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Abstract

Based on empirical evidence indicating that different types
of explanations should be used to satisfy different users in
terms of their information needs and to increase trust in the
system, we motivate the use of multimodal explanations for
decisions made by a machine learning model to support medi-
cal diagnoses. We present a system through which medical
professionals or students can obtain verbal explanations for a
classification by means of a dialogue and to which they can
make queries to get prototypical examples in the form of im-
ages showing typical health conditions. Our approach could
be used for validating algorithmic decisions using a human-
in-the-loop method or for medical education.

Introduction
In medical diagnostics, Deep Learning is increasingly used
to classify patient data. Due to the condition that such sys-
tems must be transparent, great progress has been made in
the field of explainable artificial intelligence (XAI) in re-
cent years. Work on visual explanations for example for the
classification of human tissue (Hägele et al. 2020), malaria
probes (Schallner et al. 2019) and facial expressions for pa-
tients suffering from pain (Rieger et al. 2020) shows that
the methods developed can be used to reveal which fea-
tures a deep neural network has found relevant for classi-
fication. However, relational information in terms of com-
plex relationships between features of the data was not used
to make the classification decision. As recent works have
emphasized, medical diagnosis is often based on examin-
ing relational data, thus, a model that is able to incorporate
these and to explain its decision in a relational manner, is
key (Bruckert, Finzel, and Schmid 2020; Schmid and Finzel
2020; Holzinger et al. 2021). Moreover, the focus of these
works has not been to present different explanations, that is,
in varying modalities, in order to take different angles in ex-
plaining a classification, to satisfy different users in terms
of their need for information. However, being able to make
decisions based on complex relationships and being able to
explain them in as many ways as possible are two important
aspects of building systems that are not only transparent but
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also understandable to human decision makers. Such sys-
tems can empower the user to validate the system and to re-
main in control of decisions, which is a crucial requirement
in medicine (Tizhoosh and Pantanowitz 2018).

Recent research uses inductive logic programming (ILP)
to train models that can be explained to the user in a com-
prehensible way and which are capable to deal with complex
relational data. In contrast to visual explanations that can
transfer only the information of occurrence or absence, a re-
lational approach such as ILP can express arbitrarily com-
plex relationships, for example spatial and temporal rela-
tions as well as recursion (Schmid 2018). In addition to the
training data, ILP can be enriched by existing background
knowledge that is by expert knowledge, be it for training or
correction of learned models (Schmid and Finzel 2020). In
the past, there have been prominent transparent systems that
made decisions based on relational data, such as MYCIN
(Shortliffe 2012). However, the focus there was more on
building expert systems and less on satisfying different users
through multimodal explanations.

To close this gap, we build on the findings from empirical
research on multimodal explanations as well as on a recent
research work that combines two different explanation ap-
proaches, namely verbal, dialogue-based as well as visual
image-based explanations. We use our approach for the first
time to classify and explain medical data.

Related Work
Explainable Artificial Intelligence (XAI) aims to make AI
systems, their decisions and actions comprehensible. Given
the high stakes involved in medical diagnosis and human
health in general, it is obvious that AI systems applied in
this domain need to be understood by the user. To this end,
an AI system may produce explanations of various types
and formats. Building on previous work on combining ver-
bal and visual explanations in artificial intelligence (Finzel
et al. 2021), we here apply these concepts to the medical
domain. We explore the potential use of different kinds of
explanations given by a diagnostic decision support system
for assessing primary tumors in tissue samples. Specifically,
we consider dialogue- and image-based explanation, allow-
ing for step-wise exploration of the reasons behind a classi-
fication outcome as well as displaying images on demand
that show prototypical examples of health conditions.



The fact that there exists more than one type of explana-
tion suggests that not every explanation fits every situation.
For instance, to explain the classification of an object as be-
longing to one of two categories that only differ by color,
a visual explanation might be preferred over a verbal ex-
planation based on the nature of the problem. In contrast to
this, visual classification tasks that rely on relational infor-
mation rather than a simple presence or absence of features
might require additional verbal explanations to improve the
joint performance, trust in the decision aid system and to
correctly counteract faulty system predictions (Thaler and
Schmid 2021).

