions to previous, more limited encoding, of ASP rules implementing PACU, and

then efficient solvers like clingo [19] are used to solve the resulting ASP encoding. Results

for planning horizons of 5 days, obtained on different scenarios with realistic parameters for a

small-medium sized Hospital are positive, and inline with Hospital needs, and further confirm

that ASP is a suitable methodology for solving scheduling problems in the healthcare domain.

The paper is structured as follows. Section 2 describes the target problem in an informal way,

whose ASP encoding is presented in Section 3. Section 4 shows the results of our experiments.

The paper ends in Section 5 by showing conclusions and possible topics for further research.

2. Problem Description

In this paper, the elements of the waiting list are called registrations. Each registration links a

particular surgical procedure, with a duration, to a patient.

The overall goal of the ORS problem is to assign the maximum number of registrations to

the operating rooms (ORs). As first requirement, the assignments must guarantee that the

duration of surgeries assigned to a particular OR does not exceed the closing time of the OR

itself: patients must be assigned to a starting time taking into account the duration of their

surgeries, to be sure that the surgery is completed before the closing time of the OR. Moreover,

registrations are not all equal: they can be related to different medical conditions and can be

in the waiting list for different periods of time. These two factors can be unified in a unique

concept: priority. Registrations are classified according to three different priority categories,

namely P1, P2 and P3. The first one gathers either very urgent registrations or the ones that

have been in the waiting list for a long period of time; it is required that these registrations are

all assigned to an OR. Then, the registrations of the other two categories are assigned to the top

of the ORs capacity, prioritizing P2 over P3 (minimization). Moreover, in addition to the solution

proposed in previous works, in this paper we handle the management of the post-anesthesia

care unit (PACU) unit, other than the ward and the intensive care unit (ICU). The stay in PACU

or ICU can be needed for patients involved in complex surgical operations; in particular, patients

requiring ICU remain in this unit for 1 or more days, while patients requiring PACU can remain

in the unit for few hours (usually 60 or 180 minutes) after the surgery. Thus, the solution have

to assign a bed for the needed amount of time to patients in the PACU or in the ICU.

However, in hospital units it is frequent that one planned assignment of ORs cannot be

fulfilled due to complications or conflicts that may occur either during the surgery or before. In

particular, surgeries may last longer than expected or some patients may delete the registration.



1 0 {x(RID,PR,ORID,S,DAY,HOUR): HOUR + SURGDUR < M} 1:- reg(RID,PR,SURGDUR,_,SPECID,_,_,PACUDUR),
mss(ORID,S,SPECID,DAY), blockDuration(M,ORID,S),HOUR=0..M.

2 regSurgery(RID,DAY, HOUR .. HOUR+SURGDUR-1,ORID,S) :- x(RID,_,ORID,S,DAY,HOUR),
reg(RID,_,SURGDUR,_,_,_,_,_).

3 :- regSurgery(RID1,DAY,HOUR,ORID,S), regSurgery(RID2,DAY,HOUR,ORID,S), RID1 != RID2.
4 admissionDatesIC(RID,DAY..DAY + ADMDURIC - 1) :- reg(RID,_,_,_,_,ADMDURIC,_,_),

x(RID,_,_,_,DAY,_), ADMDURIC > 0.
5 admissionDatesPACU(RID,HOUR+SURGDUR..HOUR+SURGDUR+PACUDUR-1,S,OPDAY):-

reg(RID,_,SURGDUR,_,_,_,_,PACUDUR),x(RID,_,_,S,OPDAY,HOUR),PACUDUR>0,HOUR+SURGDUR>HOUR.
6 :- #count {RID: admissionDatesIC(RID,DAY)} > M, bedsAvailable(0,M,DAY).
7 :- #count {RID: admissionDatesPACU(RID,HOUR,S,DAY)} > M, bedsAvailable(6,M,HOUR,DAY).

Figure 1: ASP encoding of the scheduling problem

Therefore, in such cases it is required to compute a new schedule which reallocates the ORs

and, at the same time, minimizes the differences with a previously computed schedule. This

problem is usually referred to as rescheduling. In our solution, we propose a rescheduler dealing

with changes in surgeries of patients requiring to stay in the PACU after the surgery. The main

objective of the scheduling was to assign the largest possible number of registrations to the

OR sessions, while in the rescheduling problem the objective is to reassign all the previously

allocated registrations and the reallocated ones with the least possible disruption to the old

schedule.

