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Abstract  
The long-standing problem of adequate formalization of local names in mathematical formu-

las and semantics of references in object-oriented languages taken on their own without ob-

jects, is discussed. Reasons why the existing approaches cannot be considered suitable solu-

tions, are explained. An introduction is given to the relatively recent works on the theories of 

names and references of the group lead by Andrew Pitts. The concept of referential transpar-

ency, in which contextual equivalence is used instead of the usual equality of values, is ana-

lyzed. It is the main property, which these theories are based upon: such modified referential 

transparency is preserved when a purely functional language is extended with names and ref-

erences as data. An outline of a constructive denotational semantics of the extended function-

al language is given. It is argued that the modified referential transparency, along with many 

other valuable properties, can be also preserved for mutable objects that change to a limited 

extent. This leads to a model of computation between functional and object-oriented ones, al-

lowing for a deterministic parallel implementation.  
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1. Introduction 

Consider the long-standing problem of adequate formalization of local names, bound variables in 

formal languages and references in object-oriented languages. In mathematics and programming, over 

the years, a certain style of working with names and references has been established, and it may seem 

that there is no problem here. However, in Section 2 we show that this is not the case: the methods of 

working with formulas with quantifiers presented in textbooks on mathematical logics (for example, 

[13]) contain unpleasant subtleties, artifacts of the popular formalization style. Another solution pre-

sented by N. Bourbaki in their Treatise [5] – a graph representation of the basic mathematical lan-

guage – is by no means better, although instructive. It is discussed in Section 3. 

A group of mathematicians led by Andrew Pitts has been developing the missing theories of names 

for almost thirty years [6, 11, 14–18, 20, 21]. We discuss their works in Section 4 and the idea of a 

purely functional language based on these theories, with the data domain extended with names, in 

Section 5. In the field of object-oriented programming, names turn into references to objects. But in 

this paper names and references are treated on their own without what they name or reference to. 

From the point of view of mathematical logics, such an extended functional language is nontrivial 

since it violates referential transparency. 

In Section 6, we rectify this and show that if in the definition of referential transparency, the usual 

equality of values is replaced by contextual equivalence (a.k.a. observational equivalence, Leibniz 

equivalence), then such modified referential transparency holds for a functional language with names 
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or references. This observation is the cornerstone, which the theories developed by A. Pitts' group are 

based upon. The properties that are preserved and that are violated in the extended functional lan-

guage are analyzed in Section 7. 

In Section 8, we give an idea and outline of a constructive denotational semantics of the extended 

functional language. We hope that after reading this section, the feeling of mystery will disappear. 

In Section 9, we list the steps that can (and should) be performed further from a functional lan-

guage with names and references to objects with states—first immutable and then with restricted mu-

tation – so that referential transparency based on contextual equivalence is preserved.  

We also point out the practical significance of these works in the field of parallel programming: 

maintaining the contextual equivalence of the results of computation in any order means determinacy. 

In cases where a parallel program has the determinacy of both final and intermediate results of com-

putation, it is much easier to debug, it is predictable and reliable. (Such strong form of determinacy is 

referred to as internal.) 

Our contributions are as follows.  

 We point out the problem of adequate formalization of names and references as data and ar-

gue that the works by Andrew Pitts’ group have almost closed the problem for functional lan-

guages and opened the way to complete semantics of object-oriented languages, which has yet to 

be developed. 

 We demonstrate that contextual equivalence, together with the modified referential transpar-

ency, is the cornerstone of the theories of languages with names or references as data. 

 We present an outline of a constructive denotational semantics of the extended functional 

language. 

 We discuss steps from A. Pitts’ theories to a restricted object-oriented language that retain 

some of the nice properties of a functional one. 

2. The problem of names and references as data in metamathematics 
and programming 

In programming languages, the concept of a name appears in two seemingly different guises: iden-

tifiers of variables in program code and references to objects (Note that references and pointers arose 

in programming and made sense before the concept of an object was fully established in object-

oriented languages). 

Identifiers and references “live” in different times: variable identifiers – in static time from the 

moment when a program is written until it is converted by a compiler into executable code; references 

– in run time when a program is executed and does not change, while data are created and manipulat-

ed. These times overlap when it comes to metaprograms, programs that analyze and transform pro-

grams, where interpreters and compilers are the most known among such ones. In metaprograms, var-

iables of ground programs are usually represented by references to some objects that store the neces-

sary information. The question arises: Is this mapping of variables into references a purely program-

matic trick or does it make some sense? 

