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Abstract
Traceability in software engineering is the ability to connect different artifacts that have been built or
designed at various points in time. Given the variety of tasks, tools and formats in the software lifecycle,
an outstanding challenge for traceability studies is to deal with the heterogeneity of the artifacts, the
links between them and the means to extract each. Using a unified approach for extracting keywords
from textual information, this paper aims to compare the concepts extracted from three software artifacts:
source code, documentation and tests from the same system. The objectives are to detect similarities in
the concepts emerged, and to show the degree of alignment and synchronisation the artifacts possess.
Using the components of three projects from the Apache Software Foundation, this paper extracts
the concepts from ‘base’ source code, documentation, and tests (separated from the source code). The
extraction is done based on the keywords present in each artifact: we then run multiple comparisons
(through calculating cosine similarities on features extracted by word embeddings) in order to detect
how the sets of concepts are similar or overlap. For similarities between code and tests, we discovered
that using pre-trained language models (with increasing dimension and corpus size) correlates to the
increase in magnitude, with higher averages and smaller ranges. FastText pre-trained embeddings scored
the highest average of 97.33% with the lowest range of 21.8 across all projects. Also, our approach was
able to quickly detect outliers, possibly indicating drifts in traceability within modules. For similarities
involving documentation, there was a considerable drop in similarity score compared to between code
and tests per module – down to below 5%.
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1. Introduction

Software traceability is a fundamentally important task in software engineering: for some do-
mains, traceability is even assessed by certifying bodies [1]. The need for automated traceability
increases as projects become more complex and as the number of artifacts increases [2, 3, 4].
The underlying complexities of the logical relations between these artifacts have prompted a
variety of empirical studies [5, 6, 7] and several areas of research, particularly in the inception
of semantic domain knowledge [8, 9]. Above all, one of the most pressing challenges is linked to
the heterogeneity of the artifacts, the links extracted between them, and the variety of formats
and tools available for the different stages of traceability studies [10]. Much has been done in
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re-establishing traceability links between software artifacts, but not particularly in the field of
domain concepts by applying semantic modelling. Major advancement in NLP research in recent
years has resulted in practical uses of language models [11], such as the introduction of deep
and transfer learning, which was more commonly used in computer vision. By applying this to
software artifacts, the human language can be closely related to concepts extracted from source
code and tests, ultimately comprehending the software’s identity through natural language.
This paves the way for a variety of semantics-driven applications, such as automated software
domain classification, taxonomy structure of domains and studies of software evolution.

The contribution of this paper is the notion of concept similarity, in the context of the
traceability between source code, documentation and tests of a software unit (class, module or
system). The book definition of “concept" is a principle or an idea 1 that is abstract or generic
in nature 2. In software engineering, we add on to this definition to include the features in
software components, where concepts are presently identified through source code analysis and
manipulation. For our dataset, we use the modules present in three actively managed Java open
source projects from the Apache Software Foundation (ASF): Apache’s Dubbo3, Skywalking4

and Flink5. Although the sample is small, our aim is to showcase the methodology behind the
data extraction: the approach is straightforward and scalable, so it will be possible to analyse
a larger sample with minimal effort. We extracted the concepts of each project from three
sources: the source code, documentation and tests. The documentation was extracted from the
README file, which serves as the first point of entry for project stakeholders. The tests of each
project were identified through regular expressions of filenames, while the remaining Java files
constitute the ‘base’ source code for these projects. We extracted the concepts emerging from
the keywords used in each of these sources, and we run multiple similarity measurements to
determine the similarity of these artifacts, answering the following:
RQ1: How similar (syntactically and semantically) are the three software artifacts: source

code, documentation and tests?
RQ2: How does feature extraction (through word embeddings) perform when comparing

textual similarity between the source code, documentation and tests?
This paper is structured as follows: Section 2 summarises the related work, and Section 3

describes the unified approach used to extract the concepts. Section 4 shows the results and
discusses the findings. Section 5 concludes.

