

Branched Structure Component for a Video Game Scenario
Prototype Generator

Gulnara F. Sahibgareeva, Vlada V. Kugurakova

Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, Kazan, 420008, Russia

Abstract
The task of automating the routine work of computer game writers, narrative designers, set forth

in earlier works, has been continued in the presented work. The issues of visualization of branching

narrative structures of computer games are considered, the analysis of various approaches to

visualization of the plot and other important components of a video game, such as, for example,

automatic balancing of quantitative parameters, is carried out.

The paper presents the chosen technological stack and gives specific solutions for storage in the

form of a structured scenario, allowing the generation of continuing story branches and testing the

narrative prototyping stage using the automatically generated text novel.

Keywords 1
Interactive storytelling, computer games, game script, visualization, branched structures,

graphs, narrative prototyping, script prototype, GPT-2, ruGPT3, python, Unity

1. Introduction

The rapid growth of the video game market [1] also causes a natural increase in the number of intelligent

systems for their development. Since the process of computer game development is a long and expensive

process, game development consists of many separate phases: 2D or 3D visualization, UI/UX design,

gameplay design, artificial intelligence programming, character, level and environment design, scenario

creation, narrative design, sound and music, and game logic programming itself. Therefore, it is important

for the industry to create new effective tools to automate routine processes.

Analysis of such tools [2] shows that they contribute to increasing the level of variability in the plot of

games:

“The use of artificial intelligence in the implementation of interactive narrative systems increases the

expressive power of the system by partially assuming creative responsibility for the narrative experience of

the user. This, in turn, can provide greater responsiveness and narrative diversity without reducing player

autonomy.”

In this work, we will focus our attention on visualizing the branching structure of the story, checking

the constructed plot graphs for consistency, the ability to store a simplified (compared to natural text)

structured scenario in JSON format, and the automatic generation of continuation story branches. All these

new features should be integrated into the overall solution for working on the interactive narrative of

computer games [3, 4].

2. The graphic representation of the narrative

To automate the process of approval of computer game scenarios, a high-quality visualization of its

branched structure with the possibility not only of its automatic construction, but also of automatic logic

checking is necessary.

A number of applications, such as Twine [5], Articy:Draft [6], Fungus [7], Storybricks Engine [8]

implement, to some extent, game content management functionality, including the display of structures.

SSI-2021: Scientific Services & Internet, September 20–23, 2021, Moscow (online)

EMAIL: gulnara.sahibgareeva42@gmail.com (G.F. Sahibgareeva); vlada.kugurakova@gmail.com (V.V. Kugurakova)
ORCID: 0000-0003-4673-3253 (G.F. Sahibgareeva); 0000-0002-1552-4910 (V.V. Kugurakova)

© 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

102

For example, the Storybricks Engine, a mechanism with elements of artificial intelligence, formalizes

the possibility of creating a narrative story that forms the basis of a future computer game, with extremely

complex, branching story arcs.

As an example of the complexity of interactive structures we can give a vivid example (see Fig. 1) of a

fragment of a scenario from the working project of Quantic Dream on the game Detroit: Become Human

[9]. A completely unreadable representation nevertheless makes a lot of sense, but it is clearly necessary to

change the display towards greater illustrativeness.

Figure 1: A part of the script for Detroit: Become Human [10]

By the way, the visualization of branching structures is well represented in scientific literature, often not

at all related to the topic of game development. For example, StoryFlow [11] is used to specify the

concretization of chronological events (see Fig. 2) in books or movie series – and these structures are

represented as threads of yarn. In such yarns one can well reflect the variability of events taking place or

the interaction of characters in specific time intervals.

Figure 2: An example of some yarn structure

Another interesting way to visualize structures is flow diagrams (Fig. 3), in which the width of the

arrows is proportional to the flow rate, the so-called Sankey diagrams [12]. This representation can help to

103

reflect the dynamics of specific data, as an example of use in video game development we can suggest

tracking the change in the characteristics of the subjects as the story progresses.

Figure 3: An example of a Sankey diagram

Another interesting solution for works of fiction that should be integrated into narrative design tools is

the visualization of tonalities and entities drawn from the text. We implemented some such approaches

using the python library Spacy, conducting experiments on texts from J.R.R. Tolkien's six-volume The

Lord of the Rings, in which we extracted subject → relation → object triplets, named text entities

(characters, locations, artifacts, etc.) and filtered triplets based on the found entities. The networkx library

was used to build the graph, and the matplotlib library was used to draw it. The list of vertices-entities and

edges-relationships was formed from the set of triplets obtained at the last stage of processing (see Fig. 4).