What about names in mathematics? Using the language of mathematics in everyday scientific ac-

tivity, we differently perceive variables, letters as elements of a text on paper with which we work, on 

the one hand (“static time”), and data domains, from which variable takes values in some ideal math-

ematical “run time”, on the other hand. They overlap in metamathematics, in logics, when the lan-

guage of mathematics becomes an object of study, description, analysis and transformation. And in 

programming—in computer algebra systems, where a computer rather than a person manipulates for-

mulas, “code” in mathematical languages. 

Let us look at the part of the mathematical world where variables in formulas become an object of 

definition and manipulation. 

Mathematical language is based on the fundamental concept of free and bound variables. For ex-

ample, in the formula ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦, 𝑧) the variables 𝑥 and y are bound by the quantifiers ∀ and ∃, 

respectively, and 𝑧 is a free variable, a parameter of the entire formula. It seems simple, but let us 
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open the classic textbook [13, p. 48] and see, for example, a definition of such an obscure (auxiliary!) 

notion: 

If 𝐴 is a well-formed formula and 𝑡 is a term, then t us said to be free for 𝑥𝑖 in 𝐴 if and only if 

no free occurrences of 𝑥𝑖 in 𝐴 lie within the scope of any quantifier ∀𝑥𝑗, where 𝑥𝑗 is a varia-

ble in 𝑡. 

This phrase just means that the term t can be directly substituted for x in the formula A. Another 

common way to overcome the same problem is to provide a renaming requirement in the definition of 

substitution:  

When substituting a term t into a formula A, variables under quantifiers in formula A are re-

named, if necessary, so that there is no conflict with the free variables in t. 

For example, when substituting 𝑓(𝑥) for y in ∀x P(x, y) one needs to replace 𝑥 with, say, 𝑧:  

∀𝑧 𝑃(𝑧, 𝑓(𝑥)). 

In addition, extra phrases such as “up to renaming variables”, “up to 𝛼-equivalence”, “fresh varia-

ble" are often found in reasoning, theorems and proofs about formal languages, which clutter up the 

code in proof assistants such as Coq and Agda. 

Where do these problems come from? Our intuitive understanding of quantifiers doesn't seem to 

contain such “tricks”. Looking at a variable bound by a quantifier, we perceive it differently than a 

free one – not just as a letter. We imagine that the bound variable 𝑧 in the above example is a com-

pletely different entity than the letter of the free variable 𝑥 in it: 

The letter of a bound variable under the quantifier along with its occurrences in the scope of 

the quantifier, represents a certain entity that differs from the letters of all variables and all 

values in this formular and elsewhere in the mathematical world.  

Intuitively thinking this way, we don't feel any need for renamings when substituting a term with 

such entities under quantifiers into anything. 

Thus, the notion of a term free for a given variable, as well as the requirement for renaming when 

substituting, are just artifacts of a certain way of formalization of mathematics in common mathemat-

ical textbooks and have nothing to do with the essence of the idea of quantifiers and bound variables. 

3. Solution by N. Bourbaki 

Of course, this is not news. Let us recall the formalization of quantifiers given by N. Bourbaki [5]. 

It does not carry these artifacts and is closer to our intuitive understanding. 

According to N. Bourbaki, quantifiers ∀ and ∃ with variables are not primary notions, but rather a 

readable representation of formulas in the basic language of mathematics introduced in Chapter 1 of 

Volume 1 of Treatise [5]. Interestingly, the basic language is not one-dimensional and is even more 

complex than a tree. Terms, formulas, program code, etc. in the traditional construction of formal lan-

guages are trees, and the transition from trees to graphs (for example, at the stage of name resolution 

in compilers) is a non-trivial step with a change in data representation. 

In Treatise, the quantifiers ∀ and ∃ are defined through the terms of the form τxP(x) (with the in-

formal meaning “such 𝑥 that P(𝑥) is true”), which in turn expand into a construct without the letter 𝑥. 

Let us show Bourbaki’s method of excluding variable letters, as if it were applied directly to the quan-

tifiers, without going down to the level of 𝜏-terms. 