3. ASP Encoding

In this section we present the ASP encoding for the new rules and constraints required for the

managments of the PACU and ICU. These rules can be used in addition to an encoder for the

ORS problem.

We assume the reader is familiar with syntax and semantics of ASP. Starting from the

specifications in the previous section, here we present the ASP encoding, based on the input

language of clingo [19]. For details about syntax and semantics of ASP programs we refer the

reader to [12].

Data Model. The input data is specified by means of the following atoms:

• Instances of reg(RID,PR,SURGDUR,ADMUR,SPECID,ADMURIC,ADM,PACUDUR) repre-

sent the registrations, characterized by an id (RID), the priority level (PR), the duration of

the surgery (SURGDUR), the number of days the patient will need to stay in the hospital

(ADMUR), an id of the specialty of the surgical operation (SPECID), the numbers of days

the patient will need to stay in the ICU (ADMURIC), the number of days before the surgical

operation the patient will need a ward in the hospital, and the time slots the patients will

need to stay in the PACU after the surgery (PACUDUR).

• Instances of mss(ORID,S,SPECID,DAY) represent the available surgery room, charac-

terized by an id (ORID), which is available during the shift (S) for the specialty (SPECID)

in the day (DAY).



1 0 {y(RID,PR,ORID,S,DAY,HOUR): HOUR + SURGDUR < M} 1 :-
reg(RID,PR,SURGDUR,_,SPECID,_,_,PACUDUR), mss(ORID,S,SPECID,DAY),
blockDuration(M,ORID,S),HOUR=0..M.

2 :- not y(RID,PR,_,_,_,_), x(RID,PR,_,_,_,_).
3 :∼ y(RID,_,_,_,DAY,_),x(RID,_,_,_,OldD,_), DF = |DAY - OldD|. [DF@2, RID]
4 :∼ y(RID,_,_,TURN,DAY,_),x(RID,_,_,OLDTURN,DAY,_),DF = |TURN - OLDTURN |. [DF@1, RID]

Figure 2: ASP encoding of the rescheduling problem

• Instances of blockDuration(M,ORID,S) represent the last time slot (M) in which the

surgery room, characterized by an id (ORID), is open during the shift (S).

• Instances of bedsAvailable(SPECID,M,DAY) represent the number (M) of available

beds in the specialty (SPECID) during the day (DAY).

• Instances of bedsAvailable(SPECID,M,HOUR,DAY) represent the number (M) of avail-

able beds in the specialty (SPECID) during the day (DAY) in the hour (HOUR).

The output is an assignment represented by atom of the form:

x(RID,PR,ORID,S,DAY,HOUR)

where the intuitive meaning is that the surgery of registration with id RID and priority level PR
in the room ORID is assigned to the shift S in the day DAY and to the hour HOUR.

Encoding. The additional part of the encoding is shown in Figure 1, and is described in the

following: the full encoding includes the one in [18] plus the current rules. To simplify the

description, we denote as ri the rule appearing at line i of Figure 1.

Rule r1 assigns registrations to a day, an hour and a shift. The assignment is made assigning

an hour that summed to the duration of the surgery is before the closing time of the room. Rule

r2 and 3 are used to check that every registration is assigned to a day, an hour, a shift, and an

operatory room in which there are no patients already assigned. Then, rule r4 and r5 assigns

the number of days and hours after the surgery to patients requiring to stay in ICU and PACU

respectively. Rule r5 and r6 are used to be sure to have less patients than available beds in the

ICU and PACU, characterized by a specialty ID equal to 0 and 6, respectively.

3.1. Rescheduling

We now formulate the rescheduling in ASP. As for the scheduling, in Figure 2 are presented

just the new rules needed by the rescheduler, while the rules that checks the availability of beds

and space in the ORs are equal to the rules presented in Figure 1, the only difference is that the

assignments are represented by atoms y instead of x.

3.1.1. Data Model

The input data is specified by means of the following atoms:

• The old planning is encoded through facts represented by instances of the predicate

x(RID,PR,ORID,S,DAY,HOUR).



• mss, reg and blockDuration are described by the same predicates as in the previous

section.