2. Background Research

In [12], the authors present a roadmap of the research on software traceability, based on the
topics that researchers had focused on so far. According to that roadmap, our work:

• is based on vertical traceability relations (i.e., it includes the relations between different
artifacts);

1https://dictionary.cambridge.org/dictionary/english/concept
2https://www.merriam-webster.com/dictionary/concept
3https://github.com/apache/dubbo
4https://github.com/apache/skywalking
5https://github.com/apache/flink



• includes overlap relations (i.e., we study whether C1 and C2 6 refer to common concepts
of a system);

• targets the automatic generation of traceability relations (as compared to manual or
semi-automatic approaches);

• aims to analyse traceability for the purpose of software validation, verification and testing,
insofar as ‘traceability relations may be used to check the existence of appropriate test cases
for verifying different requirements and to retrieve such cases for further testing’ [12].

The traceability field is most often associated with requirements traceability [13]: pre-
packaged, automated tools like TraceLab [14] have often been preferred to trace different
artifacts, or versions of the same artifact. Although it became clear over the years that traceabil-
ity of software artifacts is essentially an information retrieval problem [15], combining software
traceability with semantic information of software artifacts was shown to be a promising tech-
nique. Prospective traceability tools [16] have been developed with both the architecture and
semantic modelling in mind. This empirical approach to recover traceability links through
topic modelling was later adapted and improved through integrating orthogonal information
retrieval methods [17].

Whilst most of the traditional literature on traceability has focused on requirements, the
research on traceability of open source systems has focused on other artifacts (source code, user
documents, build management documents etc [18, 19]). When requirements are considered, they
are not traditionally elicited through customer feedback, but just-in-time and termed feature
requests [20], or elicited using various other artifacts (e.g., CVS/SVN commit logs and Bugzilla
reports [21]). In the open source context, the extraction of requirements is often considered as
a long term view, for instance in the context of impact analysis [22].

In the context of deriving semantic value from software artifacts, extracting topics from
source code has been previously presented in [23] by demonstrating that the Latent Dirichlet
Allocation (LDA) technique has a strong applicability in the extraction of topics from classes,
packages and overall systems. This technique was also used in a later paper [24] where experts
were consulted to assign software system in accordance to its domain. The keyword terms
derived from this technique were also compared in terms of text similarity using various word
embeddings in [25].

3. Methodology

3.1. Definitions

The following are the definitions as used in this paper:

• Corpus keyword (term) – given the source code contained in a class, a token or term
is any item that is contained in the source code. We do not consider as a term any of
the Java-specific keywords (e.g., if, then, switch, etc.). Additionally, the camelCase or
PascalCase notations are first decoupled in their components (e.g., the class constructor
InvalidRequestTest produces the terms invalid, request and test).

6“C1" and “C2" are arbitrary concepts



• Topic – this refers to the clusters of keywords extracted with the Latent Dirichlet Alloca-
tion (LDA) technique, and weighted by their relative relevance. For this paper, we will
concatenate all the keywords sans weights as topic keywords.

• Concept – the set of ‘source code concepts’ is the union of the (i) corpus keywords set
and (ii) topics set, as extracted from the source code. These ‘concepts’ are derived from
the lexicon used in the code. The ‘test concepts’ have a similar definition, using the sets
from the test batch.

• 𝑥/𝑦 SIM – Concept similarity between 𝑥 and 𝑦, where 𝑥 and 𝑦 are software artifacts, and
𝑥 ̸= 𝑦.

3.2. Selection of Software Systems

Table 1 shows the details of our sample dataset. We are fully aware that the analysis of three
systems (instead of hundreds, or thousands) does not allow to draw any conclusion for any other
system. The empirical study that we present below focuses on top rated systems (representing
the quality of code developed by the ASF community, adhering strictly to established coding
standards7) rather than promoting the width of representativeness. We will further discuss
about the implications of our choice in the threats to external validity.

Table 1
Selection of Software Systems

ID Project Name Modules Stars
P1 Apache Dubbo 14 36,323
P2 Apache Skywalking 4 17,994
P3 Apache Flink 27 17,378

3.3. Concept Extraction

The extraction of the concepts and similarity measurements was executed in Python via a
Jupyter notebook8. The extraction was carried out to build the class corpus for each project.
Results were then compared and analysed.