Encoding quantifiers in the style of N. Bourbaki, we replace the occurrences of bound variables 

with signs □ and draw lines to the corresponding quantifiers ∀ and ∃, depicting a link between them. 

Free variables remain letters. For example, 

 

∀𝑥 ∃ 𝑦 𝑃(𝑥, 𝑦, 𝑓(𝑥, 𝑧)) is encoded as                                 _ 

What is instructive about this approach? Undoubtedly, N. Bourbaki sought to make the basic level 

of the language of mathematics as simple as possible. However, they made its representation not line-

∀ ∃ 𝑃(□, □, 𝑓(□, 𝑧)). 
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ar, but graphical: the code in the base language is not a linear sequence of symbols but a graph, which 

in itself is far from a trivial concept. Such decisions are not accidental.  

N. Bourbaki transferred the complexity here from another place. From where? From the substitu-

tion operation. Now the substitution of any term for any bound variable is defined without conditions 

like “a term is free for a variable” and other measures against the capture of free variables by external 

quantifiers. 

Moreover, such representation reflects our intuition, mentioned above, that a variable bound by a 

quantifier is a completely different entity than a free variable: each bound variable is different from all 

other variables in the world because it is linked to the unique occurrence of a quantifier into a mathe-

matical text. We can hypothesize that this was the decisive argument why N. Bourbaki transferred the 

complexity of the presentation of formulas to this level. 

Back to programming. How do we encode Bourbaki’s graph representation in an object-oriented 

language? The simplest solution is to keep the reference to the object representing the quantifier in the 

representation of each variable occurrence. This is how it is usually done in compilers after the name 

resolution stage: each occurrence of an identifier contains the reference to its declaration.  

Such a solution based on a graph representation cannot be programmed in a purely functional lan-

guage, bearing in mind that an adequate implementation should have the same computational com-

plexity of transitions from a vertex to a vertex along an edge as in object-oriented languages, O(1), as 

intuitively expected. The fundamental flaw of functional languages is that they do not provide means 

to efficiently represent general graphs, but only trees. The natural representation of a graph in func-

tional languages is the list of vertices and arcs. Accessing such lists is more complex than O(1). 

Moreover, this solution is complicated by the fact that it is necessary to assign unique identifiers to 

vertices and, perhaps, edges. There are no simpler solutions (except for the implementations of spe-

cialized libraries by lower level means).  

In mathematics, the notion of a graph is defined in this way as well. Apologists of purely function-

al languages love them just for this—for their close correspondence to classical mathematics with set 

theory as a basis. On the other hand, object-oriented languages fall out of this mathematical picture. 

They provide effective means for adequately representing a variety of data structures, including 

graphs. This indicates unresolved problems in the foundations of mathematical semantics of pro-

gramming languages. 

Returning to the graph representation of N. Bourbaki’s basic language, we see an interesting pic-

ture. It is based on the non-trivial notion of a graph, which is considered intuitive. Then, in set theory, 

it turns out that its concepts are not enough to adequately describe its own language (Note that the 

completeness/incompleteness of theories has nothing to do with this issue. In reasoning about the in-

completeness, it is allowed to use arbitrary complex encoding of one theory in another; only the pos-

sibility of mapping is important. On the other hand, by the “adequacy” we mean the preservation of 

computational complexity). 

These questions come up in programming when we perform analysis, program verification, and 

equivalent transformations preserving semantics. To do this, the semantics must be well defined, so 

that it is convenient and efficient to implement in proof assistants. Simply contemplating Bourbaki’s 

representation with the words “it’s intuitively clear that it works” is not enough. 

4. Works on nominal methods 

30 years ago, mathematician Andrew Pitts not only saw these problems of names and references 

(he was not the only one; see, for example, [7, 12] and [19, footnote 22 and Section 6.2]), but also be-

gan to solve them based on his mathematical experience in category theory and foundations of math-

ematics. Since then, together with his followers, he has built a rich theory of names – nominal set the-

ory [6, 11, 14–18, 21], in a broader context also called nominal methods, nominal techniques [16], and 

                                                      
2 Footnote 2 from [19]: “It is possible to postulate a data type of references (or pointers) ref 𝜃, for every phrase type 𝜃, 

whose values are storable in variables. This obtains the essential expressiveness that the object-oriented programmer desires. 

