
Towards a Model Checking Tool for
Strategy Logic with Simple Goals (short paper)?

Vadim Malvone1 and Silvia Stranieri2

1 Télécom Paris, France
vadim.malvone@telecom-paris.fr

2 Università degli studi di Napoli Federico II, Italy
silvia.stranieri@unina.it

Abstract. In this work, we raise the need for an implementation of a
model checker for Strategy Logic with Simple Goals (SL[SG]), a recently-
introduced fragment of Strategy Logic (SL). Notably, SL[SG] subsumes
the logic ATL and is strictly contained in SL[1G], a well-known fragment
of SL. Thus, the model checker for SL[1G] in MCMAS can handle SL[SG]
formulas as well. However we show that, for SL[SG] formulas that are in
ATL, one can save space and time by using the MCMAS model checker
for ATL. As the model checking complexity for both SL[SG] and ATL is
PTIME-complete, there is hope that an implementation in MCMAS for
SL[SG] would work as fast as that for ATL.

Keywords: Strategy Logic · Multi-Agent Systems · Model Checking
Tools

1 Introduction

In formal methods for multi-agent systems, logics for the strategic rea-
soning have had a major role. Among the others, ATL∗ (and ATL) has
come to the fore and largely explored for practical use [1]. More recently,
Strategy Logic (SL)[5] has come out, where strategies are treated ex-
plicitly as first order objects and associated to agents by means of a
binding operator. We recall that SL makes use of the binding operator
and strategy quantifiers along its syntax. For the latter, we have the ex-
istential operator ∃x and the dual universal operator ∀x that can be read
as “for some strategy x, ...” and “for all strategies x, ...”, respectively.
The binding operator (x, a) means that “by using strategy x, agent a
can achieve...”. SL is much more expressive than ATL∗, and able to ex-
press important solution concepts among which the Nash Equilibrium.
The high expressiveness of SL comes at a price: the model-checking prob-
lem is non-elementary. This has led at looking for meaningful elementary
fragments of SL, among the others SL[1G] [6] and SL[SG] [2].
SL[1G] refers to SL formulas of the form ℘[φ where ℘ is a quantifica-
tion prefix on strategies, [a binding, and φ an LTL formula. SL[1G]

? Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

2 Vadim Malvone and Silvia Stranieri

subsumes ATL∗ and shares with it important features, among which a
2EXPTIME solution for the model checking problem [6] (implemented
in MCMAS [3]). SL[SG] further restrict SL[1G] formulas in a way simi-
larly as ATL restricts ATL∗. Thus, SL[SG] can be seen as the extension of
ATL to arbitrary quantification on the agents’ strategies [2]. Interestingly,
SL[SG] can express meaningful concepts such as the Stakelberg equilib-
rium and coercion in voting, while providing a polynomial-time solution
for the model checking problem. Notably, no direct implementation for
SL[SG] in MCMAS has been exploited yet (since SL[1G] subsumes SL[SG],
clearly MCMAS can handle SL[SG] formulas). In this work, we give some
evidence that such an implementation should be played out, instead. In-
deed, by restricting to SL[SG] formulas that can be translated to ATL,
we show that over such formulas the standard MCMAS implementation
for ATL works much faster than the one implemented for SL[1G].
Outline. The rest of the paper is organized as follows: in Section 2, we
recall the basic concepts and results about Strategy Logic with Simple
Goals, as well as the mechanisms behind the model checking process of
MCMAS. In Section 3, we report the experiments made to solve SL[SG]
and the equivalent ATL formulas over SL[1G] and ATL MCMAS, respec-
tively. Finally, in Section 4, we provide the conclusions and some ideas
for future developments.

2 Background

In this section, we report some basic notions about SL[SG] and the main
features of the most largely employed tool for model checking, MCMAS.

2.1 Strategy Logic with Simple Goals

We briefly recall the syntax, and the main results for SL[SG] ([2]). Let
AP, Ag, and Var be the sets of atomic propositions, agents, and variables,
respectively. Given A ⊆ Ag and V ⊆ Var, we define a binding prefix as
a finite sequence [∈ {(x, a) | a ∈ A and x ∈ V }|A| such that |[| = |A|,
and every agent a ∈ A occurring exactly once in [. Contrarily, the same
variable x ∈ V can occur several times in [, allowing agents in A to use
the same strategy more than once. A quantification prefix over the set
V of variables is a finite sequence ℘ ∈ {∃x,∀x | x ∈ V }|V | such that
|℘| = |V | and every variable x ∈ V occurs exactly once in ℘. Qnt(V) ⊂
{∃x, ∀x | x ∈ V }|V | and Bnd(A) ⊂ {(x, a) | a ∈ A and x ∈ Var}|A|
denote the sets of all quantification and binding prefixes over variables
in V and agents in A, respectively.