For any project’s source code and tests, we extracted all the class names and identifiers
that were used for methods and attributes. Additionally, inline comments were extracted as
well, but the Java keywords were excluded9, along with the project names (such as apache
and dubbo for P1) to provide a more accurate representation. This results in an extraction
that comprehensively represents the semantic overview of concepts whilst minimising noise
from code syntax. The final part of the extraction is the lemmatisation of the terms using
SpaCy’s10 token.lemma_. Lemmatising is deriving the base from the terms (also called their
dictionary form, or ‘lemma’), thus enabling more matches when we compare from the different

7https://directory.apache.org/fortress/coding-standards.html
8https://github.com/zakipauzi/benevol2021/blob/main/concept_similarity_benevol.ipynb
9https://en.wikipedia.org/wiki/List_of_Java_keywords

10https://spacy.io
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sources (e.g., best -> good). An excerpt of the complete corpus from the source code of P1’s
dubbo-common module is shown at figure 1.

Extending this to all the modules in the three projects, we look at the textual similarity of
corpus keywords extracted for (i) source code and (ii) tests per module.

activate reference service metadata colon separator service key service version

registry config config available serial...

Figure 1: Excerpt from the corpus of dubbo-common base code from P1

For the documentation extraction, we looked at the README file and ran through a similar
cleaning pipeline. All non-English characters were disregarded during the exercise by checking
if the character falls within the ASCII Latin space. Figure 2 shows a simplified diagram of our
concept similarity (i.e., traceability) between artifacts.

Figure 2: Diagram of concept similarity between artifacts

3.4. Topic Modelling

For the CODE/DOC SIM and TEST/DOC SIM, we run topic modelling with Latent Dirichlet
Allocation (LDA) due to the vast difference in token count between the README file and the
code. We cluster the extracted class corpus into groups; an unsupervised learning approach
to tag groups of terms to a topic based on their semantic context, then identifying the overar-
ching theme of each cluster through their topics. Using Gensim11 LDA, we identify the topic
clusters present. Next, we concatenate all the topic keywords from all the modules from code
and tests respectively. Figure 3 shows an example of topic keywords that emerge from P1’s
dubbo-common module source code.

These are used to compare with the topic keywords emerging from documentation. In Section
4, we will look at the results of proportion in overlap of these concepts extracted between code
and documentation, and tests and documentation.

11https://radimrehurek.com/gensim

https://radimrehurek.com/gensim


’config’, ’logger’, ’key’, ’path’, ’level’, ’listener’, ’msg’, ’throwable’,

’stream’, ’provider’, ’map’, ’integer’, ’object’, ...

Figure 3: dubbo-common’s source code topic keywords

3.5. Similarity Measures

We apply multiple vectorisation techniques to represent corpus keywords as vectors in a vector
space, and then we run cosine similarity against these vectors to address RQ1 and RQ2. Cosine
similarity is a “distance" metric, irrespective of orientation and magnitude: the lower the
angle between the vectors, the higher the similarity. Table 2 shows the different vectorisation
techniques used with cosine similarity for measurement.

Table 2
Vectorisation Techniques with Cosine Similarity

Vectorisation type Pre-trained? Dimensions Source
TFIDF Vectorizer No - scikit-learn [26]
SO W2V Yes 200 Online at [27]
SpaCy Yes 300 Online at [28]
FastText Yes 300 Online at [29]

A toolchain graph showing each part of the process discussed above (subsections IIIA. to
IIIE.) is shown in Figure 4.

4. Results

For space limitations we have made available online the result summary of Code and Test simi-
larity (CODE/TEST SIM)12, and the results of Code and Documentation similarity (CODE/DOC
SIM) and Test and Documentation similarity (TEST/DOC SIM)13 across all modules in each
project.

