CEUR-WS.org/Vol-3072/paperld.pdf

Two Crucial Cubic-Time Components of
Polynomial-Maximal Decidable Boolean
Languages*™

Domenico Cantone[0000700027130671166]17 Pietro Maugeri[0000700027066272885]1’
and
Eugenio G. Omodeol0000—0003—3917—1942]2

! Dept. of Mathematics and Computer Science, University of Catania, Italy
{domenico.cantone,pietro.maugeri}@unict.it
2 Dept. of Mathematics and Earth Sciences, University of Trieste, Italy
eomodeo@units.it

Abstract. We continue our investigation aimed at spotting small frag-
ments of Set Theory (in this paper, sublanguages of Boolean Set The-
ory) that might be of use in automated proof-checkers based on the
set-theoretic formalism. Here we propose a method that leads to a cubic-
time satisfiability decision test for the language involving, besides vari-
ables intended to range over the von Neumann set-universe, the Boolean
operator U and the logical relators = and #. It can be seen that the dual
language involving the Boolean operator N and, again, the relators = and
#, also admits a decidable cubic-time satisfiability test; noticeably, the
same algorithm can be used for both languages. Suitable pre-processing
can reduce richer Boolean languages to the said two fragments, so that
the same cubic satisfiability test can be used to treat the relators C, ¢
and the predicates * = @’ and ‘DISJ(s=)’, meaning ‘the argument is
empty’ and ‘the arguments are disjoint sets’, along with their opposites
‘a # @ and ‘—DisJ(s,=)’. Those richer languages are ‘polynomial max-
imal’, in the sense that all languages strictly containing them have an
NP-hard satisfiability problem.

Keywords: Satisfiability problem - Computable set theory - Boolean
set theory - Expressibility - NP-completeness - Proof verification.

1 Introduction

The field named Computable Set Theory [5] pursued, with long-standing efforts,
languages reconciling ease of symbolic management with high expressive power,
so that an armory of reasoning tools—foremost, satisfiability testers for unquan-
tified fragments of theories concerning sets and classes—could shape a friendly
proof-development environment.

* Copyright (© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo

Long before the envisaged proof-verifier AtnaNova [17] came into being, a
foundational quest aimed at carefully drawing the frontier between the decidable
and the undecidable in set theory sparked interest in the field [15]. The language
called Multi-Level Syllogistic and some extensions of it [11], whose satisfiability
problems were shown to be NP-complete in [7], foreran that quest. In recent
years, we undertook a similar investigation aimed at spotting ‘small’ fragments
of set theory endowed with low-degree polynomial-time satisfiability tests, which
hence promise to be useful in set-based proof technology. In [4] we reported about
the complexity taxonomy of all the sublanguages of the theory called Boolean Set
Theory (BST for short); here we treat in detail two core fragments or theories,
BST(U,=,#) and BST(N, =, #), of that taxonomy and report about cubic-time
tests for their satisfiability problems. Specifically, we will study two languages,
consisting of all conjunctions of literals of the two forms

(:) Tl Kk kTp =Yg *- kY

(#) U *- Kk Upy F VLK K U,

where h, k,m,p > 1 holds, x stands for a fixed dyadic set operation, and z’s, ’s,
u’s, v’s stand for set variables.

By instantiating x as U, we obtain the fragment BST (U, =, #); by instantiating
it as N, we obtain the fragment BST(N, =, #).

The paper is organized as follows. In Section 2 we introduce an equivalence
relation ~, between non-null subsets of the set of variables occurring in a formula
@ of either fragment and elicit some of its key properties. Then, in Section 3,
we present our main decidability results together with a cubic-time satisfiability
test, stressing the commonalities between the two decidable theories. In Section4,
we report about extending the presented results to richer languages within BST.
Then we draw conclusions.

2 The equivalence relation ~_, and the ~ _-closure
operator

Any given formula ¢ of BST(%,=,#) can be represented by two sets:

@f ::{{{xla”' axh}v{yla"' 7yk}} | Tr,k-k Tp =YL * - *Yg iSiIlQD},
®° ::{{{u1,~-~ U}, {01, Up b} [ULk K Uy FE LKk, isingp}.

A central role will be played by the following relation ~, on 2% Vars(y)),
where Vars(y) is defined to be the collection of all variables occurring in ¢, and
PH(S) := 2(S)\{0} for any set S. Specifically, ~, is the intersection—hence the
inclusion minimal—of all equivalence relations ~ on P*(Vars(p)) that satisfy
the following closure conditions:

() @ c~,

Two Boolean languages decidable in cubic time 3

(C12) if A~ B, then AUC ~ BUC, for all A, B,C € 22H(Vars(y)).

