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Abstract. Recently, fractional hedonic games have received consider-
able attention. Such a game can be represented by directed weighted
graph where the weight of edge (i, j) denotes the value player i has for
player j. The utility of player i is the average value that player i as-
signs to the members of i’s coalition. In this paper, we study a variant
of this game where there is a specific upper bound k on the number of
coalitions that can be formed. We first consider how to find a coalition
partition that maximizes the social welfare, i.e., the sum of the utilities.
Computing social welfare maximizing partitions for these games of all
agents on undirected unweighted graphs is known to be NP-hard. Here,
we study the parameterized complexity in terms of k. For all fixed k ≥ 2,
we show that it remains NP-hard to find a social welfare maximizing k-
partition for undirected unweighted graphs. For undirected unweighted
trees, we present an algorithm finding a social welfare maximizing k-
partition in time O(nk). Moreover, we consider Nash stable outcomes.
We show that for all k ≥ 2, if a fractional hedonic game on a directed
unweighted graph with bounded maximum out-degree admits a Nash sta-
ble k-partition, then the stable partition is almost balanced. However,
we prove that determining whether a fractional hedonic game admits a
Nash stable k-partition is NP-complete for all k ≥ 2.

1 Introduction

Community detection in social networks, or network partitioning, is an impor-
tant topic in social network analysis. A social network is classically represented
by a directed weighted graph over the agents, where a weighted link models the
relationship between two agents in the social network. Intuitively, communities
in a social network corresponds to groups of the vertices that are internally more
densely connected than with the rest of the vertices in the network. Partitioning
a social network into disjoint communities, or revealing the hidden community
structure, can offer insights regarding the organization of a social network and
can significantly simplify the network representation. Furthermore, in online
marketing, such as placing online ads or deploying viral marketing strategies,
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identifying communities in the social network often leads to more accurate tar-
geting and achieves better marketing results.

A key challenge of community detection is to formally define what is a com-
munity. Various attempts from various perspectives have emerged in the liter-
ature (see [15, 20] for two recent surveys on this topic). Mainstream attempts
focus on optimizing a given metric that quantitatively measure the quality of a
community structure. However, optimization of a centralized and global metric
dictates the global network decomposition from a centralized viewpoint and ig-
nores the natural forces and dynamics underlying the formation of communities.

The field of game theory focuses on interactions between intelligent individ-
uals. Thus, it is natural to apply game theory to capture the dynamics behind
the formation of communities in social networks. In recent work, there has been
a considerable amount of research on using game-theoretic techniques to study
community detection in social networks. We refer to [17] for a recent survey
on this topic. Hedonic games are a notable type of game for studying coalition
formation (see [4] for a survey). A hedonic game is specified by a set of play-
ers who have preferences over the set of all possible partitions of the players
into coalitions. The outcome of a hedonic game consists a partition of the play-
ers into disjoint coalitions. Of particular relevance to the present paper is the
line of research initiated by Aziz et al. [3] on using fractional hedonic games
to study community detection. Fractional hedonic games (FHGs), introduced
by Aziz et al. [2], are a subclass of hedonic games that can be represented by
directed weighted graphs. In particular, an FHG is represented by a directed
weighted graph where the weight of edge (i, j) denotes the value player i has for
player j and the utility of a player i is the average value that player i ascribes
to the members of i’s coalition. Outcomes that satisfy some notion of stability
or welfare are considered to be desirable community structures for a given FHG.
For example, consider FHGs represented by undirected unweighted graphs, i.e.,
undirected graphs where each edge has weight 0 or 1. This covers situations in
which players only distinguish between friends and non-friends and desire to be
in a coalition in which the fraction of friends is maximized. Aziz et al. [3] con-
sider the computational complexity of computing welfare maximizing partitions
for FHGs. Three different notions of social welfare are considered: (1) utilitarian
welfare (or social welfare): sum of utilities; (2) egalitarian welfare: the mini-
mum utility of any agent; and (3) Nash welfare: product of utilities. They show
that maximizing utilitarian, egalitarian, or Nash welfare is NP-hard even for the
FHGs represented by undirected unweighted graphs. On the positive side, they
present approximation algorithms which search for maximal matchings. These
algorithms are therefore limited as the maximum number of players in a coalition
is two, and it is usually unrealistic in practice to form many tiny coalitions. In
this paper, we focus on utilitarian welfare.

Our results. We study a variant of FHGs where there is a specific upper
bound k on the number of coalitions that can be formed. To motivate the study,
note that in many real-world scenarios, there are physical and organizational
restrictions that limit the number of possible coalitions. Consider a setting in
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which each coalition requires a leader, and where only a small number of agents
are qualified to act as a leader. Thus, any feasible partition cannot contain more
coalitions than the number of qualified leaders.

A central concern of coalition formation games is to define what constitutes
an acceptable or desired outcome. Within our setting, we consider two key ob-
jectives. Our first objective is to find a partition maximizing the social welfare,
i.e., the sum of the utilities of all players. As mentioned before, computing so-
cial welfare maximizing partitions (with no restriction number of coalitions) is
proved to be NP-hard by Aziz et al. [3], even for FHGs represented by undirected
unweighted graphs. Here, we study the parameterized complexity of the problem
in terms of k. We refer to a partition with exactly k coalitions as a k-partition.
For all k ≥ 2, we establish the NP-hardness of finding a social welfare maxi-
mizing k-partition on undirected unweighted graphs. For undirected unweighted
trees, we prove a structural property of social welfare maximizing k-partitions.
In particular, on undirected unweighted trees, we show that any coalition in a
social welfare maximizing k-partition is connected. By leveraging this property,
for n-node undirected unweighted trees, we present a simple algorithm finding a
social welfare maximizing k-partition in O(nk) time.