We further want to point to the importance of the person
requesting the explanation. The idea of tailoring explana-
tions to and evaluating them based on the goals of the ex-
plainee is not new in cognitive science (Leake 1991) and has
been supported by more recent empirical evidence. For ex-
ample (Vasilyeva, Wilkenfeld, and Lombrozo 2015) showed
that people prefer explanations (formal, mechanistic, tele-
ological) that are consistent with their goals. Also in the
field of XAI, the users’ inter- and intraindividual differences
have been recognized as important to the development and
improvement of XAI (e.g. (Gunning and Aha 2019; Miller
2019; Kulesza et al. 2015)).

In medicine, the potential applications of AI are many-
fold, spanning diagnostics, therapeutics, population health
management, administration, and regulation (He et al.
2019). In order to make such systems transparent, their ex-
planations need to consider certain user characteristics, such
as their expertise and goals. Especially in applications with
potentially extreme consequences, such as decision support
for diagnosing illnesses, the diagnostician needs to under-
stand the system’s recommendations to make well-informed
decisions. Along these lines, (Holzinger et al. 2019) have
differentiated between explainability, a more technical at-
tribute of an algorithm, and causability, a feature of expla-
nations that describes how well an explanation can transfer
causal understanding to a human user. In order to increase
causablilty of medical decision support systems, we com-
bine different kinds of explanations. The user can request
various explanations via a conversational interaction with
the system and thus control the transmission of understand-
ing that is explanation.

Multimodal Explanations for Medical Decision
Making

In this section we show how our multimodal explanation ap-
proach can be applied to the medical use case of primary tu-
mor staging. We first introduce the medical terminology and
concepts for tumor staging and present examples for verbal,
dialogue-based explanations as well as visual, prototype-
based explanations accordingly.

Primary Tumor Classification in Colon Tissue
Samples
The task of classifying tumors requires different competen-
cies and diagnostic steps. The main tasks involved are tumor
staging and grading (Wittekind, Bootz, and Meyer 2004).

Figure 1: An example of a colon tissue sample under the
microscope containing different stages (T1-T3) of tumors in
accordance to the widely used TMN staging system (Wit-
tekind, Bootz, and Meyer 2004) with different colon tissues
involved: mucosa (M), submucosa (SM), muscularis propria
(MP) and pericolic adipose tissue (P). The image was taken
from (Pierangelo et al. 2013) for illustration of our use case.

While staging refers to determining the extent of a tumor
(location, size and spreading in different layers of tissue),
grading examines the abnormality of the appearance of tu-
mor cells and tumor tissue. In this paper, we focus on the
task of staging for primary tumors that is determining inva-
sion depth of an original tumor in human colon tissue lay-
ers. We therefore look at spatial relationships between a tu-
mor and its surrounding tissue layers. The most widely used
system for tumor staging is the TMN staging system (Wit-
tekind, Bootz, and Meyer 2004). This system is used to de-
note the stage of a tumor in pathology reports. The letters
T, M and N are combined with further letters or numbers to
indicate the exact stage. We focus on the T category, which
is concerned with the size and the extent of the main tumor,
also called the primary tumor. If a primary tumor is found
in the colon tissue, it is assigned with one of five possible
stages: Tis, T1, T2, T3 or T4. The higher the number after
the T, the bigger the extent of the tumor. Tis stands for car-
cinoma in situ and denotes a tumor that hasn’t yet extended
to the next tissue layer. The stages can be further differenti-
ated depending on the kind of tissue affected by the tumor
(e.g. T4a, T4b). Note that there are further assignments, e.g.
TX for tumors that cannot be assessed or T0 if there is no
evidence for a tumor. We disregard these cases.