We will in fact prove, for any ¢ in BST (%, =, #), that ¢ is satisfiable if and only
if {wr,...,um} %, {v1,...,vp} holds for every literal of the form (#) in . We
will exploit a useful closure operator to test conditions of the form Z; 4, Zs.
Specifically, we will prove that the set

Z=U{W | W ~, Z},

called the ~-closure of Z (or, more simply, the closure of Z, when the relation
~,, is understood), is the largest set ~ -equivalent to Z and then will provide a
quadratic algorithm for computing it. Accordingly, a set Z such that Z = Z will
be said to be ~-closed or just closed.

Lemma 1. Let Z € P%(Vars(p)). Then the closure Z of Z, namely the set
UA{W | W ~_ Z}, is the largest subset of Vars(p) that is ~ -equivalent to Z.

Proof. Let Wy, Wy be such that Wi ~, Z and Wy ~_, Z. By applying (C12) twice,
we have: Wy UWy ~, ZUWy ~, Z. In view of the finiteness of {W | W ~_, Z},
by induction it follows that

(U{W|W~¢Z}) ~, 7.

In addition, for every W’ such that W’ ~_ Z, we plainly have W’ C U{W | W ~,
Z}. This yields that U{W | W ~_, Z} is the largest set in 227(Vars(p)) that is
~-equivalent to Z. O

The equivalence relation ~,, captures which equalities among terms must be
true in every model, if any, of a given formula ¢: this is shown in the next lemma.

A set assignment M is any function sending a collection dom(M) of set
variables into the von Neumann universe of all sets V = Uqec0onVa, resulting
from the union of the levels V, = Ug<q P (Vg), with a ranging over the class
On of all ordinal numbers, where & (s) is the powerset operator.

Natural designation rules attach recursively a value to every term 7 and to ev-
ery literal of BST (x, =, #) such that Vars(r) C dom(M), for any set assignment
M:

M(o*xT)=MoxMr;
true ifMo=Mrt

false otherwise;
M(c#7)==-M(c=r1).

M(o=1):=

Then we put, for conjunctions of literals ¢;:
ME N ANl) =Ml A NMl,

when Vars(¢;) C dom(M), for i =1,... k.

4 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo

Given a conjunction ¢ and a set assignment M such that Vars(¢) C dom(M),
we say that M satisfies ¢, and write M = ¢, if My = true. When M satisfies
v, we also say that M is a model of ¢.

A conjunction g is said to be satisfiable if it has some model, else unsatisfiable.

For convenience, in what follows we will use the shortening notations
M{zy,...,¢op} ={M=xy,...,Mxy},

*{x1, ..., Tk} =X K kT,
*{817...7Sk} =81 %K% S,
where M represents a set assignment, zi,...,x; and si,..., S, denote vari-

ables and sets, respectively, and the *’s stand for alike symbols/operations ‘U’
or ‘M.

Lemma 2. Let ¢ be any formula in BST (%, =,#), and let M be any set assign-
ment over Vars(y) satisfying . Then

Z1 ~o ZQ E=4 *MZl = *MZQ,
for all Zy, Zy € 2H(Vars(p)).

Proof. In view of the fact that ~, is inclusion-minimal, it is sufficient to prove
that the equivalence relation ~,, over Z*(Vars(y)) defined by

Zy oy Zo 2L M7, = kM7,

satisfies the closure conditions (Cl1) and (Cl2).

Concerning (CI1), if {L, R} € &% then ML = % MR, so L ~,, R holds,
proving @i‘f C ~yye

As for (Cl12), let A ~,, B and C C Vars(y). Then wMA = % MB, and
therefore

M(AUC) = (hMA)x (kMC) = (kMB) (hMC)=%M(BUC),
from which AUC ~,, BUC follows. O
We next prove the following key property, which will be used in the cor-

rectness proof of our fast algorithm presented in Section 3.1 for computing ~ -
closures.

Lemma 3. Given a BST(x,=,#)-formula @, let Z € PH(Vars(p)) be such that

LCZ<— RCZ, for every {L, R} € &¢. (1)
Then, for all Wi, Wy € 2H(Vars(p)) such that Wy ~, Wa, we have

WiCZ < WoCZ. (2)

Two Boolean languages decidable in cubic time 5

Proof. Let ¢ and Z be as in the hypothesis. In view of the C-minimality of ~,
it suffices to prove that the equivalence relation over Z*(Vars(y)) defined by

Wi, Wo 2L (W, CZ < W, C 2) (3)
satisfies the closure conditions (Cl1) and (Cl2).

As for (Cl1), just from the hypothesis it follows that L ~, R, for every
{L, R} € #2. Concerning (CI2), let A ~, B and C C Vars(yp), and assume that
AUC C Z. Then, A C Z and C C Z, so that by (3) we have BUC C Z.
Symmetrically, it can be shown that BUC C Z implies AU C C Z. Hence,

AuCCZ < BUCCZ

holds and, by (3), we readily have AU C ~, B U C. The arbitrariness of A, B,
and C' yields that even the closure condition (Cl12) holds for ~ .