Unfortunately, our theoretical understanding of references is not well developed. So we omit them from the main presenta-

tion and mention issues relating to them in Section 6.2”. 
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in several variants—in the form of set-theoretic models, in category theory, and within the operational 

approach. 

In 2019, Andrew Pitts and Murdoch Gabbay received the ACM Alonzo Church Award for their 

ground-breaking work introducing the theory of nominal representations [1]. Papers [6, 14] are spe-

cifically mentioned in the award. Their achievements were highly appreciated by experts in logics and 

theory of computation, and now it is up to programmers to introduce these theories into the wide prac-

tice of program verification and semantics of programming languages. These results should form the 

basis of the theory of references and objects in object-oriented languages, which, as far as we know, 

has not yet been done. 

5. Functional language with reference generator and its properties 

To see the sources of problems and appreciate achievements, consider a purely functional language 

extended by a generator of new names or references. We use the later terms as synonyms, since refer-

ences are names of objects, the authors of nominal methods have applied them to formulas and pro-

gram code with local names and use this word, while the theory is well applicable to references to 

objects that interest us more. In language FreshML [15, 17, 20] developed by A. Pitts' group this op-

erator is denoted by 𝒏𝒆𝒘, as the instance creation expression in common object-oriented languages. 

The notion of an object consists of 2 parts: the notion of a reference and the notion of the state of 

an object, where references can be talked about separately from states, but not vice versa. In addition, 

to deal with changing states, the concept of computational time is necessary. But while we are consid-

ering references alone, the concept of time is not required. In the language under consideration, where 

there are no objects with changing states, all the results of function calls do not depend on the order of 

computation, and time plays no role. Now we will deal only with the semantics of names and refer-

ences as such. 

Every evaluation of the 𝒏𝒆𝒘 operator generates an atomic datum, the only property of which is to 

be equal to itself (reflexivity of equality) and to be unequal to everything else, that is, to all values in 

the data domain and all data generated by other calls to the 𝒏𝒆𝒘 operators. Thus, although time does 

not matter to us, it is necessary to distinguish between individual evaluation actions. 

Let us look at examples. Below we use the ≔ sign in the following two roles: 

 in our functional language, in the 𝒍𝒆𝒕 statement to introduce a local name with a single evalu-

ation of the right-hand side and to define functions; 

 in the metalanguage of our reasoning as “equal by definition”.  

For the rest, we use generally accepted mathematical notation, hoping that they will be understood 

without lengthy explanation. 

Example. The following expressions in a functional language with the 𝒏𝒆𝒘 operator evaluate to 

True: 

𝒏𝒆𝒘 ≠ 𝒏𝒆𝒘, 

  𝒍𝒆𝒕  𝑥 ≔ 𝒏𝒆𝒘, 𝑦 ≔ 𝒏𝒆𝒘  𝒊𝒏  𝑥 ≠ 𝑦, 

  𝒍𝒆𝒕  𝑥 ≔ 𝒏𝒆𝒘, 𝑦 ≔ 𝑥  𝒊𝒏  𝑥 = 𝑦.  

We see that re-evaluating the 𝒏𝒆𝒘 operator produces unequal references and copying preserves 

equality. 

Another example. The following function 𝑓 produces a pair of unequal elements, because every 

time 𝑓(𝑥) is evaluated, the first element of the pair will be a new reference unequal to any other value 

in the world: 

𝑓(𝑥) ∶= 〈𝒏𝒆𝒘, 𝑥〉. 

Re-evaluation of f(𝑥) always gives unequal results: 

∀𝑥 𝑓(𝑥) ≠  𝑓(𝑥). 
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6. Referential transparency and contextual equivalence 

The above examples point to the first (and main) problem of a functional language with the 𝒏𝒆𝒘 

operator: referential transparency is broken.  

Referential transparency is a property of a term (expression, subexpression) in a given language 

that replacing any occurrence of a term with its value, evaluated only once, is an equivalent transfor-

mation. For a referentially transparent language, the following properties hold for all terms 𝑡 and 

functions 𝑓 that can be defined in the language: 

𝑡 = 𝑡, 

𝑥 = 𝑦  ⟹  𝑓(𝑥) = 𝑓(𝑦). 