A social welfare maximizing partition may not satisfy every player and hence
there may exist a player who could increase their utility by deviating to another
coalition. Our second objective is to consider Nash stable partitions, where no
player can improve their utility by unilaterally changing their coalition. We prove
that for all k ≥ 2, if a Nash stable k-partition exists in an FHG represented by n-
node directed unweighted graph with bounded maximum out-degree, then each
coalition in such a k-partition is of size Ω(n). We then study the computational
complexity of finding a Nash stable k-partition. Unfortunately, for all k ≥ 2, we
prove that it is NP-complete to determine whether an FHG played on a directed
weighted graph with edge weights in {0,−1} admits a Nash stable k-partition.

Related works. Aziz et al. [3] studied the FHGs from a social welfare per-
spective, Subsequently, Flammini et al. [14] investigated how to form welfare
maximizing coalitions in FHGs in an online setting. Chen et al. [12] proposed
several agent-based (simulation-based) methods for finding social welfare max-
imizing partitions, and provided numerical results. Bilò et al. [8] initiated the
study of Nash stable partitions in FHGs from a non-cooperative point of view.
They showed that a Nash stable partition is not guaranteed to exist in FHGs
played on undirected graphs with negative weights. However, they proved that
such a partition always exists when weights are non-negative. Furthermore, they
give bounds on the (Nash) price of anarchy and stability. In addition, they es-
tablished the NP-hardness of computing a Nash stable partition with maximum
social welfare. Further results on the price of stability for FHGs played on undi-
rected unweighted graphs have been presented in [18]. Other stability concepts
in FHGs have also been studied [1, 10, 11].

The restriction on the number of coalitions, which is the focus of the present
paper, has been mostly overlooked. Skibski et al. [24] studied k-coalitional coop-
erative games in the transferable utility setting, and developed an extension of
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the Shapley value for this game. Sless et al. [25] initiated the study of additively
separable hedonic games (ASHGs) in which exactly k coalitions must be formed.
Estivill-Castro et al. [13] studied modified fractional hedonic games (MFHGs)
where k equal-size coalitions must be formed (a balanced k-partition). ASHGs
[2] and MFHGs [23] are two related classes of hedonic games that can also be rep-
resented by graphs. Aziz et al. [1] explained why efficient or stable outcomes of
FHGs provide better partitions than their counterparts for ASHGs and MFHGs,
respectively. Sless et al. [25] considered social welfare maximizing partitions and
k-coalitions-core stable partitions, an adaptation of the notion of core stability
to their setting. They presented an efficient algorithm for finding social welfare
maximizing k-partitions in ASHGs played on undirected graphs when the num-
ber of negative-weight edges is limited, and prove that for all k ≥ 1, it is NP-hard
to determine whether a given k-partition is k-coalitions-core and whether there
exists a k-coalitions-core stable k-partition in ASHGs. Estivill-Castro et al. [13]
considered Nash stability. They proved that for all k ≥ 2, finding a balanced
Nash stable k-partition is NP-hard in general undirected unweighted graphs,
but polynomially solvable in undirected unweighted trees. Further results on
Nash stable 2-partitions for MFHGs have been presented in [5, 6].

Paper organization. The remainder of the paper is organized as follows.
Section 2 presents formal definitions. Sections 3 and 4 present our results for
social welfare maximizing k-partitions and Nash stable k-partitions, respectively.
Section 5 offers some concluding remarks. Due to space restrictions, some of the
proofs are omitted. Complete proofs will be provided in the full version.

2 Preliminaries

For all positive integers n, let [n] = {1, 2, . . . , n}. In an FHG, we are given a set
N = [n] of players. The objective of the game is to partition the players into
disjoint coalitions P = {P1, P2, . . .}. Let Π(N) denote the set of all partitions
of players N , and for all integers k ≥ 1, let Πk(N) denote the set of partitions
in Π(N) with exactly k coalitions. We refer to each partition in Πk(N) as a
k-partition.

Each player i has a value function vi : N → R that denotes how much player
i values each of the players in N . We assume that vi(i) = 0. Hence, every FHG
can be represented by a tuple of valuation functions v = (v1, . . . , vn). We often
associate an FHG with a weighted directed graph. Given a tuple of valuation
functions v, let G = (N,E, v) denote the weighted directed graph where the
weight of the tuple (i, j) in N ×N is vi(j) and E contains all tuples of non-zero
weight. Let G(G) denote the fractional hedonic game associated with G. When
there is no ambiguity, we simply refer to the FHG G(G) as G.