Figure 1 shows a colon tissue sample, where healthy tis-
sue and three of four stages are present (corresponding to
the 4 zones separated by dotted lines). The leftmost zone
contains healthy tissue that can be divided into mucosa (M),
submucosa (SM), muscularis propria (MP) and pericolic
adipose tissue (P). Zone 2 includes a T1 tumor (invading the
mucosa and the submucosa), zone 3 a T2 tumor (extending
to the muscularis propria) and zone 4 contains a T3 tumor
(that is growing past the boundaries of the muscularis pro-
pria into the preicolic adipose tissue). The letters C and S
included in Figure 1 denote tumor cells and tumor stroma,
H, B and U denote further diagnostic areas, however, this



Figure 2: An explanatory tree for stage t2(scan 0708), that can be queried by the user to get a local explanation why scan 0708
is labeled as T2 (steps A and B). A dialogue is realized by further requests, either to get more visual explanations in terms of
prototypes (step C) or to get more verbal explanations in a drill-down manner (step D).

is not important for the work presented here and therefore
not explained further. To increase the readability of the fol-
lowing paragraphs for the reader who may not be familiar
with medical terminology, we will name the different tis-
sue types in the following subsections mucosa, submucosa,
muscle and fat tissue.

Dialogue- and Prototype-based Explanations
Likewise to the example presented in previous work (Finzel
et al. 2021), we can translate the given expert knowledge in-
troduced by Figure 1 into background knowledge and train
an ILP model on examples and the background knowledge
to obtain rules for the classification of stages which can be
then used to produce verbal explanations for a conversa-
tional dialogue with the user.

For the example presented in Figure 1 we can get an-
notations of the different tissues manually or automatically
(Schmid and Finzel 2020) and determine with the help of
a spatial calculus, whether they intersect (Bruckert, Finzel,
and Schmid 2020). Providing examples for each stage (T1-
T4), where the corresponding background knowledge con-
tains the information, which tissues intersect (tumor inter-
sects mucosa for T1 example, tumor intersects muscle for
T2 example, and so on) as well as providing negative, con-
trastive examples, we can derive a set of rules for each stage.
This set of rules can be seen as a global explanation, mean-
ing it explains the characteristics of a class. These rules con-
tain variables and relationships between them that are sat-
isfied by all positive examples and no negative examples.
The background knowledge can be arbitrarily complex, con-
sisting of either only singular properties or more sophisti-
cated relationships, such as the definition of spatial relations
and reasoning rules. Given the learned rules and the back-
ground knowledge, we created so-called explanatory trees
that explains the classification of individual examples and
can be therefore considered as local explanations (Finzel

et al. 2021).
An exemplary rule from an ILP model that was trained

to recognize tissue samples of stage T2, states that a scan
A is classified as stage T2, if it holds that A contains B and
B is a tumor and B invades C and C is muscle tissue. This
rule represented in the logic programming language Prolog
would state: “stage t2(A) :- contains(A,B), is a(B,tumor), in-
vades(B,C), is a(C,muscle).”. The upper case letters A, B, C
are variables that can be substituted by lower case constants
by applying the rule to the given positive examples, mean-
ing that the background knowledge consisting of the spatial
relationships satisfies the learned rule.

The explanatory tree we create to explain the classifica-
tion of an individual example results in a structure presented
in Figure 2 based on a logical prove procedure introduced in
(Finzel et al. 2021). The class label is set to the root node
of such the explanatory tree and the reasons for the class de-
cision, given by the substitution of variables in the learned
rule, determine the child nodes of the root node. For our
colon tissue example individual parts of the rule (e.g. the in-
vades relationship) can be explained by further background
knowledge (in this case the definition of some spatial rela-
tionship intersects that was computed based on geometric
properties of the input data). The explanatory tree can be
traversed in a conversational manner (see Figure 2) to obtain
verbal explanations for the reasons of a stage classification
of a particular microscopy scan.

A special property of our approach is that we complement
the verbal explanations by visual explanations in terms of
prototypes, in cases, where a verbal explanations cannot be
presented due to limits of expression (e.g. if the user wants
to see how a certain tissue type looks like). Explanations by
means of prototypes are based on the idea that categories,
especially those without unambiguous necessary and suffi-
cient criteria for including or excluding examples, can be
represented by a central tendency of the category members,



called a prototype (Rosch 1987). We chose prototypes for
the implementation of a complementary explanation method
besides verbal explanation, because research has shown that
prototypes are relevant, among others in category learning
(Minda and Smith 2001), scheme-inductive reasoning as
a successful diagnostic reasoning strategy (Coderre et al.
2003) and expert teaching (Sternberg and Horvath 1995). In
our model, prototypes are representative category members
and displayed as images.