Referential transparency is so deeply rooted in the language of mathematics, mathematical logics 

that it seems difficult to approach the construction of a theory of a language, in which it is absent, 

without falling into the operational semantics with the notion of computational time. In particular, the 

denotation semantics of purely functional languages, which maps code of function definitions into 

functions of set theory, relies heavily on referential transparency. 

Nevertheless, as the work of A. Pitts’ group has shown, such a theory is possible, interesting, and 

productive. Its success is based on the following observation:  

The values obtained by multiple evaluation of a term in a functional language 𝐿 with the 𝒏𝒆𝒘 

operator possess contextual equivalence (observational equivalence, Leibniz equivalence). 

Two values x and y of some type D are contextually equivalent (denoting x ≈  y) if they are indis-

tinguishable by any predicate c, that is, a function of type D →  Bool, defined in language L: 

x ≈  y  ≔ (∀𝑐 ∈ 𝐿) 𝑐(𝑥) = 𝑐(𝑦). 

It turns out that a functional language with the 𝒏𝒆𝒘 operator has the following property. 

For all terms t, functions f and values x and y we have 

𝑡 ≈  𝑡, 

𝑥 = 𝑦  ⟹  𝑓(𝑥) ≈  𝑓(𝑦) 

and more than that 

𝑥 ≈  𝑦  ⟹  𝑓(𝑥) ≈  𝑓(𝑦). 

What we have obtained is a modified referential transparency, where equality of values is replaced 

with contextual equivalence. 

Note that contextual equivalence cannot be checked within a language, there is no such computa-

ble relation as ≈, unlike the usual equality of values =. Contextual equivalence is a notion of the theo-

ry, the mathematical metalanguage. 

7. Preservation and violation of functional language properties 

A functional language with a reference generator 𝒏𝒆𝒘 retains many of the good properties of 

purely functional languages, when equality = is replaced by equivalence ≈. Of course, when formu-

lating equivalent transformations, it is necessary to keep track of which of these relations plays a role.  

For example, the common subexpression (subterm) elimination is no longer an equivalent trans-

formation in the general case (here the ⟹ sign means “equivalently converts to”, rather than “im-

plies” as above): 

… 𝑡 … 𝑡 …  ⟹  𝒍𝒆𝒕 𝑥 ≔ 𝑡  𝒊𝒏 … 𝑥 … 𝑥 … 

Nevertheless, such transformations can be used by imposing restrictions on the corresponding 

piece of code so that it does not go beyond the purely functional subset or go “not very much”. Two 

examples of such restriction: 

1. In case the language is statically typed: The type of term 𝑡 does not use the reference type. 
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2. During evaluation of 𝑡, no new reference is generated (e.g., if there are no 𝒏𝒆𝒘 operators in 

the code of function used in 𝑡) or new references do not fall into the value of 𝑡 (which can some-

times be determined by static analysis of data dependencies). 

Violation of the equivalence of the common subexpression elimination indicates that the classical 

construction of denotation semantics for functional languages, which assigns each language term its 

denotate, no longer works. According to the traditional denotational semantics, copies of the denotate 

of a term can be used as the result of evaluating all the occurrences of the term, which is not our case. 

Nevertheless, the following properties are preserved in a functional language with references, albe-

it in a modified form: 

 There exists the notion of a denotate of a term, which, although not a ready-made value, can 

be used instead of re-evaluating each copy of the term with a complexity not exceeding that of 

copying the denotate. This follows from the work of A. Pitts’ group on set-theoretic models of 

nominal sets and the so-called 𝜈-calculus [18]. The idea of such a denotate is presented in Section 

8 below. 

 Based on this, it is possible to give a denotative semantics of the extended functional lan-

guage, which maps the code of each function definition to a set of pairs of a certain form, describ-

ing the relationship of subsets of arguments with denotations of the corresponding values. The idea 

of this construction is also shown in the next section. 