The output is a new assignment, represented by atoms of the form

y(RID,PR,ORID,S,DAY,HOUR). (1)

3.1.2. Encoding

The new encoding is reported in Figure 2. It basically includes rules from r2 to r7 from the

previous encoding, where atoms over the predicate x are replaced with y, respectively. Rule r1
works as the first rule in the previous encoding. Constraint r2 must be added to ensure that for

every single registration in the old schedule (x predicate) there is an assignment in the new one

(y predicate). Rule r3 minimizes the difference in days between the new and old assignments,

while rule r4 minimizes the difference in shift between the new and old assignments that have

been reassigned the same day as in the old schedule.

4. Experimental Results

4.1. Benchmarks

The test cases we have assembled for the initial planning are based on the requirements of a

typical middle sized hospital, with five surgical specialties to be managed. To test scalability,

other than the 5-days planning period, which is the one that is widely used in Italian hospital

units, two benchmarks of different beds availability were created. Each benchmark was tested

10 times with different randomly generated inputs. The characteristics of the tests are the

following:

• 2 different benchmarks, comprising a planning period of 5 work days;

• 10 ORs (that can represent a hospital of small-medium size), unevenly distributed among

the specialties;

• 5 hours long morning and afternoon sessions for each operating room, summing up to a

total of respectively 3000 hours of ORs available time for the two benchmarks;

• for each benchmark are generated 350 patients from which the scheduler will draw the

assignments.

• 90 percent of patients require to stay in the PACU, while 10 percent require to stay in the

ICU. Registrations are characterized by a surgery duration, a specialty and a priority. In

this way, we simulate the common situation where a hospital manager takes an ordered,

w.r.t. priorities, waiting list and tries to assign as many elements as possible to each OR.

The surgery durations have been generated assuming a normal distribution, while the priorities

have been generated from a quasi-uniform distribution of three possible values (with weights

respectively of 0.20, 0.4 and 0.4 for registrations having priority 1, 2 and 3, respectively).

The two scenario generated differs for the beds availability, in particular, the first scenario

(Scenario A) simulates high availability of beds for all the specialties, even for the PACU and



Table 1
Beds Available in Scenario A and B in all the specialties

Specialty #beds Scenario A #beds Scenario B
ICU 40 4 - 6

1 80 20 - 50
2 58 10 - 35
3 65 10 - 35
4 57 8 - 18
5 40 10 - 25

PACU 15 5

ICU, while the second scenario (Scenario B) is characterized by low beds availability for all the

units. In scenario A, the number of beds are the same for each specialty in all the day, while in

scenario B each day the number of beds increase for each specialty. The number of available

beds for the different specialties in the two scenarios are summed up in Table 1, where for

scenario B the range is reported.

4.2. Results

The experiments were run on a AMD Ryzen 5 2600 CPU @ 3.40GHz with 16 GB of physical RAM.

Results of the experiments are reported for both scenario A and B in Table 2. Each benchmark

was tested 10 times with different randomly generated inputs. A time limit of 60 seconds was set

for each experiment. In each table averages for 10 instances for each benchmark are reported.

The first three columns show the number of assigned registrations out of the generated ones

for each priority P1, P2 and P3, while the last three columns show a measure of the total time

occupied by the assigned registrations as a percentage of the total OR time available (indicated

as OR time Eff in the tables) and the total percentage of ICU and PACU beds usage (indicated

respectively as ICU Eff and PACU Eff in the tables). As we can see, in scenario A (Table 2) the

solution was almost able to assign a day and hour of surgery to all the patients with priority 2.

In this scenario the scheduler is more limited by the OR time available than by the availability

of beds in ICU and PACU. To validate the goodness of our results we used as baseline a model

that does not take into account PACU beds. Thus, we deleted rules r5 and r7 from the encoder

presented in Figure 1. The results obtained by the model in the scenario A lead to an increase

of the Total OR time Efficency of just 2%, since this slight increase can be explained by the fact

that the model can fill some gap between patients since it doesn’t take into account the stay

in PACU, we can say that adding the rules for the management of the PACU beds does not

deteriorate the performance of the model. In scenario B (Table 2) having decreased the number

of beds available in all the units, the schedule is not able to assign as many patients as before,

and in particular, the scheduler is limited by the available beds in ICU. Indeed, the solution

reachs 100% of usage of ICU beds with all the instances, while the percentage usage of PACU

beds, even if it is bigger than the usage in scenario A, is lower than 80%. Thus, from the results,

an hospital manager could decide to increase the number of beds for the ICU or implementing

shared beds between the two units.