Having the explanatory tree as well as the images of the
prototypes, the user can now traverse the explanatory tree
and asking for prototypes through a dialogue with the sys-
tem. In comparison to our work presented first in (Finzel
et al. 2021), we slightly adapted the requests a user can
make. Likewise to the approach presented in (Finzel et al.
2021) the user can ask for a global explanation, e.g., what
does stage T2 mean. In order to request for local explana-
tions, the user can pose the following requests (see Figure
2):

• Which class label has <example>? (reference A)

• Explain why <example> has class <class label>! (refer-
ence B)

• Show me <concept>! (reference C, displays a prototype)

• Explain further why <relation>! (reference D, allows for
drill-down of explanations)

Users can furthermore request to return to the last expla-
nation in order to proceed with their search for answers on
different branches of the explanatory tree.

The whole implementation, including the files to train an
ILP model, the code to create an explanatory tree, the im-
ages showing the prototypes as well as the dialogue-based
interface are available via a git repository1.

Discussion
Often interpretable approaches are seen as an alternative to
explanation generation for black boxes: It has been argued
that for high stake decision making, for instance in health
care, interpretable models should be preferred over ex-post
explanation generation for neural network models (Rudin
2019). It has been pointed out that explanations might be
misleading and inspire unjustified trust (Babic et al. 2021).
However, although interpretable models such as decision
rules or ILP models are white box and therefore inspectable
– providing explanations might be still necessary. Similar to
computer programs, white box models might be inspectable
in principle but are often too complex for easy comprehensi-
bility. Explanation mechanisms as the ones proposed in this
paper are helpful or even necessary to communicate the right
information in the most suitable modality and in adequate
detail.

1Gitlab repository of our implementation of multimodal expla-
nations (including two example data sets: a proof-of-concept data
set from the animal world and a data set for colon tissue classi-
fication for T1-T4 stages): https://gitlab.rz.uni-bamberg.de/cogsys/
public/multi-level-multi-modal-explanation

With respect decision support systems that are based on
learned models requirements have been recently stated (Bo-
hanec 2021) which we want to discuss by means of our
implementation. In his work Bohanec points out that there
are five requirements that should be fulfilled. The first one
is correctness, meaning that the model should provide cor-
rect (valid, right) information given the decision problem.
Second, the model should fulfill completeness, a property
that refers to considering all relevant aspects of the decision
problem and providing answers for all possible inputs. Next,
he mentions consistency in terms of logical and preferential
consistency. Another important requirement is comprehensi-
bility of provided information for the user. Finally, Bohanec
mentions convenience, referring to easily accessible, timely
information, appropriate for the task and the user.

Our implementation fulfills a part of these requirements
by design. The underlying ILP algorithm that produced the
model is complete and consistent with respect to problem
domain (Finzel et al. 2021). Furthermore, ILP output can
be considered to be comprehensible for humans, especially
since it is easy to translate it to verbal statements in the form
of natural language (Muggleton et al. 2018). Furthermore,
our approach heads towards convenience by presenting ex-
planations in different modalities to suite different users,
levels of understanding and tasks. Correctness is ensured at
least by the deductive step, when explanatory trees are cre-
ated from previously induced rules.

Conclusion
Motivated by empirical evidence that indicates that multi-
modal explanations are beneficial for understanding, we pre-
sented an approach and its implementation that combines
verbal, dialogue-based explanations with visual, prototype-
based explanations in order to give insights into the rea-
sons of a decision of a model trained to classify the stage of
cancerous colon tissue samples. We applied inductive logic
programming to generate this said model, an approach that
fulfills the requirements of completeness, consistency and
comprehensibility by design. In such visually complex do-
mains, near misses as a further type of example-based expla-
nations (Rabold, Siebers, and Schmid 2021) can be helpful
to communicate information about the decision boarders be-
tween diagnostic categories. Aspects like convenience could
be evaluated empirically in the future. Our approach could
be further extended for an application in medical education,
which is an interesting field to use new explanatory tech-
niques (Chan and Zary 2019), for example in histopatho-
logical diagnosis (Crowley and Medvedeva 2003). Further
empirical investigations shall evaluate the helpfulness of our
implementation.
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