Finally, from the C-minimality of ~, we have ~, C ~,. Therefore, if W; ~,,
Wy, then Wy ~, Wy, which by (3) implies Wy C Z <— W, C Z. O

Further useful properties of the ~-closure operator and of the equivalence
relation ~, are reported in the following lemma.

Lemma 4. Let Z, 7,75 € P (Vars(p)). Then
() ZCZandZ~, Z;

(b) Z=2;

(C) Zf Z1 ~e 72, then Z1 Q 72,’

(d) Zy ~, Zy if and only if Z1 = Zo;

(e) if Zy C Zo, then Z1 C Zo;

(f) 21 C Zy if and only if Z1 C Zo;
)

if Z1 C Z or Zy C Z holds and Zy ~, Zsy, then Z ~, Z U Z1 U Zs.

Proof. Property (a) follows directly from Lemma 1.

Concerning (b): the transitivity of ~,, yields Z ~, Z so that, by the definition
of Z, Z C Z holds. By (a) we have Z C Z, therefore Z = Z.

As for (c), if Zy ~, Za, then Z; C Zy = Z>.

Concerning (d), if Z; ~, Za, then the transitivity of ~, yields Z; ~, Zs.
Thus, by (c), we get Zy = Z,. Conversely if Z; = Zy, then Z; ~, Zs, thus by
transitivity Z; ~, Z2 holds.

Regarding (e), let Z; C Z,. Since by (a) Zo C Z5 and Z; ~, Z; hold, by
(C12) we have

ZQZZIU(ZQ\Zl)N¢71U(72\Z1)271U72.

Thus, by (c), we get the inclusion Z; U Z5 C Zo, and therefore Z; C Z,.
Concerning (f), if Z; C Zs, then by (e) and (b) we have Z; C Zy = Zs.
Conversely, if Z; C Z,, then by (a) we have Z; C Z; C Zs.
Finally, as for (g), suppose that we have Z; ~, Zs and either Z; C Z or
Zs C Z holds. By (Cl2), we have ZU Z; ~, ZU Zy. But {ZU Z1,ZU Zy} =

{Z,ZUZ,U Zy}, hence Z ~, Z U Zy U Zy follows. O

6 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo
3 Satisfiability in BST(U, =, #) and in BST(N, =, #)

Below we will present a necessary condition that also suffices to ensure that
a given formula in either BST(U,=,#) or BST(N,=,#) is satisfiable. Notice-
ably, this condition is essentially the same for both languages, so that the same
algorithm can be used to test formulae of either language for satisfiability.

Theorem 1. Let ¢ be alBST(U, =, #)-formula. Then @ is satisfiable if and only
if L #, R (namely L # R) holds for every literal of the form \UL # UR in ¢.

Proof. (Necessity.) Let M be a model for ¢. By way of contradiction, assume
that there exists a literal [JL # UR such that L ~, R. Then by Lemma 2 we
would have ML = UM R, a contradiction. Therefore for all literals L # R
we must have L o, R, completing the necessity part of the proof.

(Sufficiency.) Next, let us assume that, for each {L, R} € #2, we have L £,
R. We will construct a set assignment M that satisfies .

Let us assign a nonempty set by to each V such that V € U®S in such a
way that the by7’s are pairwise distinct.? Then we define the set assignment M
over Vars(y) by putting, for each x € Vars(p),

Mz :={by |z ¢V and V € UP},
so that we have
UMU = {byz | U €V and V € Ud}, (4)

for every U C Vars(p).

We first show that (JML = UMR holds whenever {L, R} € #2. Thus, let
{L,R} € &2 and let byy € UML, for some V € & such that L ¢ V. Then
L ¢ V, by Lemma 4(f). Since {L, R} € &2, then by (Cll) we have L ~, R, so
that, by (d) and (f) of Lemma 4, R ¢ V follows. Hence bz € UM R, and by the
arbitrariness of by we have (UML C UMR.

Analogously one can prove UMR C UML, so UML = |JMR holds, as we
intended to show.

Next we prove that (JM L # (UM R holds, whenever {L, R} € #¢. Thus, let
{L, R} € #2, so that by our assumption we have L 5, R. Hence, by Lemma 4(d),
L # R. W.lo.g., let us assume that L ¢ R. Since R C R (by Lemma 4(a)) and
plainly R € U®S, then bz ¢ UMR, by (4). On the other hand, by Lemma 4(f),
L ¢ R, hence by € [UML, again by (4), and therefore UM L # UM R, conclud-
ing the proof of the theorem. O

In a dual manner, one can also prove the following result:

Theorem 2. Let ¢ be a BST(N, =, #)-formula. Then ¢ is satisfiable if and only
if L &, R (namely L # R) holds for every literal of the form (\L # MR in .