104

Figure 4: A fragment of the entity graph of The Lord of the Rings

Using the TextBlob library, the tone of the text for each sentence was detected. The obtained values of

tonality and subjectivity were used as visualization parameters. Tone (values from -1 to 1) was interpreted

as the deviation angle of the graph line, the value of subjectivity as the length of the graph line. Based on

these parameters, the coordinates of graph points were calculated using the following formulas:

d = d + T (π / 2);

x = x0 + cos(d) p S

y = y0 + sin(d) p S,

where d is the direction (in radians, 0 by default), x0 and y0 are the coordinates of the previous point, p is

the line length (constant), S is the subjectivity (values from 0 to 1), T is the tone (values from -1 to 1).

105

Figure 5: An example of visualization of the tone of the text of the first boof of The Lord of the Rings

In addition, it should be noted that there is a rather extensive classification of various structures [13] of

video game scenarios, however, without limiting the generality we can say that these structures are common

to any interactive experience (see, e.g., Fig. 6). It is logical that templates of such structures should be

available to narrative designers when designing the narrative of a video game.

Figure 6: One of the branched out structures (Quest)

Without abandoning the future implementation of these and other forms of visualization, which may be

appropriate to display data for private tasks, we have chosen as a representation a directed graph, the

implementation of the plot by means of which, however, does not yet solve the problems arising for more

complex structures, such as in Fig. 1.

106

2.1. Scenario Prototype Generation

Previous works described the general concept of a tool for generating a scenario prototype [3, 4, 14, 15].

Also the functionality of generation of camera positions and objects relative to each other by a text query

was presented in a separate work [16].

Thus, the generalized work pipeline of the generator (see Fig. 7) looks as follows:

1. The script text in natural language is analyzed by algorithms, which extract from them information

about in-game entities: names and characteristics of the characters, their lines, description of the

location, the main events.

2. The information on the branched structure is visualized in a convenient form, statistics are given.

3. 3D scene is generated based on the received information, 3D models and animations are

automatically selected.

4. Program interactivity is generated in the form of an opportunity to choose the transition to this or

that event.

The assembly of the project is completed by the formation of an installation file, which is a scenario

prototype, in other words, an interactive project that players and all interested parties can walk through or

test.

Continuing with the development, we outline the necessary functionality to work out the new features:

1. formalizing the approach of storing a particular branching structure reflecting the video game's

story;

2. allowing automatic continuation of the story;

3. automatic balancing of quantitative parameters;

4. generating the prototype as a narrative novella.

Figure 7: The architecture of the tool for generating a scenario prototype

2.2. The storyline branching problem

Another module allows generating additional vertices, i.e. the continuation of events, based on existing

text passages and actions available to the player.

The idea was borrowed from the Storybricks Engine tool [8], which at one time was actively developing

its own technological approach in the formation of a dynamic narrative. They proposed a narrative engine

using artificial intelligence, which gives developers the ability to create and control narratives with very

complex branching story arcs. First announced at the 2014 Game AI Conference, held in Vienna, the engine

had the makings of fairly practical solutions to some long-standing problems of interactive story design: in

particular replay ability – because most narrative games (such as BioShock Infinite [20]) follow a single

story path that offers almost no replay ability.

107

Traditional narrative in video games works as follows: the developers try to create a story that unfolds

based on the actions performed by the players. In this model, players in the game change the world by

defining trigger conditions that reveal the next step in the story.

Using procedural content generation to automatically create branches where they are needed from

character motivation bricks and the impact of that motivation on the game world, the StoryBricks AI tool

generated a new storyline on the fly based on how player choices affect the motivations of others. We were

impressed with this idea, and the development of neural networks made it easy to implement a similar

approach.

To generate the continuation of the plot, the result of the GPT-2 (Generative Pre-trained Transformer)

[21, 22] is used, which is a powerful language model that can be adapted to a wide range of NLP tasks

using a very small set of task-specific data. Until recently, there were no such models for the Russian

language. The AI Journey competition (https://ai-journey.ru, accessed September 2, 2021) released the

ruGPT3 model, capable of generating coherent and meaningful texts in Russian as well.