Table 2
Averages of the results for Scenario A and B.

P1 P2 P3 Total OR time Eff ICU Eff PACU Eff Scenario
100% 94% 15% 78% 15% 58% A
100% 31% 3% 39% 100% 79% B

4.3. Rescheduling

To test our solution for the rescheduling problem, we used 4 different results obtained by the

scheduler in the Scenario A. In particular, we considered up to 4 patients of the specialty 4

requiring to postpone their surgery.

In all the 4 instances tested, with 1, 2, 3, and 4 patients requiring to postpone their surgery,

the rescheduler is able to reassign a day of treatment to all the patients assigned in the old

schedule, without dropping any registration.

Moreover, the rescheduler is able to assign the same day to each patient not involved in the

changes in the scenario with 1, 2 and, 3 patients requiring to postpone their surgery.

5. Conclusions and Related Work

In this paper we have employed ASP for solving the ORS problem with ICU and PACU man-

agement, given ASP has already proved to be a viable tool for solving scheduling problems.

Specifications of the problem are modularly expressed as rules in the ASP encoding, and the

ASP solver clingo has been used. We finally presented the results of a preliminary experimental

analysis on ORS benchmarks with realistic sizes and parameters on two scenario, and tested a

solution to the rescheduling problem. Our work is different from other works in the literature

dealing with PACU, such as [20], since in our model we schedule patients not only taking into

account PACU, but also other units such as ICU and multiple specialties, moreover, we proposed

a solution to the rescheduling problem and. Future work includes the design and analysis of

more scenarios, involving larger hospitals and the shared usage of beds in ICU and PACU. We

are currently working on extending our preliminary experiments. Moreover, we would like also

to implement and test other solving procedures, e.g., [21, 22, 23, 24], considering the relation

between ASP and SAT procedures [25, 26], whose goal would be to improve the current results.

Finally, we plan to add this solution into a platform of solutions for scheduling problems in

healthcare, similarly to, e.g., [27] in the context of SMT solving.

References

[1] N. Meskens, D. Duvivier, A. Hanset, Multi-objective operating room scheduling considering

desiderata of the surgical team, Decis. Support Syst. 55 (2013) 650–659. URL: https:

//doi.org/10.1016/j.dss.2012.10.019. doi:10.1016/j.dss.2012.10.019.

[2] A. Abedini, H. Ye, W. Li, Operating room planning under surgery type and priority

constraints, Procedia Manufacturing 5 (2016) 15–25.

https://doi.org/10.1016/j.dss.2012.10.019
https://doi.org/10.1016/j.dss.2012.10.019
http://dx.doi.org/10.1016/j.dss.2012.10.019


[3] R. Aringhieri, P. Landa, P. Soriano, E. Tànfani, A. Testi, A two level metaheuristic for the

operating room scheduling and assignment problem, Computers & Operations Research

54 (2015) 21–34.

[4] M. Hamid, M. M. Nasiri, F. Werner, F. Sheikhahmadi, M. Zhalechian, Operating room

scheduling by considering the decision-making styles of surgical team members: A com-

prehensive approach, Computers & Operation Research 108 (2019) 166–181.

[5] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Communica-

tions of the ACM 54 (2011) 92–103.

[6] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: Proceedings

of the Fifth International Conference and Symposium , Seattle, Washington, August 15-19,

1988 (2 Volumes), MIT Press, 1988, pp. 1070–1080.

[7] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs and Disjunctive Databases,

New Generation Comput. 9 (1991) 365–386.

[8] C. Dodaro, G. Galatà, M. Maratea, I. Porro, Operating room scheduling via answer set

programming, in: AI*IA, volume 11298 of LNCS, Springer, 2018, pp. 445–459.

[9] C. Dodaro, G. Galatà, M. Maratea, I. Porro, An ASP-based framework for operating room

scheduling, Intelligenza Artificiale 13 (2019) 63–77.

[10] C. Dodaro, M. Maratea, Nurse scheduling via answer set programming, in: LPNMR,

volume 10377 of LNCS, Springer, 2017, pp. 301–307.