 Due to the existence of such modified denotation semantics, the implementation of the ex-

tended functional language retains the possibility of memoization or tabulation: every time a given 

function is called, a pair 〈𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡, 𝑣𝑎𝑙𝑢𝑒〉 is stored in a special table, a memo, and the 𝑣𝑎𝑙𝑢𝑒 is 

used in the subsequent calls when the argument is “congruent” to the stored one. Such a mecha-

nism should not be used for functional languages in general, as it is time-consuming and memory-

intensive, but it is justified for individual functions under the control of the programmer in cases 

where it can give a gain in efficiency. 

 Last but not least, the determinacy of parallel computation inherent in purely functional lan-

guages is preserved, that is, the results obtained in any order of sequential or parallel computation 

of function calls are contextually equivalent. This mechanism is not always useful in general due 

to overly small granules of parallelism, but it can greatly increase efficiency under the program-

mer’s control by specifying which function calls are beneficial to compute in parallel. 

8. Constructive denotational semantics of a language with names 

Let us show the essence of the idea by presenting an outline of a semantics of an extended func-

tional language with references. The semantics is denotational in the sense that it assigns to each func-

tion definition and to each closed term a certain entity, which can be used instead of evaluating a 

function call. On the other hand, it is not a value, copies of which can be used instead of a term, as in 

the traditional denotational semantics. The construction is a little trickier. Below we follow our 

presentation at a conference [9]. 

Consider a pure functional language of your choice – be it statically typed (as Haskell) or untyped 

(as Lisp). A first-order language (without lambda expressions) is sufficient for our purposes, although 

there are no problems with a higher-order language either. Any of the usual operational semantics of 

the language is suitable.  

Now extend the data domain with references that are atomic in the sense that each one has no other 

property than being equal to itself and unequal to other data, along with the 𝒏𝒆𝒘 operator that gener-

ates a new reference each time it is called. The values passed as arguments and returned by functions 

are like the usual ones, but may contain references inside, e.g., a list of references is a first-class val-

ue. 

The usual set-theoretic denotational semantics, where each term is assigned a single denotation 

that can be used in place of all occurrences of the term, does not work, because the result of a function 

call containing new references, e.g., that of term 𝒏𝒆𝒘 in the simplest case, cannot serve as such a de-

notation. Moreover, the data domain with references is not a set in the sense of classical set theory. Of 
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course, non-standard set-theoretical models are possible, and they were indeed developed by A. Pitts’ 

group [6, 11, 15, 16], but this greatly complicates the study. 

Let the denotation of a closed term 𝑡 not be the result of its evaluation 𝑦, as usual, but a term of the 

following form, obtained from 𝑦 by considering as variables all new references 𝑛1, … , 𝑛𝑘 produced 

during the evaluation of 𝑡 and prepending the list of new references to 𝑦: 

ν 𝑛1 … 𝑛𝑘 . 𝑦. 

Here 𝜈 is a special symbol (like 𝜆 in lambda expressions). Results of each evaluation action of the 

term 𝑡 are obtained from this denotation by evaluating the following lambda expression: 

(𝜆 𝑛1 … 𝑛𝑘 . 𝑦) 𝒏𝒆𝒘 … 𝒏𝒆𝒘 

which means this: substitute new references for all variables 𝑛1, … , 𝑛𝑘 in 𝑦. 

Let the denotation of a function 𝑓 be a set of terms of the following form (rather than a set of ar-

gument-value pairs, as usual): 

𝜆 𝑚1 … 𝑚𝑙 . 𝑥 ↦ 𝜈 𝑛1 … 𝑛𝑘. 𝑦. 

Such function denotation determines the result of evaluating a function call 𝑓(𝑎) as follows. Find 

the element of the denotation with such left-hand side 𝑥 and such references 𝑏1, … , 𝑏𝑙 occurring in 𝑎 

that 𝑎 = (𝜆 𝑚1 … 𝑚𝑙 . 𝑥)𝑏1 … 𝑏𝑙. Then return the result by evaluating the following lambda expression 

(𝜆 𝑚1 … 𝑚𝑙 . 𝑥)((𝜆 𝑛1 … 𝑛𝑘 . 𝑦) 𝒏𝒆𝒘 … 𝒏𝒆𝒘) 𝑏1 … 𝑏𝑙. 

We see that this semantics satisfies the usual requirements for denotational ones: every term and 

function in a program has a denotation, although denotations are constructive terms rather than ele-

ments of the set-theoretic world. Therefore, it is referred to as constructive denotational semantics. 

