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Abstract. In this communication we present recent advances in the field
of logics for strategic reasoning, and more precisely about the popular
Strategy Logic (SL) in the context of systems with imperfect informa-
tion. As a consequence of Reif’s seminal result on multiplayer games with
imperfect information, model checking SL is undecidable when agents
observe the game imperfectly but remember everything they observe.
However, in the case of multiplayer games or distributed synthesis la
Pnueli and Rosner, some additional hypothesis are known to bring back
decidability. The main ones consist in assuming that information is hi-
erarchical among agents, or that actions are public. We report recent
results that, under similar assumptions, establish the decidability of the
model-checking problem for different variants and extensions of SL.
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1 Introduction

Since the introduction of Alternating-time Temporal Logic (ATL) by Alur, Hen-
zinger and Kupferman [1] to reason about strategic abilities of agents and coali-
tions in multi-agent systems, research on the topic has thrived to develop more
expressive formalisms and solve related algorithmic problems on different classes
of systems. One important contribution has been the introduction of Strategy
Logic (SL) [9, 18], a very expressive logic that extends ATL and gives the possi-
bility to express a number of important game-theoretic concepts. In particular,
equilibria such as Nash equilibria, subgame-perfect equilibria or core equilibria
can all be expressed very naturally in SL.

Since multi-agent systems often display some kind of imperfect information
due to agents having only partial view of their common environment and/or of
other agents’ state, variants of both ATL and SL have been introduced to model
and reason about systems with imperfect information. An important challenge
is that, while imperfect-information games are decidable for two players [25],
they become undecidable when more players are involved [20], which is typically
the case in multi-agent systems. However it is known that assuming a total
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order on the agents where “higher” agents know more than “lower” ones, a
situation known as hierarchical information, can bring back decidability of a
number of related strategic problems [22, 12, 19, 11]. Similarly, variants around
the idea that all new information must be observed similarly by all agents also
yield decidability results [17, 24, 7].

Recently these ideas have been applied to logics for strategic reasoning, and
in particular Strategy Logic, leading to a number of decidability results, the first
ones obtained for such logics in the context of agents with imperfect information
and memory (alternative memoryless semantics exist in which agents have no
memory of the past and are restricted to using only positional strategies, which
usually also leads to decidable model-checking problems on finite systems). We
briefly present several such results, obtained in collaboration with a number of
co-authors over the last few years.

2 Strategy Logic

Before considering extensions with imperfect information, we first recall usual
SL with perfect information.

Let us fix a finite set of atomic propositions AP, a finite set of agents or
players Ag and a finite set of variables Var.

Definition 1. The syntax of classic SL is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ∃s.ϕ | (a, s)ϕ

where p ∈ AP, s ∈ Var, and a ∈ Ag.

Boolean operators and temporal operators, X (“next”) and U (“until”), have
the usual meaning. The strategy quantifier ∃s is a first-order-like quantification
on strategies: ∃s.ϕ reads as “there exists a strategy s such that ϕ holds”, where s
is a strategy variable. The binding operator (a, s) assigns a strategy to an agent:
(a, s)ϕ reads as “when agent a plays strategy s, ϕ holds”.

The models of SL are classic concurrent game structures.

Definition 2 (CGS). A concurrent game structure (or CGS for short) is a
tuple G = (Ac, V,∆, `, vι) where Ac is a finite non-empty set of actions, V is a
finite non-empty set of positions, ∆ : V × AcAg → V is a transition function,
` : V → 2AP is a labelling function, and vι ∈ V is an initial position.

In a position v ∈ V , each player a chooses an action αa ∈ Ac and the
game proceeds to position ∆(v,α), where α ∈ AcAg stands for the joint ac-
tion (αa)a∈Ag. A play is an infinite sequence of positions and joint actions
λ = v0α1v1 . . . that respect the transition relation, and a history is a finite
prefix of a play. We let λi denote vi, and Hist be the set of histories. A strategy
is a function σ : Hist→ Ac, and we let Str be the set of all strategies.