For convenience, for each player i, we extend the input domain of the value
function vi to N ∪ {P | P ⊆ N ∧ i ∈ P} ∪Π(N). For any coalition P ⊆ N that

contains player i, the utility vi(P ) of agent i is defined as
∑

j∈P vi(j)

|P | . For any

partition P in Π(N), let P(u) denote the coalition that contains player u, and
the utility vi(P) of player vi in the partition P is defined as vi(P(i)).
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Given an FHG G(G) and a partition P, the social welfare SWG(P) of the
partition P is defined as the sum of the utilities of all players, i.e., SWG(P) =∑
i∈N vi(P). We often drop the subscript G when there is no ambiguity.
Given a partition P in Π(N), we say a player i is Nash stable for P if there

is no other coalition P ′ 6= P(i) in P such that vi(P
′ ∪ {i}) > vi(P). We say a

partition P in Π(N) is Nash stable if all players are Nash stable for P.
We use the following notations from graph theory. Let G = (N,E) be an

unweighted graph. Given a subset U of N , we denote by EG(U) the set of edges
of G having both endpoints in U . Moreover, for two disjoint sets N1 and N2,
we denote by EG(N1, N2) the set of edges having exactly one endpoint in N1

and exactly one endpoint in N2. We drop the subscript G when there is no
ambiguity. For any graph G = (N,E) and any subset S of N , we let G[S] denote
the subgraph of graph G induced by S.

We now state the two problems studied in this paper.

– The social welfare maximizing k-partition problem: Given a fractional he-
donic game G(G) and an integer k, find a k-partition P in Πk(N) that
maximizes the social welfare SW (P).

– The Nash stable k-partition problem: Given a fractional hedonic game G(G)
and an integer k, determine whether there is a k-partition P in Πk(N) that
is Nash stable.

3 Social Welfare Maximizing k-Partition

In this section, we focus on FHGs played on undirected unweighted graphs. We
remark that for an FHG played on an undirected unweighted graph G = (N,E),

the social welfare of any partition P in Π(N) is SWG(P) =
∑
P∈P

2|EG(P )|
|P | .

In the following, for FHGs played on undirected unweighted graphs, Section 3.1
establishes the NP-hardness of the social welfare maximizing k-partition problem
for every fixed k ≥ 2. For FHGs played on undirected unweighted trees, Section
3.2 presents an efficient algorithm that solves the social welfare maximizing k-
partition problem for all k ≥ 2.

3.1 NP-Hardness Results

In this section, we prove Theorem 1 below.

Theorem 1. For FHGs played on unweighted undirected graphs, the social wel-
fare maximizing k-partition problem is NP-hard for every fixed k ≥ 2.

We separate our hardness proof into two parts: k ≥ 3 and k = 2.
When k ≥ 3, we reduce from the k-colorable problem, which was proved to

be NP-complete by Leven and Galil [22] for all k ≥ 3. The k-colorable problem
is to determine whether a given undirected graph can be partitioned into k
independent sets. By considering complementary graphs, the NP-completeness
of the k-colorable problem implies the NP-completeness of determining whether
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an undirected graph can be partitioned into k cliques. It is straightforward to
verify that the social welfare of a k-partition P for an undirected unweighted
graph is at most at most 2(n−k). Moreover, if a k-partition P has social welfare
2(n− k), then the k-partition P partitions G into k cliques. Therefore, if there
is an efficient algorithm that solves the social welfare maximizing k-partition
problem, then there is an efficient algorithm that solves the NP-complete problem
of determining whether an undirected graph can be partitioned into k cliques.
Thus, we deduce that the social welfare maximizing k-partition problem is NP-
hard for k ≥ 3.

It remains to prove the case when k = 2. We reduce from the max cut
problem, which was proved to be NP-complete by Karp [19]. Recall that for the
max cut problem, we are given an instance of an unweighted undirected graph
G and a positive integer r, and we wish to determine whether there exists a cut
(S1, S2) of G satisfying |E(S1, S2)| ≥ r. We remark that our reduction is similar
to a reduction given by Bonsma et al. [9]. Bonsma et al. use a reduction from
the max cut problem to prove that it is NP-hard to find a cut (S1, S2) in an

undirected graph G such that |EG(S1,S2)|
|S1||S2| is minimized.

Reduction. Let I = (G, r) denote an instance of the max cut problem,
where G = (V,E) denotes an undirected graph and r denotes a positive integer.
We construct an undirected unweighted graph G∗ = (V ∗, E∗) as an instance of
the social welfare maximizing 2-partition problem as follows. For convenience,
let n denote |V | and let m denote |E|.

We begin by constructing an undirected graph G′ = (V ′, E′), and then let
G∗ = (V ′,K ′ \ E′) be the complementary graph of G′, where K ′ consists of all
2-element subsets of V ′. For each v in V , we have two sets Iv and I ′v of vertices,
each of size M = 4m + 2. Thus, G′ has 2nM vertices and V ′ =

⋃
v∈V Iv ∪ I ′v.

For each v in V , we introduce edges connecting each vertex in Iv to each vertex
in I ′v. Pick one distinguished vertex from each Iv to form a set A of n vertices,
and pick one distinguished vertex from each I ′v to form a set A′ of n vertices.
We proceed to insert edges in A and A′ to create two copies of G. The resulting
graph is G′.

To show that our reduction is correct, we first prove two useful properties of
social welfare maximizing k-partitions. Then, we prove Lemma 1, which estab-
lishes the correctness of our reduction.

Proposition 1. Let H = (V,E) be an undirected graph, and let H be the com-
plementary graph of H. Let P be a 2-partition in Π(V ). Then SWH(P) =
|V | − 2− SWH(P).