3 For definiteness, such by’s can be drawn from the collection

{{0}, {{0}}, {{{0}}},... } of Zermelo’s non-zero numerals.

Two Boolean languages decidable in cubic time 7

3.1 A cubic-time satisfiability test for BST(U, =, #) and for
BST(F-],) 7’5)

Theorems 1 and 2 imply that any BST (%, =, #)-formula ¢, where x € {U, N}, is
satisfiable if and only if L # R holds for every literal % L # % R in ¢. Hence, they
yield straight decision procedures for the theories BST (x, =, #), with » € {U,N}.

The next step will then be to provide a quadratic algorithm for computing the
closure Z of any input Z € 2% Vars(y)), namely, the largest set in 22 Vars(y))
which is ~-equivalent to Z.

In Algorithm 1 below, we provide a high-level specification of the function
CLOSURE, intended to compute the closure Z of any given Z € 2% Vars(yp)),
for a BST (%, =, #)-formula ¢. After proving its correctness, we will illustrate a
lower-level implementation whose time complexity is quadratic (as opposed to
the cubic-time complexity which would ensue from a naive implementation).

Algorithm 1 Satisfiability tester

Require: A BST (%, =, #)-formula ¢ represented by the sets of pairs € and &¢.
Ensure: Is ¢ satisfiable 7

1: for each {L, R} in #¢ do

2: if CLOSURE(L,$2) = CLOSURE(R,PZ) then

3: return false;

4: return true;

1: function CLOSURE(Z,$Y)

Input: a set Z and the set ¢
Output: the ~,-closure Z of Z
Z <+ 7
while there exists {L, R} € % such that L C Z <= R Z Z do
Z+— ZULUR;
return Z;

We can now prove quite easily the correctness of the function CLOSURE.
Lemma 5. The function CLOSURE computes closures correctly.

Proof. Given a BST (x,=,#)-formula ¢, with input a set Z C Vars(y) and a
collection @2 the while-loop of the function CLOSURE plainly terminates within
a number k < |¢f| of iterations. Let Z; be the value of the variable Z after 7
iterations, so that Zy = Z. Preliminarily, we prove by inductiononi =0,1,...,k
that Z; ~, Z and Z C Z,.

The base case ¢ = 0 is trivial.

Next, let {L, R} € ®¢ be the pair selected by the while-loop during its i-th
iteration, with ¢ > 1. Hence, we have:

LNV, R, LCZ,_4 <:>RZZ7;_1, and Z;,=Z,_1ULUR.
Thus, by inductive hypothesis and Lemma 4(g), we have
L~y 21~y 2Zi iULUR=2; and Z,=2,_1ULUR,

8 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo

from which Z ~_, Z; and Z C Z; follow. Hence, by induction, we have Z ~_ Z!
and Z C Zf where Zf := Z,. is the final value of the variable Z returned by the
execution of CLOSURE(Z,9?).

In addition, the termination condition for the while-loop yields that L C
2l <= R C 2! for all {L, R} € #¢. Thus, from Lemma 3, it follows that

W, C 2fe—= W, C 2F, (5)

for all Wy, Wy € P2H(Vars(p)) such that Wy ~, W.

In order to prove that Zf = Z, we observe that, since Z ~, Z and Z C zt
by (5) we have Z C Zf. Moreover, by Lemma 4(a),(d) and since Z ~, Zf, we
readily get 2Zf C Zf = Z. The latter inclusion, together with the previously
established one Z C Zf implies Zf = 7, i.e., ZF is the closure of Z, proving that
the call to CLOSURE(Z, $¢) computes the closure Z of Z correctly. O

Theorems 1 and 2, together with Lemma 5 and Lemma 4(d), readily yield
that Algorithm 1 is a valid satisfiability test for formulae in the languages
BST(U,=,#) and BST(N, =, #).

A quadratic implementation of the function Closure

Next, we provide a quadratic implementation of the function CLOSURE, which,
for a given BST(x, =, #)-formula ¢, takes as input the collection ¢ and a set
Z € P*(Vars(p)) of which one wants to compute the closure Z. As internal
data structures, the function CLOSURE uses: a doubly linked list RIPE of sets of
the form (LU R) \ Z, where {L, R} € ¢ and Z is the internal variable whose
value will converge to Z at termination; a doubly linked list UNRIPE of pairs
of form ((L\ Z),(R\ £)), with {L, R} € ?; and an array AUX of m lists of
pointers to nodes either in RIPE or in UNRIPE, where m is the number of the
distinct variables x4, ..., x,, in ¢, intended to allow fast retrieval of nodes in the
lists RIPE and UNRIPE.

We will express the complexity of the main procedure in Algorithm 1 and
of our efficient implementation of the function CLOSURE in terms of the four
quantities m,n, p, g, where m = | Vars(p)| is the number of distinct set variables
in ¢, n = [p| is the size of ¢, p = |®?] is the number of literals of the form (=)
in ¢, and ¢ = |$9] is the number of literals of the form (#) in . Plainly, we
have m,p,q < n.