An assignment χ : Ag∪Var→ Str is a function assigning strategies to agents
and variables. A history λ is consistent with an assignment χ if, at each step of
λ, all agents follow the strategy assigned to them by χ.
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The semantics of SL formulas is defined given a CGS G, an assignment χ and
a history λ. The semantics for Boolean and temporal connectives being standard,
we just give the semantics of the strategy quantifier and the binding operator,
and refer the reader to [18] for more details. A formula ∃s.ϕ is true in G, χ, λ,
written G, χ, λ |= ∃s.ϕ, if there exists a strategy σ such that G, χ[s 7→ σ], λ |= ϕ,
and G, χ, λ |= (a, s)ϕ if G, χ[a 7→ χ(s)], λ |= ϕ.

For instance, if each agent ai ∈ Ag = {a1, . . . , an} has an LTL objective ψi,
the following SL formula expresses the existence of a Nash equilibrium:

∃s1 . . . ∃sn(a1, s1) . . . (an, sn)
∧
i

∀s′i [((ai, s
′
i)ψi)→ ψi]

3 SL with imperfect information

Imperfect information extensions of SL have been considered for instance in [2,
8], considering purely semantical aspects or focusing on agents without memory.
The first decidability result for an imperfect-information extension of SL for
agents with perfect recall was published in [5] (see [6] for an extended version).

In games with imperfect information, the fact that the lack of knowledge
reduces players’ power is captured by the notion of uniform strategies: players
can only use strategies that assign the same move to situations that they can-
not distinguish. In SL, a problem when introducing imperfect information is to
know for which player(s) a strategy should be uniform: indeed, quantification
on strategies and assignment of a strategy to an agent are dissociated, and in
addition a strategy can be assigned to different agents. The solution adopted
in [5] was to dissociate players and observational power: each strategy quanti-
fier ∃os is quantified with an observation symbol o, interpreted in the model by
an equivalence relation on positions: we specify directly with respect to which
observation the quantified strategy should be uniform.

We thus consider a finite set of observation symbols Obs, and extend con-
current game structures with a component called observation interpretation: a
CGS is now a tuple G = (Ac, V,∆, `, vι,O), where (Ac, V,∆, `, vι) is as before,
and O : Obs→ 2V×V maps each observation symbol o ∈ Obs to an equivalence
relation Obs(o) =∼o over the positions, that represents indistinguishability of
positions. To capture agents with synchronous perfect recall, we then extend
these relations to histories by letting λ ∼o λ′ if |λ| = |λ′| and λi ∼o λ′i for every
i ∈ {0, . . . , |λ|−1}. We then say that a strategy σ is o-uniform if for all histories
λ, λ′ such that λ ∼o λ′, σ(λ) = σ(λ′).

In the resulting logic, called SLiR, we can express for instance the problem of
distributed synthesis for two players a1 and a2 against an opponent a3. Assume
that agent ai observes the game through observation relation ∼i, and that agents
a1, a2 aim at reaching a set of positions Reach ⊆ V . Define Obs(oi) =∼i, and
assume that positions in Reach are labeled with proposition pwin. Then the
existence of winning strategies for a1, a2 is expressed in SLiR as follows:

ϕ = ∃o1s1 ∃o2s2 ∀o3s3 (a1, s1)(a2, s2)(a3, s3)Fpwin
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As a direct consequence of Peterson and Reif’s seminal result on the undecidabil-
ity of multiplayer games with imperfect information [21], model checking SLiR is
undecidable already for the single formula ϕ. Our main result in [5] is that it is
decidable on hierarchical instances, i.e., on the set of inputs where deeper quan-
tifiers (in the syntactic tree) are parameterized with finer observation relations.
For instance, if in CGS G we have Obs(o3) ⊆ Obs(o2) ⊆ Obs(o1), meaning that
agent a3 observes better than agent a2 who in turn observes better than agent
a1, then (G, ϕ) is a hierarchical instance.

Theorem 1. Model checking SLiR on hierarchical instances is decidable.