Proof. Let n denote |V |. Note that SWH(P) =
∑
i∈[2]

2EH(Pi)
|Pi| . Since H is the

complementary graph of H, for all subsets P of V , we have EH(P ) +EH(P ) =
|P |(|P | − 1)/2. Therefore, we obtain

SWH(P) =
∑
i∈[2]

(
|Pi| − 1−

2EH(Pi)

|Pi|

)
= n−2−

∑
i∈[2]

vH(Pi) = n−2−SWH(P).

ut
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Proposition 2. Let G = (V,E) be an undirected graph. Let G′ = (V ′, E′) be the
corresponding graph obtained by our reduction, where V ′ =

⋃
v∈V (Iv∪I ′v). Let P

in Π2(V ′) be a social welfare minimizing 2-partition in G′. Then, for each node
v in V and each coalition P in P, either P ∩ (Iv ∪ I ′v) = Iv or P ∩ (Iv ∪ I ′v) = I ′v.

Proof. Assume for the sake of contradiction that there is a vertex v in V such
that the 2-partition P does not partition Iv ∪ I ′v into the sets Iv, I

′
v. Let P =

(P1, P2). Therefore, for each i in [2], both Pi ∩ Iv and Pi ∩ I ′v are non-empty. Let
a = |P1 ∩ Iv| ≥ 1 and a′ = |P1 ∩ I ′v| ≥ 1. Note that |E(P1 ∩ Iv, P1 ∩ I ′v)| = a · a′,
and |E(P2 ∩ Iv, P2 ∩ I ′v)| = (M − a)(M − a′). Without loss of generality, assume
that |E(P1 ∩ Iv, P1 ∩ I ′v)| ≥ |E(P2 ∩ Iv, P2 ∩ I ′v)|, i.e., aa′ ≥ (M − a)(M − a′).
That is, a+a′ ≥M , and hence aa′ ≥ a(M−a) ≥M−1, as a and a′ are positive
integers. Thus, we have |E(P1 ∩ Iv, P1 ∩ I ′v)| = aa′ ≥M − 1.

Therefore, we obtain

SWG′(P) =
∑
i∈[2]

2E(Pi)

|Pi|
≥ 2E(P1)

|P1|
≥ 2|E(P1 ∩ Iv, P1 ∩ I ′v)|

|P1|
≥ M − 1

|P1|
≥ M − 1

2nM
.

Let P ′ =
(⋃

v∈V Iv,
⋃
v∈V I

′
v

)
. Thus, SWG′(P) ≤ SWG′ (P

′) =
2|EG′(

⋃
v∈V Iv)|

nM +
2|EG′(

⋃
v∈V I′v)|

nM = 2m
nM . That is, M−12nM ≤

2m
nM . Rearranging, we obtain M−1 ≤ 4m,

contradicting M = 4m+ 2. ut

Lemma 1. Let G = (V,E) be an undirected graph and let (G, r) be an instance
of the max cut problem. Let G∗ be the corresponding instance of the social welfare
maximizing 2-partition problem. Let n = |V |, m = |E|, and M = 4m+ 2. Then
G has a cut of cardinality r if and only if G∗ has a 2-partition with social welfare
at least 2nM − 2− 4m−4r

nM .

Proof. Let G′ be the complementary graph of G∗. By Proposition 1, it suffices
to prove that G has a cut of cardinality r if and only if G′ has a 2-partition with
social welfare at most 4m−4r

nM . We consider two cases.
Case 1: G has a cut (S1, S2) of cardinality r. For each i in {1, 2}, let Pi = {Iv |

v ∈ Si} and P ′i = {I ′v | v ∈ Si}. Consider the 2-partition P ′ = (P1∪P ′2, P ′1∪P2).
It is straightforward to verify that |P1 ∪ P ′2| = |P ′1 ∪ P2| = nM . Moreover,
notice that |EG′(P1 ∪ P ′2)| = |EG′(P1)| + |EG′(P ′2)| = |EG(S1)| + |EG(S2)| =
|E| − |EG(S1, S2)| = m− r. Similarly, we have |EG′(P ′1 ∪ P2)| = m− r. Thus,

SW (P ′) =
2|EG′(P1 ∪ P ′2)|
|P1 ∪ P ′2|

+
2|EG′(P ′1 ∪ P2)|
|P ′1 ∪ P2|

=
4m− 4r

nM
. (1)

Therefore, G′ has a 2-partition with social welfare at most 4m−4r
nM .

Case 2: G′ has a 2-partition with social welfare at most 4m−4r
nM . Consider

a social welfare minimizing 2-partition P∗ = (P ∗1 , P
∗
2 ) in G′. That is, we have

SWG′(P
∗) ≤ 4m−4r

nM . By Proposition 2, we deduce that for each v in V , P∗
partitions Iv ∪ I ′v into the two sets Iv and I ′v. Therefore, either Iv ⊆ P ∗1 and
I ′v ⊆ P ∗2 , or Iv ⊆ P ∗2 and I ′v ⊆ P ∗1 . For each i in {1, 2}, let Si = {v ∈ V | Iv ⊆ P ∗i }
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and S′i = {v ∈ V | I ′v ⊆ P ∗i }. Clearly, S1 = S′2, S2 = S′1, and (S1, S
′
1) = (S′2, S2)

is a partition in Π2(V ). Using a calculation similar to that used to derive Eq.(1),

we have SWG′(P∗) =
4(m−|EG(S1,S

′
1)|)

nM . Since SWG′(P
∗) ≤ 4m−4r

nM , we deduce
that |EG(S1, S

′
1)| ≥ r. Therefore, G has a cut of cardinality at least r. ut

3.2 Finding Social Welfare Maximizing k-Partitions for Trees

In this section, we first prove Lemma 2, which presents a useful structural prop-
erty of social welfare maximizing k-partitions on undirected unweighted trees.
Then, based on this property, we present a simple O(nk)-time algorithm for the
social welfare maximizing k-partitions problem on unweighted undirected trees.