Much as in [6], we can index the variables in Vars(y) from 1 tom = | Vars(y)|,
so that every subset A of Vars(p) can be represented as a Boolean array of size m
such that any set variable x; belongs to A if and only if A[i] = 1. In fact, it is pos-
sible to build such an index and initialize accordingly all the arrays corresponding
to the collections of set variables present in U®? UU®S in O(m(p+q)+n) time,
even starting from a formula ¢ in plain text, yet to be parsed. Specifically, for
each literal ¢ in ¢ of the form %L = %R or %L # %R, we let m, and 7 be
pointers to the sets L and R, respectively. Then, while parsing the formula ¢,
we construct the collection of pairs

Two Boolean languages decidable in cubic time 9

1: function CLOSURE(Z,P%)

2: Z <+ 7

3: for each {L,R} € ¢ do

4: if LUR{¢ Z then

5: if L C Z or R C Z then PTR + ADD(RIPE, (LUR)\ Z);

6: > PTR is a pointer to the node just added to the list RIPE N
7 else PTR < ADD(UNRIPE, ((L\ Z),(R\ Z)));

8: for each index 4 such that z; € L U R do ADD(AUX[i], PTR);

9: while RIPE is not empty do

10: S < EXTRACT(RIPE); > Extracts the first set in RIPE

11: for each index i such that z; € S do

12: Z+— ZU{xz;};

13: for each pointer PTR in Aux[i] do

14: if PTR is in RIPE then © PTR points to the set PTR.DATA
15: PTR.DATA < PTR.DATA \ {z;};

16: if PTR.DATA = () then REMOVE(RIPE, PTR);

17: else © PTR points to the pair PTR.DATA in the list UNRIPE
18: Lpry + PTR.DATA.LEFT - PTR.DATA.LEFT \ {z;};

19: Rprr < PTR.DATA.RIGHT - PTR.DATA.RIGHT \ {z;};
20: if Lpw = 0 or Rpw = 0 then
21: REMOVE(UNRIPE, PTR);
22: if Lpig # 0 then ADD(RIPE, Lpqx)
23: else if Rpx # 0 then ADD(RIPE, Rprx)
24: REMOVE(AUX[i], PTR);

25: return Z;

II:={{(z,7a) | z € A UD® UUP? }
and sort it in O(n) time, according to the first components, using the lexico-
graphic sorting algorithm of strings of varying length described in [1, Algorithm
3.2 (pp. 80-84)].

Having sorted II, we can easily collect the m < n distinct variables of ¢
and index them using the integers 1,...,m. By means of such an indexing, in
O(m(p + q)) time (where p = |®?| and g = |$|) we can represent as an m-bit
array each set of variables in &% UU®?, and accordingly represent ¢ and @2
as lists of pairs of m-bit arrays. Such preliminary encoding phase can be carried
out in O(m(p + q) +n) time.

We make use of the auxiliary functions ADD(LIST, S) and REMOVE(LIST, PTR)
to add S to LIST (S can be either a set or a pair of sets) and to remove the node
pointed to by PTR from LIST, respectively. Since the two lists we use, namely
RiIPE and UNRIPE, are maintained as doubly linked lists, both operations can be
performed in O(1) time. The function ADD returns also a pointer to the newly
inserted node. Finally, we use the function EXTRACT(LIST) to access in O(1)
time the pointer to the first node of L1ST while removing it.

The function CLOSURE(Z,®%) comprises two phases: an initialization phase,
lines 2-8, and a computation phase, lines 9-25.

For each m-bit array, we maintain a counter of its bits set to 1, so that
emptiness tests can be performed in O(1) time. Plainly, unions, set differences,

10 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo

and inclusion tests of sets represented as m-bit arrays can easily be performed
in O(m) time. Also, membership tests and the operations of singleton addition
and singleton removal can be performed in O(1) time.

Thus, the initialization phase of the function Closure (lines 2-8) can be per-
formed in O(mp) time.

At the end of the initialization phase and at each subsequent step, the lists
RIPE and UNRIPE contain only sets disjoint from Z, and each of them has length
at most p = [@?]. Specifically, the list RIPE contains the set (LU R) \ Z, for all
{L,R} € #¢ such that LU R ¢ Z but either L C Z or R C Z holds. Instead,
the list UNRIPE contains the pair (L '\ Z, R\ Z), for all {L, R} € #¢ such that
L Z Z and R € Z both hold.