The main feature of GPT-2 and ruGPT3 in particular is that the neural network does not need to be

retrained for a specific task to show the results the user wants. The neural network adapts to the style and

content of the text, which allows it to generate realistic passages that continue the original phrases.

Immediately after training, the neural network is ready to generate a text with all the logical inserts: repeated

mentioning of characters' names, quotes, references, excerpts of the same style throughout the text, a

connected narrative.

It is worth noting that the algorithm generates a unique text every time, even with the same query (see

Table 1). The example shows variants of continuation without semantic meaningfulness.

Table 1
Different variants of the generated text continuation

Artistic excerpt Generated continuation

The camera turns slowly to the
right, showing an elderly
gentleman standing in a cave.
Quick footsteps are heard as a
hooded figure in a white robe runs
up behind the man and forces him
to kneel, then plunges a hidden
blade into the back of his head,
killing him.

The camera pans back, but from a different angle – the
shadow of a man kneeling next to the corpse now
appears.

The killer's hand flies up, and the camera pans upward,
showing a tall, gray-bearded priest lifting up one of the
skulls on a long hilt.

The camera goes to the left, showing another
underground tunnel, lit by torches.

The corpse falls to the floor.

In the future, more efficient and functional generation based on all character relationships should be

worked out, including timing parameters that can be extracted from a full script rather than an excerpt.

2.3. The task of searching for inconsistencies

Separate attention should be paid to the function of searching for inconsistencies in the constructed

scenario graph. These can be inconsistencies of character properties and transitions between vertices.

Each character is its name, as well as the values of the properties that make up the description of that

character. Properties can be integer, logical or text values.

It is possible to automatically move to a vertex when an action is performed, or to move independently

depending on the player's choice.

The vertex can check property values for conditions. If the condition is not fulfilled, the vertex is

unavailable for the player. Example: a character has a text value of archer class. If the character has a

different class, then a different pool of options is available to him.

In addition, in each vertex it is possible to apply functions to change property values depending on the

events that occur. Example: an archer has an integer property “health”. If the character gets in trouble, this

value decreases, which is done by appropriate calculations in the vertex.

108

2.4. The problem of balancing game values

Determining whether a game is balanced is not an easy task and is complicated by the often inaccessible

mathematical relationships in game mechanics. However, it is possible to rely on statistics and assumptions.

Players and developers of multiplayer games analyze the effect of individual game objects on winning or

losing a game. Sirlin [23] views game balancing as the iterative task of bringing the game to a state where

the options presented to the player are not only plentiful but also viable. One way of looking at balance is

to treat it as a function of many variables, each of which represents a different aspect of the game that needs

to be optimized. But as the complexity of the game as a system increases, difficulties arise in defining such

a function or checking the current state of the game for optimality. However, formalization of these

moments is necessary not only for automatic balancing, but also for manual balancing.

At the moment, there are different notions of “balance” [24]. This may be a consequence of the fact that

different genres of games, or even different representatives of the same genre, naturally need a particular

version of the concept of game balance. The most common definition proposed by Schreiber [25] is that

game balance is basically about figuring out which numbers to use in a game.

Players usually have their own idea of balance. They find their own balance by examining different

strategies and elements of the game to find the strongest ones. In this way, experienced players often have

an advantage over newcomers. This state can of course be called a state of balance, but in this case there

are often elements of the game that remain unclaimed. This leads to a potential narrowing of strategic

options.

Developers can only adjust the parameters of their game entities, with no ability to directly influence

player behavior. The only method to influence players is to optimize game parameters, as this forces players

to adapt to the new environment and rediscover the new state of equilibrium [26].

So, optimizing balance in a game is a complex process, so game developers often approach this issue in

stages, in small steps trying to bring the whole system to their definition of balance. In larger games, there

is a more diverse choice of strategies and actions that the player can choose from. In such cases, a state of

balance is almost unattainable.

When balancing a game manually, this process can be time-consuming, as each iteration of the

adjustment must carefully analyze changes in balance. This has led to interest in automating this process.

The following is a review of works on this topic.

The widespread use of machine learning algorithms has raised the question of what their potential is in

solving the problems of game developers. Volz et al. [27] have applied it to creating game environments

from a pool of existing mechanics and game sets using different artificial intelligence agents based on

different notions of fitness to describe what makes a game balanced and fun. Different approaches have

been used in these studies, and both have been successful.