Lemma 2. Let G = (N,E) be a tree and let k be a positive integer. Let P∗ in
Πk(N) be a social welfare maximizing k-partition with k coalitions P ∗1 , . . . , P

∗
k .

Then, for all coalitions P ∗i in P∗, G[P ∗i ] is connected.

Proof. Note that a connected subgraph of a tree is a tree, and a disconnected
subgraph of a tree is a forest. Assume for the sake of contradiction that there
is a coalition P ∗i in P∗ such that G[P ∗i ] is not connected, i.e., a forest. Suppose
that G[P ∗i ] has p connected components, where p ≥ 2. Let (T1, T2, . . . , Tp) be
the partition of P ∗i such that G[T1], . . . , G[Tp] are all connected components in
G[P ∗i ]. Let tw = |Tw| for each w in [p] and pi = |P ∗i |. That is, pi =

∑
w∈[p] tw.

Without loss of generality, assume that t1 ≤ t2 ≤ · · · ≤ tp.
SinceG is a tree, we deduce that there is another coalition P ∗j in P∗ with j 6= i

such that there is an edge between P ∗j and T1. Now we are ready to construct
a k-partition P ′ in Πk(N) with SW (P ′) > SW (P ∗), which contradicts the
assumption that P∗ is a social welfare maximizing k-partition.

We construct such a k-partition P ′ with coalitions P ′1, . . . , P
′
k as follows.

For each t in [n] \ {i, j}, let P ′t = P ∗t . Furthermore, let P ′i = P ∗i \ T1 and
P ′j = P ∗j ∪ T1. Now we prove that SW (P ′) > SW (P∗). For all coalitions S
of N , let d(S) = E(S)/|S|. Thus, SW (P ′) =

∑
w∈[k] 2d(P ′w) and SW (P∗) =∑

w∈[k] 2d(P ∗w). Hence it suffices to prove that d(P ′i ) + d(P ′j) > d(P ∗i ) + d(P ∗j ).

To prove this, it is enough to prove that d(P ′i ) ≥ d(P ∗i ) and d(P ′j) > d(P ∗j ).
First, we prove that d(P ′i ) ≥ d(P ∗i ). Recall that the subgraph G[P ∗i ] contains

p treesG[T1], . . . , G[Tp], while the subgraphG[P ′i ] contains treesG[T2], . . . , G[Tp].
Thus,

d(P ′i ) =

∑p
w=2(tw − 1)∑p

w=2 tw
= 1− p− 1

pi − t1
, d(P ∗i ) =

∑p
w=1(tw − 1)∑p

w=1 tw
= 1− p

pi
.

Now, to show that d(P ′i ) ≥ d(P ∗i ), it suffices to show that p−1
pi−t1 ≤

p
pi

, i.e.,

p · t1 ≤ pi. The last inequality follows by t1 ≤ t2 ≤ · · · ≤ tp and pi =
∑p
w=1 tw.

Second, we prove that d(P ′j) > d(P ∗j ). Let pj = |P ∗j | and ej = |E(P ∗j )|. That

is, d(P ∗j ) =
ej
pj

. Since there is at least one edge connecting P ∗j and T1, we have

d(P ′j) =
|E(P ∗j ∪ T1)|
pj + t1

≥
|E(P ∗j )|+ 1 + |E(T1)|

pj + t1
=
ej + t1
pj + t1

.
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Therefore, to prove d(P ′j) > d(P ∗j ), it suffices to prove
ej+t1
pj+t1

>
ej
pj

, i.e., pj · t1 >
ej · t1. This follows by the observation that any subgraph of a tree is either a
tree or a forest, that is, ej ≤ pj − 1 < pj . ut

Theorem 2. For all positive integers k, the social welfare maximizing k-partition
problem can be solved in O(nk) time on undirected unweighted trees.

Proof. By Lemma 2, we deduce that any social welfare maximizing k-partition
on a tree is a partition into k subtrees. Notice that for trees, there is a one-to-one
correspondence between removing k − 1 edges and partitioning into k subtrees.
Thus, in O(nk) time, one can simply enumerate each possible partition of k
subtrees in G and identify the optimal one in in O(nk) time. ut

4 Nash Stable k-Partition

In this section, we consider Nash stable k-partitions for all k ≥ 2. Throughout
this section, we assume that k ≥ 2 unless stated otherwise. As an independent
result, Theorem 3 below shows that a Nash stable k-partition of an unweighted
directed graph with bounded out-degree is almost balanced. Then, we prove that
it is NP-complete to determine whether a directed weighted graph with edges
weights −1 admits a Nash stable k-partition. We remark that a directed graph
is strongly connected if there is a path in each direction between each pair of
vertices of the graph.