[11] M. Alviano, C. Dodaro, M. Maratea, An advanced answer set programming encoding for

nurse scheduling, in: AI*IA, volume 10640 of LNCS, Springer, 2017, pp. 468–482.

[12] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,

M. Maratea, F. Ricca, T. Schaub, Asp-core-2 input language format, Theory and Practice

of Logic Programming 20 (2020) 294–309.

[13] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to

practice, Artificial Intelligence 187 (2012) 52–89.

[14] M. Alviano, G. Amendola, C. Dodaro, N. Leone, M. Maratea, F. Ricca, Evaluation of

disjunctive programs in WASP, in: M. Balduccini, Y. Lierler, S. Woltran (Eds.), LPNMR,

volume 11481 of LNCS, Springer, 2019, pp. 241–255.

[15] F. Calimeri, M. Gebser, M. Maratea, F. Ricca, The design of the fifth answer set pro-

gramming competition, CoRR abs/1405.3710 (2014). URL: http://arxiv.org/abs/1405.3710.

arXiv:1405.3710.

[16] M. Gebser, M. Maratea, F. Ricca, The design of the seventh answer set programming

competition, in: M. Balduccini, T. Janhunen (Eds.), LPNMR, volume 10377 of Lecture Notes
in Computer Science, Springer, 2017, pp. 3–9.

[17] M. Gebser, M. Maratea, F. Ricca, The seventh answer set programming competition: Design

and results, Theory Pract. Log. Program. 20 (2020) 176–204.

[18] C. Dodaro, G. Galatà, M. K. Khan, M. Maratea, I. Porro, An ASP-based solution for operating

room scheduling with beds management, in: RuleML+RR, volume 11784 of Lecture Notes
in Computer Science, Springer, 2019, pp. 67–81.

[19] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko, Theory solving

made easy with clingo 5, in: ICLP (Technical Communications), volume 52 of OASICS,

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:15.

[20] B. King, A. Leach, M. Platt, D. White, Scheduling surgical operations and the post-

http://arxiv.org/abs/1405.3710
http://arxiv.org/abs/1405.3710


anesthesia care unit using work tours and binary programming, AIMS International

Journal of Management 11 (2017) 49.

[21] E. Giunchiglia, M. Maratea, A. Tacchella, D. Zambonin, Evaluating search heuristics and

optimization techniques in propositional satisfiability, in: R. Goré, A. Leitsch, T. Nipkow

(Eds.), IJCAR, volume 2083, Springer, 2001, pp. 347–363.

[22] E. Giunchiglia, M. Maratea, A. Tacchella, Dependent and independent variables in propo-

sitional satisfiability, in: S. Flesca, S. Greco, N. Leone, G. Ianni (Eds.), JELIA, volume 2424

of Lecture Notes in Computer Science, Springer, 2002, pp. 296–307.

[23] E. Giunchiglia, M. Maratea, A. Tacchella, (In)Effectiveness of look-ahead techniques in

a modern SAT solver, in: F. Rossi (Ed.), CP, volume 2833 of Lecture Notes in Computer
Science, Springer, 2003, pp. 842–846.

[24] E. D. Rosa, E. Giunchiglia, M. Maratea, A new approach for solving satisfiability problems

with qualitative preferences, in: M. Ghallab, C. D. Spyropoulos, N. Fakotakis, N. M. Avouris

(Eds.), ECAI, volume 178 of Frontiers in Artificial Intelligence and Applications, IOS Press,

2008, pp. 510–514.

[25] E. Giunchiglia, M. Maratea, On the Relation Between Answer Set and SAT Procedures (or,

Between cmodels and smodels), in: ICLP, volume 3668 of LNCS, Springer, 2005, pp. 37–51.

[26] E. Giunchiglia, N. Leone, M. Maratea, On the relation among answer set solvers, Ann.

Math. Artif. Intell. 53 (2008) 169–204.

[27] A. Armando, C. Castellini, E. Giunchiglia, M. Idini, M. Maratea, TSAT++: an open platform

for satisfiability modulo theories, Electronic Notes in Theoretical Computer Science 125

(2005) 25–36.


	1 Introduction
	2 Problem Description
	3 ASP Encoding
	3.1  Rescheduling
	3.1.1 Data Model
	3.1.2 Encoding


	4 Experimental Results
	4.1 Benchmarks
	4.2 Results
	4.3 Rescheduling

	5 Conclusions and Related Work