The work [28] on describing an integrated game balancing process gives a better understanding of the

problems of automating the balancing process, and illustrates ways to use such algorithms to solve game

development problems. Among the conclusions of this paper is that artificial intelligence often does not

play as a human would play. This leads to the fact that the data derived from the automated system cannot

guarantee a balanced system for human players. This leads to the fact that developers need to check the

balance in the game with their own players after receiving the results of the automated system.

In [29], genetic algorithms were applied to find balanced character skills for role-playing games. This

work was done on a small scale, with large simplifications of the custom game model and a basic

intelligence that made decisions based on the rules. Thus, this work does not consider the application of

this methodology in the context of real games and in the presence of the influence of other players.

109

Figure 8: An example Machination diagram

In [30, 31] they investigated the applicability of DPBM2 in the design of automatic game balancing

systems. As a result of their work, they defined a conditional equilibrium condition, where there was some

relation between classes, which defines for each class a list of classes that are easier or harder for them to

handle. This relationship is similar to a game of rock-paper-scissors. In this case, the classes are not

balanced with each other, but the system as a whole is in a state of balance.

Our development for automated balancing of game parameters on a prototype game model [28] has

shown that Machinations balance diagrams can be used not only for manual balancing of game parameters,

but also for automated balancing of game parameters, thus reducing the time spent on this lengthy process.

However, although the Machination project (see Fig. 8) is still in beta testing and is still developing, the

development team is open to dialogue. In addition to everything, one of the directions of development of

the parameter balancing approach for the game prototype is to add various algorithms for parameter

adjustment, including those based on machine learning and DPBM algorithms, automatically determining

the influence of a particular parameter on the result.

3. Conclusion

The presented work shows a simple but effective visualization of the branched structure of video game

storylines and presents options for automatic generation of sequels for story branches, allowing to increase

the replay ability of the final product.

This solution will be another part of one big tool designed to simplify the work of game writers and

improve the quality of the game narrative. After combining the functionality into a common information

processing and visualization pipeline, one can hope to create a full-fledged tool for narrative prototyping.

In general, a comprehensive tool should be a set of editors for various aspects of the game project.

2 Deep Player Behavior Modeling (DPBM) is an approach that implements individual generative modeling of a player

by evaluating an elementary player action in a state architecture and establishing the relationship between them using

machine learning.

110

Immediate future plans: development of functionality for creating and tracking quests; implementation

of support for more complex and massive branching structures to refine the game scenario; prototyping

quantitative parameters through automatic balancing in Machination [32].

4. Acknowledgements

This paper has been supported by the Kazan Federal University Strategic Academic Leadership

Program (“PRIORITY-2030”).

5. References

[1] I. A. Sedyh, Industriya komp'yuternyh igr. Nacional'nyĭ issledovatel'skiĭ universitet Vysshaya shkola

ekonomiki. 2020. 74 s.

[2] M. O. Riedl, V. Bulitko, Interactive Narrative: An Intelligent Systems Approach. AI Magazine. 2013.

V. 34. 67 p.

[3] G. F. Sahibgareeva, V. V. Kugurakova, Koncept instrumenta avtomaticheskogo sozdaniya scenarnogo

prototipa komp'yuternoj igry. Elektronnye biblioteki. 2018. T. 21. № 3-4. S. 235–249.

[4] G. F. Sahibgareeva, O. A. Bedrin, V. V. Kugurakova, Razrabotka komponenta generacii vizualizacii

scenarnogo prototipa videoigr. Nauchnyj servis v seti Internet: trudy XXII Vserossijskoj nauchnoj

konferencii. 2020. S. 581–603.

[5] Twine. URL: https://twinery.org/, last accessed 2021/10/21.

[6] Articy:draft. URL: https://www.articy.com/en/, last accessed 2021/10/21.

[7] Fungus. URL: https://fungusgames.com/, last accessed 2021/10/21.

[8] Storybricks Engine.

URL: https://www.youtube.com/watch?v=id-3sUo_DFU&ab_channel=Storybricks, last accessed

2021/10/21.

[9] D. Cage, Twitter blog. URL: https://twitter.com/David__Cage/status/1034374760392794112, last

accessed 2021/10/21.

[10] Detroit: Become Human. URL: http://www.quanticdream.com/en#!/en/category/detroit, last accessed

2021/10/21.

[11] K. Padia, K. Bandara, C. Healey, A system for generating storyline visualizations using hierarchical

task network planning. Computers & Graphics. 2019. P. 64–75.

[12] Sankey Diagram. URL: https://observablehq.com/@d3/sankey-diagram, last accessed 2021/10/21.