Theorem 3. Let k ≥ 2 and ∆ ≥ 2 be two integers. Let G = (N,E) denote a
directed unweighted strongly connected graph with out-degree bounded by ∆ and
|N | ≥ k ·∆k+1. Assume that G(G) admits a Nash stable k-partition P in Πk(N).
Then all coalitions in P have size at least n

k·∆k−1 .

Proof. Let P1, . . . , Pk denote the k coalitions in P with 0 < |P1| ≤ |P2| · · · ≤ |Pk|.
It suffices to prove that |P1| ≥ n

k·∆k−1 . For any t in {0, 1, . . . , k − 1}, let Q(t)
denote the predicate |Pk−t| ≥ n

k·∆t . We use induction on t to prove that Q(t)
holds for any t in {0, 1, . . . , k− 1}. Clearly, Q(k− 1) implies that |P1| ≥ n

k·∆k−1 .
For the base case, notice that 0 < |P1| ≤ |P2| · · · ≤ |Pk|, and hence |Pk| ≥

1
k

∑
i∈[k] |Pi| =

n
k . Therefore, Q(0) holds. For the induction step, let i in [k − 1]

be given and suppose that Q(t) holds for each t in {0, . . . , i − 1}. Then, we
shall prove that Q(i) holds, i.e., |Pk−i| ≥ n

k∆i . Since (P1, . . . , Pk) belongs to

Πk(N), we deduce that
(⋃

j∈[k−i] Pj ,
⋃
j∈[k]\[k−i] Pj

)
is a 2-partition in Π2(N).

Furthermore, since G is strongly connected, there is a directed edge (b, a) from⋃
j∈[k]\[k−i] Pj to

⋃
j∈[k−i] Pj . Let Pi′ , Pj′ with i′ ≤ k−i, j′ ≥ k−i+1 denote the

two coalitions that contain players a and b, respectively. Therefore, |Pi′ | ≤ |Pk−i|
and k − j′ ≤ i − 1. By the induction hypothesis, we deduce that Q(k − j′)
holds, i.e., |Pj′ | ≥ n

k∆k−j′ ≥ n
k∆i−1 . Below we prove that |Pi′ | ≥ 1

∆ |Pj′ |. Since

|Pi′ | ≤ |Pk−i| and |Pj′ | ≥ n
k∆i−1 , we deduce that |Pk−i| ≥ |Pi′ | ≥ 1

∆ |Pj′ | ≥
1
∆ ·

n
k∆i−1 = n

k∆i , as required.
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It remains to prove that |Pi′ | ≥ 1
∆ |Pj′ |. Since P is Nash stable, we deduce

that each player is Nash stable. Since player b is Nash stable, we have

vb(Pi′ ∪ {b}) ≤ vb(Pj′). (2)

Since (b, a) is a directed edge, we deduce that vb(a) = 1 and hence vb(Pi′∪{b}) =∑
w∈P

i′∪{b}
vb(w)

|Pi′ |+1 ≥ vb(a)
|Pi′ |+1 = 1

|Pi′ |+1 . Furthermore, since the out-degree of player

b is bounded by ∆ and a is an out-neighbor of b outside Pj′ , we deduce that b
has at most ∆ − 1 out-neighbors in Pj′ , that is,

∑
w∈Pj′

vb(w) ≤ ∆ − 1. Thus,

vb(Pw) ≤ ∆−1
|Pj′ |

. Using inequality (2), we have 1
|Pi′ |+1 ≤

∆−1
|Pj′ |

. By rearranging, we

have |Pj′ | ≤ ∆|Pi′ | − |Pi′ |+∆− 1. Furthermore, we deduce from Q(k − j′) and
n ≥ k∆k+1 that

|Pj′ | ≥
n

k ·∆k−j′ ≥
k∆k+1

k ·∆k−j′ = ∆j′+1.

Notice that j′ ≥ k − i + 1 ≥ 2 as i ≤ k − 1. Therefore, we have ∆3 ≤ ∆j′+1 ≤
∆|Pi′ | − |Pi′ | + ∆ − 1. Now, we prove that |Pi′ | ≥ ∆. Assume for the sake of
contradiction that |Pi′ | ≤ ∆. Hence, we have ∆|Pi′ |− |Pi′ |+∆−1 ≤ ∆2 +∆−1.
Since ∆ ≥ 2, we deduce that ∆2 + ∆ − 1 < 2∆2 ≤ ∆3, which contradicts
∆3 ≤ ∆|Pi′ | − |Pi′ |+∆− 1. Hence |Pi′ | ≥ ∆.

Thus, |Pj′ | ≤ ∆|Pi′ | − |Pi′ | + ∆ − 1 ≤ ∆|Pi′ | − ∆ + ∆ − 1 < ∆|Pi′ |, i.e.,
|Pi′ | > 1

∆ |Pj′ |. ut

4.1 Hardness

In this section, for each k ≥ 2, we establish the NP-completeness of determining
whether a directed weighted graph with edges weights −1 admits a Nash stable
k-partition. We give an NP-completeness proof first for k = 2 and then for k ≥ 3.

First, it is convenient for us to consider Nash stable partitions in FHGs
played on undirected unweighted graphs with each player aiming to minimize
the utility, rather than considering Nash stability in weighted directed graphs
with negative edge weights. Formally, we state the following observation.