One can look at the function denotations from an operational point of view as they grow during 

computation. The denotations are gradually collected at each function call 𝑓(𝑥) by constructing an 

element of the denotation of 𝑓 from the argument-value pair, where 𝑚1 … 𝑚𝑙 are all references found 

in the argument 𝑥, 𝑛1 … 𝑛𝑘 are the references generated during evaluation of the function call. It can 

be proved that the ordinary evaluation and the evaluation using these denotations give contextually 

equivalent results. This operational view shows the idea of tabulation or memoization that can be im-

plemented for such languages. 

9. What has been achieved and what's next? 

Andrew Pitts, Ion Stark, Murdoch Gabbay and other authors [6, 11, 14–18, 21] developed several 

theories of functional languages with the name or reference generator based on set theory, category 

theory, as well as within an operational approach, and applied them to construct mathematical seman-

tics of local names in formal languages and their equivalent transformations. These theories are richer 

and more convenient than the traditional reasoning about scopes, name shadowing, etc. In addition, 

they have implemented packages for the Coq and Agda proof assistants to automate constructing and 

checking proofs in terms of nominal methods. 

The next step that has yet to be done is to build a complete theory of objects in object-oriented 

languages using a suitable theory of references. Existing theories are incomplete, as they leave ques-

tions of the exact semantics of references to naïve or semi-formal reasoning. As far as the authors of 

this article are aware, there has been no significant progress in the field of semantics object-oriented 

languages for decades, but this should happen after the ACM Award [1] has attracted attention of 

computer scientists to the achievements of A. Pitts’ group.  

Along this path, a theoretically interesting and practically important question is the construction of 

computational models intermediate between functional languages with a reference generator and gen-

eral object-oriented languages. They can be created either by extending functional languages while 

retaining the selected properties, or by restricting object-oriented languages so that the necessary 

properties are fulfilled, or by a combining both. 

Our main task here is to move along this scale as far as possible while maintaining the modified 

referential transparency based on contextual equivalence as a fundamental property, from which other 
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useful properties follow, albeit in a modified form. In particular, it is more reasonable to define the 

determinacy of parallel computation through the broader notion of contextual equivalence, rather than 

through the equality relation built into programming languages, since the indistinguishability of the 

results obtained in different orders of computation, rather than their equality, matters from a practical 

point of view. 

Currently, the following stages of loosening restrictions and adding notions are observed: 

 As a starting point, take a purely functional language with a reference generator, but without 

the concept of a stateful object. This level is discussed above. 

 Add the notion of an immutable object. At first glance, there is little practical benefit from 

this, except that the reference equality is more efficient, it is checked much faster than comparing 

the content of objects (of course, provided that it corresponds to the meaning of the task). Howev-

er, there is both a theoretical and a practical purpose of equality by reference: it can be defined for 

all data, including those that previously have no reasonable computable equality. For example, the 

functional values generated by lambda expressions, closures, are of this type. Some languages 

(e.g., Haskell) forbid comparing closures based on the idea that the equality of functions is algo-

rithmically undecidable. However, closures are trivially equivalent if they are copies of the result 

of the same evaluation of a lambda expression – similar to how equal references go back to the 

same evaluation action of the operator 𝒏𝒆𝒘. Such equality can always be defined for all data. Its 

only flaw is the lack of referential transparency. The special role of such equality is not accidental: 

it is initial in the sense of category theory, that is, the strongest relation entailing any other equiva-

lence relation. 

 Next, we allow mutation of the states of objects, but only those that are invisible from the 

point of view of the “observer” (from program code in this language), that is, the side effects are 

such that any order of computation produces contextually equivalent results. An open problem: Is 

it theoretically possible to characterize object classes defined in an object-oriented language that 

retain contextual equivalence for all (sub)expressions in the language? The general answers to 

these and similar questions seem to be negative, since here we are faced with algorithmic undecid-

ability. But, as is usually the case both in mathematics and in programming practice, it is often 

possible (and necessary) to identify and study interesting special cases for which something mean-

ingful can be said. 

 Such a rich special case are objects that can be described as changing monotonically on some 

(semi)lattice [10]. It turns out that modified referential transparency based on contextual equiva-

lence is maintained by a certain discipline of operations on objects, which we refer to as monotonic 

objects. This issue is investigated in [2–4, 8, 9]. An open problem: How to mathematically de-

scribe a lattice for a monotonic class declaration in an object-oriented language.  