In view of the assignments at lines 15, 18, and 19, the disjointness property
from Z of the sets (L U R) \ Z in RIPE and the sets L \ Z and R\ Z such that
{L\ Z,R\ Z} is in UNRIPE is maintained at each iteration of the while-loop
at lines 9-24. Hence, at each extraction of a set S from the list RIPE at line 10,
none of the set variables in S has already been selected and processed by the
for-loop 11-24. Therefore, each set variable in Vars(yp) is processed by the for-
loop at lines 11-24 at most once, yielding that, in the overall, the for-loop 11-24
is executed at most m times, for a total of O(mp) time, since each execution of
the for-loop 11-24, say relative to a set variable x;, is dominated by the time
taken by the internal for-loop 13-24, which is O(p). Indeed, (i) at the end of the
initialization phase, the list AUX[i] contains at most p pointers to nodes in the
lists RIPE and UNRIPE; (ii) once a pointer in the list AUX[i] is processed, it is
then removed (line 24), so that it will never be processed again; and (iii) each
line of the for-loop 13-24 can be executed in constant time.

Since each extraction at line 10 takes O(1) time and, as observed, the list
RIPE has size at most p at the end of the initialization phase, it follows that the
while-loop at lines 9-24 takes O(mp) time.

Thus, the overall complexity of the function CLOSURE is O(mp) time. Since
m,p < n, we have also that the function CLOSURE takes quadratic time O(n?)
in the size n of the formula ¢ to be tested for satisfiability.

Finally, our satisfiability tester (Algorithm 1) checks at most ¢ pairs {L, R} €
@° in O(mpq) time, by computing the closures L and R by means of calls to
the function CLOSURE and comparing them. By taking into account also the
preliminary encoding phase, which has a O(m(p + q) + n)-time complexity, the
overall complexity of Algorithm 1 is O(mpg+n), which is O(n?) since m, p,q < n.

Concerning the space complexity of our satisfiability tester, it is immediate to
check that all data structures used in Algorithm 1 and in the function CLOSURE
require O(mp) space, namely O(n?) space since m,p < n.

Summarizing, we have proved the following result:

Theorem 3. The satisfiability decision problem for the language BST(U, =, #),
as well as for BST(N,=,#), can be solved in cubic time and quadratic space.

Remark 1. Tt is not hard to see that our satisfiability tester (Algorithm 1) and
its auxiliary function CLOSURE can be refined in order that an explicit set as-
signment modeling the input conjunction ¢ is returned when ¢ is satisfiable.

Two Boolean languages decidable in cubic time 11
4 Extensions of BST(U, =,#) and BST(N, =, #)

In [4] we presented two notions called existential expressibility and O(f)-express-

ibility, through which one can reduce, in constant or O(f) time, a set-theoretic

formula of a richer language to an equisatisfiable formula belonging to a smaller
language. Those notions rely on techniques for replacing formulae that involve
operators or relators not belonging to the smaller language with convenient sur-
rogates, only comprising operators of the smaller language.

Regarding the languages BST (U, =, #) and BST(N, =, #), we have:

a) the literal z = @ is O(n)-expressible in BST (U, =);

b) the literal x = @ is O(n)-expressible in BST(N, =);*

c¢) the literal z C y is existentially expressible in BST(U, =) and in BST(N, =);

d) the literal ¢ y is existentially expressible in BST(U, #) and in BST(N, #);

) the literal D1sy(z, y) is existentially expressible in BST (N, =2) and therefore,

by (b), it is O(n)-expressible in BST(N, =);

(f) the literal “D1sJ(z, y) is existentially expressible in BST(C, #); therefore, by
(¢), it is existentially expressible in both of BST(U, =, #) and BST(N, =, #).
Wrapping up, we have that (a), (c), (d), and (f) ensure that any

BST(U, =@, #@, -D1sJ, C, ¢, =, #)-formula can be reduced in linear time to an

equisatisfiable BST(U, =, #)-formula. Similarly (b), (c), (d), and (e), (f) ensure

that any BST(N, =@, #@, D1sJ, ~D1sJ, C, ¢, =, #)-formula can be reduced in lin-
ear time to an equisatisfiable BST(N, =, #)-formula. Therefore:

[§]

Lemma 6. The satisfiability decision problem for either one of the languages
BST(U,=0,#@,-D1sJ,C, €, =,%#), BST(N,=,#,D1s1,—D1sJ,C, ¢, =, #)

can be solved in cubic time.

Remark 2. In [4] it is also proved that BST(U, =@, #@&,-Di1sJ, C,Z,=,#) and
BST(N,=,#@, D1sJ, —DisJ, C, ¢, =, #) are polynomial-maximal, which means
that every language strictly containing either one of those languages is endowed
with an NP-hard satisfiability decision problem.