Observation 4 Let H = (N,E, v) denote a directed weighted graph with edge
weight −1. Let H ′ = (N,E) denote the directed unweighted graph that contains
the same vertices and edges as H. Let P denote a k-partition in Πk(N) for all
k ≥ 1. Then, the k-partition P is Nash stable in G(H) if and only if P is Nash
stable in G(H ′) with each player seeking to minimize, rather than maximize,
their utility.

We now prove the following proposition, which will be used in our NP-
completeness proofs for both k = 2 and k ≥ 3.

Proposition 3. Let N denote the set of utility-minimizing players, and let k ≥
2 be an integer. Let G(G) denote a fractional hedonic game, where G = (N,E) is
an unweighted directed graph. Let x in N denote a player such that x has exactly
k − 1 out-neighbors y1, . . . , yk−1 in G. Then, for all Nash stable k-partitions P
in Πk(N), we have P(x) 6= P(yi) for each i in [k − 1].
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Proof. Assume for the sake of contradiction that there is an index i in [k − 1]
such that P(x) = P(yi). That is, vx(P(x)) = vx(P(yi)) > 0 since yi is in P(yi)
and yi is an out-neighbor of x. Since x has exactly k − 1 out-neighbors, there
is a coalition P in the k-partition P such that P does not contain x and any
out-neighbors of x. Therefore, vx(P ∪ {x}) = 0 < vx(P(x)). That is, the utility-
minimizing player x is not Nash stable for P, a contradiction. ut

Nash Stable 2-Partition For k = 2, we reduce from the balanced unfriendly
2-partition problem. A 2-partition of an undirected graph is called unfriendly if
each vertex has at least as many neighbors outside its part as within. Bazgan et
al. [7] prove that the decision problem for balanced unfriendly 2-partitions is NP-
complete. Our reduction borrows ideas from a known NP-completeness reduction
based on the same problem. Kun et al. [21] present an elegant reduction from
the balanced unfriendly 2-partition problem to show that determining whether a
directed graph has a stable coloring with two colors is NP-complete. They use a
gadget that forces any stable 2-coloring to be balanced. We adapt this gadget to
our setting to ensure that any Nash stable 2-partition is balanced. Due to space
limitations, the proof of Lemma 3 is deferred to the full version of the paper.

Lemma 3. For FHGs with utility-minimizing players and played on directed
unweighted graphs, the Nash stable 2-partition problem is NP-complete.

Nash Stable k-Partitions

Lemma 4. For FHGs with utility-minimizing players and played on directed
unweighted graphs, the Nash stable k-partition problem is NP-complete for all
k ≥ 3.

Proof. Clearly, this problem is in NP. For hardness, we reduce from the NP-
complete problem stated in Lemma 3. Let G = (V,E) denote an instance of the
problem stated in Lemma 3, where G is a directed unweighted graph with an
isolated 2-cycle of vertices p1, p2. Let n denote |V |, and suppose that n ≥ 3. We
construct a directed unweighted graph G′ = (V ′, E′) as follows.

The graph G′ has all vertices in V , and all edges in E. Note that p1, p2 are the
two vertices of the isolated 2-cycle in G. Add k− 2 vertices, p3, . . . , pk, and add
edges letting p1, p2, . . . , pk form a clique, i.e., add directed edges (pi, pj) for each
i 6= j in [k] unless {i, j} = {1, 2}. Let M = n2− 2n+ 2. For each j in {3, . . . , k},
add M dummy vertices dj,q for each q in [M ], and add edges connecting these
dummy vertices dj,q to all vertices pi for each i in [k] \ {j}. That is, for each j in
{3, . . . , k}, the vertices in the set {pj}∪{dj,q | q ∈ [M ]} have the same k−1 out-
neighbors. Add edges connecting all vertices in V \ {p1, p2} to dummy vertices
dj,q for all j in {3, . . . , k} and all q in [M ]. In total, G′ has n+ k− 2 + (k− 2)M
vertices. Claims 1 and 2 below imply that the lemma holds

Claim 1: If G admits a Nash stable 2-partition P = (P1, P2) for utility-
minimizing players, thenG′ admits a Nash stable k-partition for utility-minimizing
players.
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Let P ′ denote the k-partition (P ′i )i∈[k], where P ′1 = P1, P
′
2 = P2, and P ′i =

{pi} ∪ {di,q | q ∈ [M ]} for each i in {3, . . . , n}. Clearly, for each i in {3, . . . , n},
all players in P ′i = {pi} ∪ {di,q | q ∈ [M ]} have utility 0, and hence are Nash
stable. To prove that P ′ is Nash stable, it remains to prove that all of the players
in P ′1∪P ′2 are Nash stable. Assume for the sake of contradiction that there exists
an integer i in [2] such that the player p in P ′i is not Nash stable. Thus, there is
a coalition P ′j such that the utility player p is decreased after p deviates to P ′j .
Since P ′1 = P1, P

′
2 = P2, and the 2-partition (P1, P2) is Nash stable, we deduce

that j 6= 3 − i. Therefore, j is in {3, . . . , k}. Notice that for each q in [M ], the
player dj,q is an out-neighbor of p in P ′j . Therefore, vp(P

′
j ∪{p}) = M/(M+2) =

1 − 2/(M + 2). Moreover, p has at most |P ′i | − 1 out-neighbors in P ′i and has
utility at most 1 − 1/|P ′i | ≤ 1 − 1/(n − 1) as |P ′i | = |Pi| = |V \ P3−i| ≤ n − 1.
Note that M = n2−2n+ 2 = (n−1)2 + 1 > 2n−2 as n ≥ 3. Therefore, we have
2/(M + 2) < 1/n, i.e., vp(P

′
j ∪ {p}) = 1− 2/(M + 2) > 1− 1/n ≥ vp(P ′i ). Thus,

player p’s utility does not decrease by letting p deviate to P ′j , a contradiction.
This completes the proof of Claim 1.