Definition 1 (Syntax of SL[SG]). Assuming the notion of free vari-
able as reported in [6], given a formula φ in SL[SG], [∈ Bnd(Ag),
℘ ∈ Qnt(free([φ)), and p ∈ AP, φ can be expressed as follows:

φ ::= p | ¬φ | φ ∧ φ | ℘[X φ | ℘[(φ U φ)

Where X and U are the temporal next and until operators, respectively.

Title Suppressed Due to Excessive Length 3

We conclude this section by recalling two main results for SL[SG].

Theorem 1 (Expressiveness of SL[SG] [2]). Strategy Logic with Sim-
ple Goals has strictly greater expressive and distinguishing power than
ATL.

Theorem 2 (Complexity of SL[SG] [2]). The model checking for Strat-
egy Logic with Simple Goals is PTIME-complete.

2.2 MCMAS

We recall that MCMAS is a tool to model check formulas over multi-
agent systems. The setting is typically modeled through interpreted sys-
tem, using a dedicated language to formalize it, ISPL (Interpreted Sys-
tem Programming Language), and it involves two types of agents: the
standard agent and the environment one. The latter is used to describe
boundary conditions and variables shared among the standard agents.
The model checking procedure is based on binary decision diagrams
(BDD, for short), commonly used to represent boolean functions in a
compact manner. They consist of finite directed acyclic graphs with a
unique initial node, in which each internal node is a boolean variable,
and each terminal node is a truth value. The final aim is to determine,
given an interpreted system I, an initial state g, and a formula φ, if:
I, g |= φ.

3 Comparison of the existing tools

The tool which is commonly used to model check multi-agent systems is
MCMAS, which takes as input a MAS specification and a set of formulas
to be verified. Initially, MCMAS was designed to solve formulas expressed
in CTL and ATL. Later, with the expansion of Strategy Logic, and in
particular with SL[1G], a new release of the model checker has been
implemented, which supports SL[1G] formulas.
We tested the SL[1G] version of MCMAS against the standard ATL
version of MCMAS, over SL[SG] formulas which can be translated in
ATL. Notice that formulas written in SL[SG] are clearly supported by
the SL[1G] version of MCMAS, since SL[SG] ⊆ SL[1G]. The idea was to
understand if such version of MCMAS behaves well even on the SL[SG]
fragment, or if it would be the case of defining a new version for it.
Our study consists in testing the two versions of the model checker from
two points of view:

1. By scaling on the number of variables;
2. By scaling on the number of agents.

In Table 1, we show the behavior of MCMAS in the standard version for
ATL against the SL[1G] one, by varying the number of available variables
in the shell game, in which we recall that the player has to guess which
shell hides an object. In our setting, the players are the environment,
that places the object underneath the selected shell, and the guesser who
has to guess one among the available ones. We start from 200 possible

4 Vadim Malvone and Silvia Stranieri

ATL-MCMAS SL[1G]-MCMAS

shells time space time space

200 73,37 64M 2,03 30M
400 248,87 194M 8,327 45M
600 1263,63 410M 214,47 71M
800 1697,09 708M 230,26 109M
1000 613,094 169M 5630,94 134M
1200 8031,69 1660M 1473,87 239M
1400 9992,47 1947M 4732,29 283M

Table 1: Results of multiple executions on the shells example by
varying the number of possible shells: comparison between the
standard ATL MCMAS and the SL[1G] extension.

shells: the behavior of SL[1G] of MCMAS is better than the one of the
standard ATL version, both in terms of time and space, by assigning
a truth value to the same set of formulas in a one-magnitude-smaller
time, and half of the space. Moving to 400 shells, the time needed for
SL[1G] MCMAS is two magnitude smaller, and the space is 4 times less.
If we give 600 shells, the difference is still high, again with a time of
one magnitude smaller, and the needed space 5 times less. The trend
is still the same with 800 available shells. Instead, when we reach 1000
shells, MCMAS for ATL seems to find an efficient BDD technique to
solve the model checking, but the results are not confirmed by any other
test with different input. Indeed, with 1200 and 1400 shells, MCMAS
for SL[1G] keeps being better: even if the time results are of the same
magnitude as the ATL MCMAS corresponding ones, the space needed is
approximately 6 times less in both cases. In Table 2, instead, we show how
the model checkers’ response changes by varying the number of agents
in the voting game [4]. We recall that, in the most simple scenario, this
game involves two players: a voter and a coercer. After voting, the voter
can decide to hand in proof of his vote, or not to do it. In the same
way, the coercer can decide to punish the voter, or not to do it. In our
setting, the coercer is modeled through the environment, while we tested
the tool by increasing the number of voters. Precisely, by moving from
4 to 12 voters, the standard ATL-MCMAS behavior does not change
significantly, by providing the truth value of the input formula in times
and spaces that are of the same magnitude. On the contrary, with the
SL[1G] extension of MCMAS both the time and the space needed for
the execution are increased of one magnitude when the number of voters
increases from 4 to 6. Instead, if we simply move it to 8 voters, the model
checker forces its irregular termination, without assigning any truth value
to the input formulas.