Figure 5 shows the box plot distribution of CODE/TEST SIM for the vectorisation techniques
across all modules for P1, P2 and P3 (RQ2). Similarly to the trends found in [25], the analysis of
the three Apache projects confirms that the baseline TF-IDF measurement has the widest ranges
of 0.62 to 0.85, and lowest mean scores of 0.34 to 0.66. At the same time, the role of pre-trained
embeddings is central in deriving semantic context to concepts: contextual similarity (helped
by the three trained datasets) is linked to a higher cosine similarity when comparing corpus
keywords in software artifacts. This is expected, since the Java syntax closely mirrors the words
already present in the pre-trained vector spaces.

With pre-trained embeddings trained on a wide vector space (e.g, an English vocabulary
across all domains), the range of similarity score gets even narrower. We see this range decrease

12https://github.com/zakipauzi/benevol2021/blob/main/benevolcodetestsimsummary.csv
13https://github.com/zakipauzi/benevol2021/blob/main/benevolcodetestdocsimsummary.csv
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Figure 4: Toolchain implemented throughout the paper

as we run CODE/TEST SIM with StackOverflow data (SO W2V), expanding vocabulary beyond
just within the scope of our current artifacts (TF-IDF), and further decrease with SpaCy and
FastText embeddings. In other words, the wider the vector space of embeddings, the narrower
the range and the higher the mean. Ultimately, we know that a high score does not necessarily
denote a better similarity, but it is worth exploring further on how we can continue to balance the
role of pre-trained embeddings with accurately representing similarity that is domain-specific,
which ideally relates to our traceability reconstruction solution through concept similarities.

A key advantage of using this approach (particularly with pre-trained embeddings) is that
the outliers can be easily detected in figure 5, indicating drifts in traceability via similarity mea-
surements. For P1, we can see outliers such as modules dubbo-container, dubbo-filter
and P3’s flink-streaming-scala: these show that the concepts emerging from their code
and tests are vastly different and need looking into.

As for our similarity measurements: CODE/DOC SIM and TEST/DOC SIM, comparing module



Figure 5: CODE/TEST similarity for the modules contained in each system

to the documentation in its entirety will not be accurate, thus we ran topic modelling to represent
the hierarchical structure of the syntax more effectively, a similar approach to [24]. Topics
emerging from corpus keywords represent clusters that are a level higher than the corpus
keywords, bridging the gap between per module syntax with README corpus. The results for
both similarities (using Jaccard Index on topic keywords) are well below CODE/TEST SIM: >5%.
Further work will need to be done to establish the accuracy of this result, such as incorporating
weights to topics and identifying traceability beyond the syntax of keywords. across P1 modules
scored lower than baseline whereas it differs for some P2 modules.

4.1. Threats to validity

The approach that we have shown has some threats and limitations that we have identified.

• External tests and documentation not included. Other than the basic unit and logic tests, we
do have other tests that may involve other software and systems, which are not included
(i.e., integration tests).

• Construct: definition of concepts as a construct. Our definition looked at both facets – the
corpus keywords and the derived topics. Moreover, our dataset assumes on the notion
that top rated projects from an open source body with established coding standards (such
as ASF) represent good code quality in artifacts and hence, we expect that the concepts
emerging from the sources are aligned, as in [25]. Our approach ensures that artifacts are
treated similarly, and drifts between artifacts are clearly captured by outliers.

• Conclusion: non uniform identifiers and code smells. From the analysis of the systems,
we observed that the structure of code has some degree of non-uniformity in the way
identifiers are used to represent meaning.



5. Conclusion and Further Work

In this paper we explored the triangulation of textual similarity via different techniques between
the concepts extracted from the source code, documentation and tests of Java software systems.
The aim was to assess the traceability between the three sources, and to put it in the context of
concept overlap. There is great potential in the results for further development and analysis
in semantic traceability for software artifacts (e.g., establishing connections between topics
derived outside of lexical intersection, exploring different metrics to detect traceability). Also,
expanding our dataset to include projects of various domains, languages and categories. Moving
forward, we would extend this solution to include other artifacts such as architecture diagrams,
bug reports and functional requirements. We would also want to look at ways to adopt this
approach to a supervised automated logic of domain categorisation.
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