Claim 2: If G′ admits a Nash stable k-partition P ′ = (P ′i )i∈[k] in Πk(V ′),
then G admits a Nash stable 2-partition.

Notice that for each i in [k], the player pi has k − 1 out-neighbors in {pj |
j ∈ [k] \ {i}}. Thus, we deduce by Proposition 3 that P ′(pi) 6= P ′(pj) for all j in
[k] \ {i}. Therefore, the k vertices p1, . . . , pk belong to distinct coalitions in the
k-partition. Without loss of generality, suppose that P ′i contains pi for all i in
[k]. That is, P ′(pi) = P ′i for all i in [k]. It now suffices to prove that (P ′1, P

′
2) is a

2-partition in Π2(V ). After we prove this, the desired statement that G admits
the Nash stable 2-partition (P ′1, P

′
2) directly follows, since the Nash stability of

(P ′1, P
′
2) follows by the Nash stability of P ′ = (P ′i )i∈[k].

To prove that (P ′1, P
′
2) is in Π2(V ), it suffices to prove that P ′1∪P ′2 = V . That

is, it is enough to prove that V ′ \ V ⊆
⋃
i∈{3,...,k} P

′
i and V ∩

⋃
i∈{3,...,k} P

′
i = ∅.

We first prove that V ′ \ V ⊆
⋃
i∈{3,...,k} P

′
i . Since pi belongs to P ′i for each i in

[k] \ [2], it remains to consider the dummy vertices. For each j in [k] \ [2] and
q in [M ], the dummy vertex dj,q has k − 1 out-neighbors in {pi | i ∈ [k] \ {j}},
and hence we deduce by Proposition 3 that P ′(dj,q) 6= P ′(pi) = P ′i for all i in
[k] \ {j}. That is, we obtain that P ′(dj,q) = P ′j for all i in [k] \ {j}. Therefore,
for all j in [k] \ [2], we deduce that {pj} ∪ {di,q | q ∈ [M ]} ⊆ P ′j . That is,
except for the n − 2 vertices in V \ {p1, p2}, the coalitions that contain the
remaining vertices in V ′ have been fixed. Therefore, |P ′1| ≤ n − 1, |P ′2| ≤ n − 1,
and |P ′j | ≤ 1 +M + n− 2 = M + n− 1 for all j in [k] \ [2]. Then we prove that
V \ {p1, p2} ∩

⋃
i∈{3,...,k} P

′
i = ∅. Assume by contradiction that there is a vertex

u in V \ {p1, p2} such that u is not in P ′1 ∪P ′2. Let j be an index in [k] \ [2] such
that P ′j = P ′(u). Note that P ′j has at least M out-neighbors of u, dj,q for each q

in [M ]. That is, vu(P ′j) ≥ M
|P ′j |
≥ M

M+n−1 = 1− n−1
M+n−1 , where the last inequality

follows by |P ′j | ≤M +n−1. Moreover, vu(P ′1∪{i}) ≤
|P ′1∪{i}|−1
|P ′1∪{i}|

≤ n−1
n = 1− 1

n ,

where the last inequality follows by |P1| ≤ n−1. Since M = n2−2n+2, it follows
that 1

n = n−1
n(n−1) >

n−1
n2−n+1 = n−1

M+n−1 , i.e., vu(P ′1∪{i}) < vu(P ′j). That is, player
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u deceases its utility by deviating to P ′1, contradicting the Nash stability of u.
Therefore, we conclude that V ′ \ V ⊆

⋃
i∈{3,...,k} P

′
i and V ∩

⋃
i∈{3,...,k} P

′
i = ∅,

i.e., (P ′1, P
′
2) ∈ Π2(V ). This completes the proof of Claim 2. ut

The theorem below summarizes the main result of this section.

Theorem 5. For FHGs played on directed weighted graphs where all edges have
weight −1, the Nash stable k-partition problem is NP-complete for every fixed
k ≥ 2.

5 Concluding Remarks

Following the direction of using game-theoretic methods to study community
detection, we initiated the study of the fractional hedonic games by restricting
the number of coalitions. We considered this scenario from two aspects: social
welfare maximization and Nash stability. We applied parameterized complexity
theory to understand the computational barriers.

For future work, given our NP-hardness results, we propose to design approx-
imation algorithms or heuristic algorithms. As a starting point, one could study
the approximation algorithms for finding social welfare maximizing k-partition in
FHGs played on undirected unweighted graphs. Note that for this problem, it is
easy to see that the classical algorithm finding a densest subgraph by Goldberg
[16] provides a k-approximation algorithm. It is interesting to study whether
there is an efficient O(log k)-approximation algorithm. Furthermore, it is inter-
esting to study price of anarchy and price of stability for Nash stable partitions
in our model. In particular, study the performance in terms of k. Finally, we
conjecture that it is NP-hard to find a Nash stable k-partition on undirected
unweighted graphs for all k ≥ 2, but this remains an open problem.
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