 In terms of monotonic objects, it is necessary to study how to solve practical problems that 

are not possible to implement in purely functional languages as efficiently as in object-oriented 

ones. First of all, the main flaw of purely functional languages is to overcome, which is that only 

trees can be manipulated in them, while graphs have to be encoded with less efficient data struc-

tures then in object-oriented languages, where vertices are naturally represented by objects, and the 

transition from a vertex to a vertex along an edge is a cheap atomic operation “dereferencing”. It 

turns out that this problem is solvable [4]. 

 Next, we want to get the most out of computational models that are close to object-oriented 

but retain valuable properties of functional programs. Analysis, transformations, verification, par-

allelization of programs and metacomputation in general – all these kinds of program manipula-

tion are more effective for languages with no or limited side effects. This is clearly seen in the 

greater or lesser successes of program specialization, such as partial computation and supercompi-

lation, for different classes of languages. In particular, the tabulation or memoization mechanism, 

implemented based on the denotational semantics described in Section 8, can be used to implement 

dynamic partial computations [8]. 

The present authors are working on such model of computation, intermediate between functional 

and object-oriented ones, and a Java-like language that satisfies the above properties, with the practi-

cal goal of implementing a deterministic parallel programming system that will free the programmer 
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from the torment of debugging non-deterministic parallel programs on a fairly wide class of problems 

[2–4]. 
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11.  Conclusion 

We have considered the long-standing problem of adequate formalization of local names in formal 

languages in both mathematics and programming languages, as well as the problem of formalization 

of the semantics of references in object-oriented languages. Considering the history of the issue, mo-

tivations and solutions, we came to the conclusion that these are one and the same problem, and the 

seeming difference is that these concepts refer to different kinds, times, periods of activity, which 

have well-established names in programming: we deal with names in formal texts in static time, when 

a mathematical text or program is written and processed, e.g., by a compiler; and manipulation of data 

with references happens “in dynamics”, during run time of a program on a computer and when math-

ematical statements are evaluated in some ideal mathematical world. These periods intersect when a 

mathematical text becomes an object of manipulation on a computer, in computer algebra systems, in 

logics and metamathematics, and programs undergo deep analysis and transformation in metacompu-

tation. An adequate theory of names and references is wanted. 

Over the past decades, Andrew Pitts' group has made significant progress in the construction of 

such theories [6, 11, 14–18, 20, 21], for which they recently received the ACM Award [1]. They built 

models of nominal sets, that is, data domains with names or references, within the frameworks of set 

theory and category theory, and also studied them operationally. They proposed a purely functional 

language extended with names or references as data, called FreshML [15, 17, 20], and explored its 

semantics in their theories. We argue that these results will serve as a theoretical basis for construct-

ing a complete formal semantics of object-oriented languages and developing methods for verifying 

programs with references and mutable objects. 

It was demonstrated that the success of building these theories and the expectation of their fruitful 

development up to mutable objects are based on the modified referential transparency, in which the 

contextual equivalence is used instead of the usual equality of values. In particular, the notion of de-

terminacy of parallel computation essentially requires contextual equivalence of results in different 

orders of computation, rather than equality of values. Based on such weakened referential transparen-

cy, we are able to extend purely functional languages with references, and then even with mutable 

objects subject to certain restrictions, while retaining many of the valuable properties of functional 

programs. 

In the last section we presented our view of the possible stages of extending purely functional lan-

guages to object-oriented ones, first with references without objects, as in the works of A. Pitts’ 

group, and then with mutable objects under certain restrictions that ensure the preservation of the 

modified reference transparency and the properties resulting from it. Some results have been already 

obtained; others remain open problems for future work. What is most valuable in this development is 

the emergence of a model of computation and programming languages between functional and object-

oriented ones (which the present authors work on [2, 3]). In these model and languages, the scope of 

practical problems efficiently and adequately solved is wider compared to purely functional lan-

guages, while many of their valuable properties, including deterministic parallel computation, are pre-

served. Among these tasks, graph manipulation [4] is the most important one, because in purely func-

tional languages, efficient data are only trees. 
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