[13] G. F. Sahibgareeva, Primenimost' razvetvlennyh struktur dlya generacii scenarnyh prototipov videoigr.

65-ya Mezhdunarodnaya nauchnaya konferenciya Astrahanskogo gosudarstvennogo tekhnicheskogo

universiteta. 2021.

[14] G. F. Sahibgareeva, O. A. Bedrin, V. V. Kugurakova, Raskadrovka kak odno iz predstavlenij

scenarnogo prototipa komp'yuternyh igr. Elektronnye biblioteki. 2021. T. 24. №2. S. 408–444.

[15] G. F. Sahibgareeva, O. A. Bedrin, V. V. Kugurakova, Visualization Component for the Scenario

Prototype Generator as a Video Game Development Tool. CEUR: Proceedings of the 22nd Conference

on Scientific Services & Internet (SSI-2020). 2020. P. 267–282.

[16] V. V. Kugurakova, G. F. Sahibgareeva, A. Z. Nguen, A. M. Astaf'ev, Prostranstvennaya orientaciya

ob"ektov na osnove obrabotki tekstov na estestvennom yazyke dlya generacii raskadrovok.

Elektronnye biblioteki. 2020. T. 23. №6. S. 1213–1238.

[17] S. A. Vakatov, Razrabotka instrumenta variativnosti syuzheta s zapuskom prototipa v vide tekstovoj

igry. Kazanskij (Privolzhskij) federal'nyj universitet. 2021. 36 s.

[18] E. S. Vakatova, Razrabotka funkcionala generacii prodolzheniya syuzheta dlya instrumenta

prototipirovaniya syuzheta v komp'yuternyh igrah. Kazanskij (Privolzhskij) federal'nyj universitet.

2021. 33 s.

[19] B. I. Kayumov, Problemy vizualizacii razvetvlennyh syuzhetov komp'yuternyh igr. Kazanskij

(Privolzhskij) federal'nyj universitet. 2021. 79 s.

[20] BioShock Infinite. URL: https://2k.com/en-US/game/bioshock-infinite/, last accessed 2021/10/21.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language models are unsupervised

multitask learners. OpenAI Blog. 2019. V.1. 9 p.

[22] GPT-2. URL: https://openai.com/blog/better-language-models/, last accessed 2021/10/21.

111

[23] D. Sirlin, Balancing Multiplayer Games. 2009.

URL: http://www.sirlin.net/articles/balancing-multiplayer-games-part-1-definitions

[24] A. Becker, D. Görlich, What is Game Balancing? – An Examination of Concepts. In Paradigmplus,

vol. 1, no. 1, pp. 22–41, Apr. 2020.

[25] I. Schreiber, Game Balance Concepts. 2010.

URL: https://gamebalanceconcepts.wordpress.com/2010/07/07/level-1-intro-to-game-balance/

[26] M. Moroşan, R. Poli, Automated Game Balancing in Ms PacMan and StarCraft Using Evolutionary

Algorithms. 2017. pp. 377–392.

[27] V. Volz, G. Rudolph, B. Naujoks, Demonstrating the Feasibility of Automatic Game Balancing,

GECCO, 2016, pp. 269–276.

[28] M. Beyer, A. Agureikin, A. Anokhin, C. Laenger, F. Nolte, J. Winterberg, M. Renka, M. Rieger,

N. Pflanzl, M. Preuss, V. Volz, An integrated process for game balancing. In 2016 IEEE Conference

on Computational Intelligence and Games (CIG), Sep. 2016, pp. 1–8, ISSN: 2325-4289.

[29] H. Chen, Y. Mori, I. Matsuba, Solving the balance problem of massively multiplayer online role-

playing games using coevolutionary programming. Applied Soft Computing. 2014, 18. pp. 1–11.

[30] J. Pfau, A. Liapis, G. Volkmar, G. Yannakakis, R. Malaka, Dungeons & Replicants: Automated Game

Balancing via Deep Player Behavior Modeling. 2020. pp. 1–8.

[31] J. Pfau, J. Smeddinck, R. Malaka, Towards Deep Player Behavior Models in MMORPGs. 2018.

pp. 381–392.

[32] E. Adams, D. Joris, The Designer's Notebook: Machinations, A New Way to Design Game Mechanics.

URL: https://www.gamasutra.com/view/feature/176033/the_designers_notebook, last accessed

2021/10/21.