We provide some examples of formulas used to obtain the results just
shown. For the shell game with 200 shells, we run the SL[1G] version of
MCMAS over the following SL[SG] formula:

ϕs = ∀e ∃g (e, Environment)(g,Guesser)F win

Title Suppressed Due to Excessive Length 5

ATL-MCMAS SL[1G]-MCMAS

voters time space time space

4 0,035 9M 0,29 20M
6 0,038 9M 18,42 697M
8 0,027 9M aborted
10 0,09 10M
12 0,08 10M

Table 2: Results of multiple executions on the voting example by
varying the number of agents involved: comparison between the
standard ATL MCMAS and the SL[1G] extension.

requiring that, no matter what the strategy of the environment is, there
always exists a strategy for the guesser to finally win. Then, we run the
standard ATL version of MCMAS on the corresponding ATL formula:

ψs = 〈〈g〉〉F win

where g is a coalition made by the guesser alone.
For the voting scenario with 4 voters, instead, the SL[SG] formula we
tested is the following:

ϕv = ℘ [F ((vote11 → punish1) and (vote21 → punish2) and
(vote31 → punish3) and (vote41 → punish4))

where ℘ = ∀v1∀v2∀v3∀v4∃e and [= (v1, V oter1)(v2, V oter2)(v3, V oter3)
(v4, V oter4)(e, Environment).
The above specifies that, no matter what the strategies of the voters are,
there always exists a strategy for the environment such that if a voter
votes the candidate 1 finally he will be punished. The corresponding ATL
formula is:

JgvKF (〈〈ge〉〉F (((vote11 → punish1) and (vote21 → punish2)
and (vote31 → punish3) and (vote41 → punish4))

where gv is the coalition of voters and ge is the environment alone.
To develop a tool for SL[SG] model checking, we expect to modify the ex-
isting ATL MCMAS in a way that makes it able to solve SL[SG] formulas.
It will be needed to modify opportunely the parser to accept SL[SG] syn-
tax, but we will also have to integrate the new model checking algorithm
in the existent tool, to reflect the SL[SG] semantics.

4 Conclusions

With this work, we show that the current SL[1G] version of MCMAS is
not the best solution to model check SL[SG] formulas. Indeed, our study

6 Vadim Malvone and Silvia Stranieri

compares the behaviors of SL[1G] MCMAS and ATL MCMAS to solve
SL[SG] formulas and the corresponding ATL formulas, respectively. The
results show that as soon as the number of agents involved in the model
grows, SL[1G] MCMAS does not behave well, until it stops working.
On the contrary, the ATL version allows assigning a truth value to the
corresponding formula in a reasonable time, which suggests an ad hoc
implementation to model check SL[SG].
To enforce our result, it might be useful to develop a mechanism to
translate formulas from SL[SG] to ATL in an automatic manner, also
highlighting when such a translation is not applicable.

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal
logic. JACM 49(5), 672–713 (2002)

2. Belardinelli, F., Jamroga, W., Kurpiewski, D., Malvone, V., Murano,
A.: Strategy logic with simple goals: Tractable reasoning about strate-
gies. In: 28th International Joint Conference on Artificial Intelligence
(IJCAI 2019). pp. 88–94 (2019)

3. Čermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising
multi-agent systems against one-goal strategy logic specifications. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 29
(2015)

4. Jamroga, W., Knapik, M., Kurpiewski, D., Mikulski, L.: Approximate
verification of strategic abilities under imperfect information. Artifi-
cial Intelligence 277, 103172 (2019)

5. Mogavero, F., Murano, A., Vardi, M.: Reasoning about strategies. In:
FSTTCS 10. pp. 133–144. LIPIcs 8, Leibniz (2010)

6. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about
strategies: On the model-checking problem. ACM Transactions on
Computational Logic (TOCL) 15(4), 1–47 (2014)