Related work and conclusions

In [4,6], we highlighted initial results on fragments of set theory endowed with
polynomial-time satisfiability decision tests, potentially useful for automated
proof verification and, more generally, in the symbolic manipulation of declara-
tive specifications (cf., e.g., [18,9,8]). At the outset, we focused on ‘Boolean Set
Theory’, BST, namely the language of quantifier-free formulae that involves set-
variables, the Boolean set operators U, N, \, the Boolean relators C, Z, =, #, and
the predicates ‘“ =&’ and ‘Disj(s,%)’, along with their opposites. That language,
whose expressive power is greater than it may appear at first glance (cf. [3]), has
an NP-complete satisfiability problem. In |4] we organized the fragments of BST

4 The proofs of (a) and of (c)-(f) appear in [4]; the proof of (b), which is new, is
provided in Appendix A.

12 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo

in a full complexity taxonomy which spots the 18 minimal NP-complete frag-
ments, and the 5 maximal polynomial fragments. We then announced a study
on sub-maximal polynomial fragments of BST, which this paper has undertaken.

We plan to address the satisfiability problem for the theories BST(U, Z, #)
and BST(N, Z,#) by suitably adapting to them the equivalence relation ~,
and its related closure operator introduced in this paper for the fragments
BST(U,=,#) and BST(N, =, #). In view of the equivalences

A=B < A¢AUBAB¢A
A=B < ANB¢AAB¢ A,

it turns out that the theories BST (U, ¢,#) and BST(N, Z,#) are extensions of
BST(U, =, #) and of BST(N, =, #), respectively. Notice that the relation A ¢ B,
which stands for A ¢ B vV A = B, embodies a disjunction. It is therefore
expected that the resulting satisfiability tests for BST(U, ¢, #) and BST(N, Z, #)
may have a complexity worse than cubic, though still polynomial.

We envisage a confluence of the line of research centered on satisfiability
testers, to which this paper, along with [4,6,3], contributes, with another active
line of research centered on set-unification algorithms (see, e.g., [10]). A quick
satisfiability tester often is, in fact, less helpful than a solver able to produce
a bunch of solution templates which cover, collectively, all possible models of a
given formula; or, even better, a solver supplying a symbolic solution of maximum
possible generality: e.g., the Biittner—Simonis unification algorithm for Boolean
algebras [2], which produces, when a model exists, a most general unifier.

Another foreseeable confluence has to do with a long-standing line of research
initiated by [12,13], concerning the cooperation among decision algorithms (see
also, among many, [16]). In connection with the problem of combining decision
algorithm, it is worth noticing that not just BST but even the much richer
decidable theory MLS turns out to be ‘convex’ in the sense explained in [14].

Acknowledgements We gratefully acknowledge partial support from project

“STORAGE—Universita degli Studi di Catania, Piano della Ricerca 2020,/2022,

Linea di intervento 27, and from INAAM-GNCS 2019 and 2020 research funds.
We are also grateful to the anonymous reviewers for their helpful comments.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, 1975.

2. W. Biittner and H. Simonis. Embedding boolean expressions into logic program-
ming. J. Symb. Comput., 4(2):191-205, 1987.

3. D. Cantone, A. De Domenico, P. Maugeri, and E. G. Omodeo. A quadratic reduc-
tion of constraints over nested sets to purely Boolean formulae in CNF. In F. Cal-
imeri, S. Perri, and E. Zumpano, editors, Proceedings of the 35th Italian Conference
on Computational Logic - CILC 2020, Rende, Italy, October 13-15, 2020, volume
2710 of CEUR Workshop Proceedings, pages 214-230. CEUR-WS.org, 2020.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Two Boolean languages decidable in cubic time 13

D. Cantone, A. De Domenico, P. Maugeri, and E. G. Omodeo. Complexity assess-
ments for decidable fragments of set theory. I: A taxonomy for the Boolean case.
Fundam. Informaticae, 181(1):37-69, 2021.

D. Cantone, A. Ferro, and E. G. Omodeo. Computable Set Theory, volume 1
of International Series of Monographs on Computer Science. Clarendon Press,
Oxford, UK, 1989.

D. Cantone, P. Maugeri, and E. G. Omodeo. Complexity assessments for decidable
fragments of set theory. II: A taxonomy for ‘small’ languages involving membership.
Theor. Comput. Sci., 848:28-46, 2020.

D. Cantone, E. G. Omodeo, and A. Policriti. The automation of syllogistic. II:
Optimization and complexity issues. J. Autom. Reason., 6(2):173-188, June 1990.
M. Cristid and G. Rossi. Solving quantifier-free first-order constraints over finite
sets and binary relations. J. Autom. Reason., 64(2):295-330, 2020.

A. Dovier, C. Piazza, and G. Rossi. A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log., 9(3):15:1-30,
2008.

A. Dovier, E. Pontelli, and G. Rossi. Set unification. Theor. Pract. Log. Prog.,
6(6):645-701, 2006.

A. Ferro, E. G. Omodeo, and J. T. Schwartz. Decision procedures for elementary
sublanguages of set theory. I: Multi-level syllogistic and some extensions. Commun.
Pure Appl. Math., 33(5):599-608, 1980.