The proof goes through QCTL∗iR, an imperfect-information extension of Quan-
tified CTL∗ (QCTL∗) that we introduced to serve as a “compilation” logic, an
intermediary between SLiR and the tree automata machinery used to solve the
model-checking problem for QCTL∗iR. The complexity of the model-checking
problem is nonelementary: essentially we gain one more exponential for every
alternation between existential and universal strategy quantifiers, and at every
change of observation relation.

While Theorem 1 considers finite concurrent game structures, we recently
extended this result to a class of infinite systems obtained as unfoldings of push-
down systems. Informally a pushdown CGS, or PGS, is a CGS equipped with
a stack. Transitions depend both on the state (position) and the top symbol of
the stack, and each transition determines both the new state and an operation
to execute on the stack (essentially, either “pop” the top symbol, or “push” one
or several symbols). The set of possible configurations in a PGS is thus infinite.
We proved in [16] that, as long as the stack is perfectly observed by all agents,
then the result from Theorem 1 can be extended to pushdown concurrent game
structures.

Theorem 2. Model checking SLiR on pushdown CGS with visible stack is de-
cidable for hierarchical instances.

Actually we proved a stronger result: the problem remains decidable even
if we consider the much more general class of higher-order pushdown systems,
always as long as the (higher-order) stack is visible.

We now move to extensions of SL with imperfect information and knowledge
operators.

4 SL with knowledge operators

In systems with imperfect information it becomes relevant and useful to be
able to express and reason about what agents know or not about the state of
the system, about what other agents know, and about each other’s strategic
abilities. Epistemic extensions of logics for strategic reasoning have thus been
studied, for instance in ATL [14, 13] or SL [2]. Typically, such logics add to
the language epistemic operators, the most important one being the knowledge
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operator Kaϕ, which reads as “agent a knows that ϕ holds” [10]. However,
since such logics usually also require agents to play according to their knowledge
(uniform strategies), they are undecidable for agents with perfect recall. A first
decidability result for SL with imperfect information and epistemic operators for
agents with perfect recall was established in [4] in the case where all actions are
public.

In [15] we established a second decidability result for such an epistemic ex-
tension of Strategy Logic with perfect recall, in the context of hierarchical infor-
mation. This result extends the one in [5] by adding epistemic operators to SLiR
and extending the automata construction to deal with these.

In this work we pointed out an important subtlety that arises when studying
together knowledge and strategic ability. We noted that two different semantics
are found in the literature, usually without mentioning that a choice is made
and what this choice represents. Informally, one semantics captures agents that
know everyone’s strategy, while the other represents the situation where agents
do not know anyone’s strategy. We call them respectively the informed seman-
tics and the uninformed semantics. These two semantics are different: as one
would expect, knowing everyone’s strategy makes it possible to infer more from
one’s observations, and thus under the informed semantics agents know more
facts about the system. The choice of semantics also impacts the complexity of
the model-checking problem: on the one hand it is proved in [17], which im-
plicitly uses the informed semantics, that the distributed synthesis for LTL with
knowledge is undecidable already for systems with hierarchical information. On
the other hand, Puchala proves in [23] that the same problem with uninformed
semantics is decidable when information is hierarchical.

Our main result in [15] generalizes the latter, by showing that model checking
ESL (the extension of SLiR with knowledge operators) is decidable on hierarchical
instances. Here an instance is said to be hierarchical if, as before, deeper quan-
tifiers have finer observations, and in addition epistemic formulas do not refer
to strategies that are quantified before the knowledge operator. This is satisfied
if epistemic formulas do not talk about the future, or quantify on strategies for
all agents before doing so.

Theorem 3. Model checking ESL with uninformed semantics is decidable on
hierarchical instances.

Our last result in this line of work is a first decidability result for SL with
knowledge and informed semantics. Defining formally this informed semantics
for ESL is not easy, but in [3] we provide such a definition for ESL with Boolean
Goals (ESL[BG]), an important fragment of ESL; we study in detail the difference
between informed and uninformed semantics, and fix an inconsistency present in
the semantics of previous epistemic extensions of SL. We also prove that model
checking ESL[BG] is decidable on systems where all actions are public.

Theorem 4. Model checking ESL[BG] with informed semantics is decidable on
systems with public actions.
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