G. Nelson and D. C. Oppen, Simplification by Cooperating Decision Procedures,
ACM Trans. Program. Lang. Syst., 1(2):245-257, 1979.

G. Nelson and D. C. Oppen, Fast Decision Procedures Based on Congruence
Closure, J. ACM, 27(2):356-364, 1980.

D. C. Oppen, Complexity, Convexity and Combinations of Theories, Theor. Com-
put. Sci., 12:291-302, 1980.

F. Parlamento and A. Policriti. Decision Procedures for Elementary Sublanguages
of Set Theory. IX: Unsolvability of the decision problem for a restricted subclass
of the Ag-formulas in Set Theory, Comm. Pure Appl. Math., 41(2):221-251, 1988.
Deciding Combinations of Theories, J. ACM, 31(1):1-12, 1984.

J. T. Schwartz, D. Cantone, and E. G. Omodeo. Computational Logic and Set
Theory — Applying Formalized Logic to Analysis. Springer, 2011. Foreword by
Martin Davis.

F. Stolzenburg. Membership-constraints and complexity in logic programming
with sets. In F. Baader and K. U. Schulz, editors, Frontiers of Combining Sys-
tems, First International Workshop FroCoS 1996, Munich, Germany, March 26-
29, 1996, Proceedings, volume 3 of Applied Logic Series, pages 285-302. Kluwer
Academic Publishers, 1996.

14 Domenico Cantone, Pietro Maugeri, and Eugenio G. Omodeo
A Expressibility

In this appendix we highlight the reduction technique used in Section 4.
Most of our reductions are based on the standard notion of ‘context-free’
expressibility:

Definition 1 (Existential expressibility). A formula ¥ (x) is said to be ex-
istentially expressible in a theory T if there exists a T-formula ¥(x,z) such
that

F () < (3z) ¥(=,2),

where © and z stand for tuples of set variables.

We also devised a more general notion of ‘context-sensitive’ expressibility,
embodying complexity-related information.

Definition 2 (O(f)-expressibility). Let 71 and Tz be any theories and f: N —
N be a given map. A collection C of formulae is said to be O(f)-expressible from
Ty into T2 if there exists a map

(oy), ¥(x)) = Zl(z,y,2) (6)

from Ty x C into Tz, where no variable in z occurs in either x or y, such that
the following conditions are satisfied:

(a) the mapping (6) can be computed in O(f(|¢ A]))-time,
(b) if p(y) NEL(w,y,z) is satisfiable, so is p(y) Ap(x),
(c) E(o(y) A () — (32)E8(z,y,2).

We are now ready to prove that the literal z = @ is O(n)-expressible in
BST(N, =), albeit not existentially expressible in BST(N, =, #).

Lemma 7. The literal x = & is not existentially expressibile in BST(N, =, #).

Proof. Assume by way of contradiction that x = & is existentially expressible in
BST(N, =, #), so that there exists a BST(N, =, #)-formula ¥(z,y) such that:

e =0 < (32)¥(z, 2). (7)

Since x = @ is plainly satisfiable then so it is ¥, therefore it is satisfied by

the set assignment z {by | # € V} (dual to the assignment (4), and actually
exploited in the proof of Theorem 2). Notice that M is such that, for each set
variable y € Vars(¥), My # 0 holds; and, since = € Vars(¥) we obtain

ME@32)¥ Nz #0,
contradicting (7), whence our claim follows. O

Lemma 8. The literal x = & is O(|p|)-expressible from BST(N, =) into BST(N, =).

Two Boolean languages decidable in cubic time 15
Proof. We will show that the map

(¢(y), z=2)~ [ynz ==, (8)

defined for all ¢(y) € BST(N,=), satisfies (a), (b), and (c), where f is the
function sending each formula ¢ to its length n = |¢p|.
Plainly the map (8) can be computed by collecting all variables occurring in
the formula ¢ while scanning it, hence it can be computed in O(n)-time.
Concerning (b), let M be a model for ¢(y) A Nyey y N = z. Then we have
Mx = Mz N My, namely Mx C My, for all y € Vars(y). Put

M'v:= Mv\ Mz,
for every set variable v € Vars(¢) U {z}. Plainly M’z = Mz \ Mx = (), so that
MEz=0.
To see that M’ |= ¢(y), consider any literal (L = (R of ¢, and note that:
ML =NMR (since M = @)
S (MML\ Mz)UMzx = (MMR\ Mz) U Mz (since Mz C My for all y € Vars(yp))
NM'L = NM'R;
therefore M’ models each literal of (.
Finally, concerning (c), let M be a model for p(y) Az = &. Then Mz =0
so that
ﬂMyﬁsz ﬂ Myn@=0=Mux;
YyEY Yyey

by the genericity of M, we readily get

Felyrr=0— [ynz=xz,
Yyey

whence the claim follows. O

	Two Crucial Cubic-Time Components of Polynomial-Maximal Decidable Boolean Languages

