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Abstract. Some extensions of w-regular languages have been proposed
in the literature to express asymptotic properties of w-words which are
not captured by w-regular languages. Formal definitions of extended w-
regular languages have been given in terms of both suitable classes of
automata and extended w-regular expressions. On the contrary, satisfac-
tory temporal logic counterparts are still missing. In this paper, we give
a characterization of them in terms of interval temporal logics.

1 Introduction

In this paper, we explore the relationships between extended w-regular lan-
guages and temporal logic by providing a characterization of language expres-
sions in terms of formulas of suitable interval temporal logics.

w-regular languages are a natural setting for the specification and verifica-
tion of nonterminating finite-state systems. Since the seminal work by Biichi,
McNaughton, and Rabin in the sixties, much has been done on the theory and
the applications of w-regular languages. Equivalent characterizations of w-regular
languages have been given in terms of formal languages, automata, classical and
temporal logic. However, while the consensus on what features regular languages
of finite words must exhibit is unanimous (it largely relies on Myhill-Nerode the-
orem), the notion of w-regular languages is more controversial. In the last years,
it has been shown that w-languages can be extended in meaningful ways, preserv-
ing their decidability and (some of their) closure properties [3—6]. The proposed
extensions pair the Kleene star (.)* with some variants of it. The bounding ex-
ponent B of wB-regular languages, denoted by (.)Z, constrains the language
L in the expression LZ to be iterated only a bounded number of times, the
bound being fixed for the whole w-word [6].> The unbounding exponent S of
wS-regular languages, denoted by (.)°, when applied to a language L, forces
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3 We are obviously assuming that there are no other occurrences of L in the wB-regular
expression. The same holds for the other extended w-regular languages.
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the number of iterations of L to tend to infinity, i.e., for every k > 0, it con-
strains the number of times the argument L is repeated at most k times to
be finite [6]. (.)Z and (.)° can be freely mixed in wBS-regular languages (the
combination of wB- and wS-regular ones) [6]. wB- and wS-regular languages
are properly included in wBS-regular ones [5], as witnessed by the wBS-regular
language £ = (a®b + a®b)* consisting of those w-words w featuring infinitely
many occurrences of b and such that there are only finitely many numbers oc-
curring infinitely often in the sequence of exponents of a in w. The existence
of non-wBS-regular languages that are the complements of some wBS-regular
ones and express natural asymptotic behaviours motivated the search for other
classes of extended w-regular languages. In [2], wT-regular languages, which are
based on a different extension of (.)*, denoted by (.)7, and include meaningful
non-wBS-regular languages, like, e.g., the complement of £ above, have been
studied. Besides those in terms of wB-, wS-, wBS-, and wT-regular expressions,
equivalent characterizations of the above languages have been given in terms of
automata and classical logic (extensions of the monadic second-order theory of
one successor S1S). Temporal logic counterparts are still missing. As a matter
of fact, interval temporal logic counterparts of wB- and wS-regular languages
were proposed in [15] and [14], respectively. Unfortunately, both of them are
flawed. Here, we provide a fix, and, in addition, give an interval temporal logic
characterization of wT-regular languages.

Interval temporal logic (ITL) is a general framework for representing and
reasoning about time. ITLs are characterized by high expressiveness (they over-
come various limitations of point-based temporal logics) and high computational
complexity (formulas translate into binary relations over the underlying linear
order). One of the first ITLs proposed in the literature is Moszkowski’s Propo-
sitional ITL (PITL), which was successfully applied to hardware specification
and verification [17]. The application of interval-based formalisms to temporal
reasoning in Al was first investigated by Allen [1]. A systematic logical study of
interval reasoning started with Halpern and Shoham’s work on the logic HS fea-
turing one modality for each Allen relation [10]. While decidability is a common
feature of point-based temporal logics, undecidability rules over ITLs. The first
such undecidability results were obtained for PITL by Moszkowski [16]. General
undecidability results for HS are given in [10] and further sharpened in [11]. For
a long time, these results have discouraged the search for practical applications
and further theoretical investigation on ITLs. This bleak picture started light-
ening up in the last few years when various non-trivial decidable fragments of
HS have been identified (see, e.g., [7,8]). In this paper, we focus on the interval
logic AB, whose modalities correspond to Allen’s relations meets (modality (A))
and begun by (modality (B)) [13], and some extensions of it with modalities for
the inverse relations met by (modality (A)) and begins (modality (B)). In [15],
Montanari and Sala have proved that regular (resp., w-regular) languages can be
defined in ABB, interpreted over finite linear orders (resp., N).# Here, we show
that extended w-regular languages can be captured by suitable extensions of AB.

4 In fact, (B) simplifies the encoding, but it is not necessary; thus, we do not use it.



Extended w-Regular Languages and Interval Temporal Logic 3

In particular, we show that (i) wB-regular languages can be expressed in ABA,
that extends AB with the past modality (A) corresponding to Allen’s relation
met by [12], (ii) wS-regular languages can be encoded in AB enriched with an
equivalence relation ~ (AB~) [14], and (iii) wT-regular languages are captured
by ABA~. A distinctive feature of the encodings is that they do not resort to
any counter, that is, checking the satisfaction of boundedness/unboundedness
conditions in interval temporal logic does not require the precision in length
measurements given by counters (in fact, some abstraction over counters, that
allows one to consider orders of magnitude rather than exact values, is applied
also in the automaton-based characterizations of extended w-regular languages).

The paper is organized as follows. First, we provide some background knowl-
edge. Then, we enrich the encoding of w-regular languages into AB given in [15]
to capture the increased expressive power of extended w-regular languages.

2 Preliminaries

Extended w-regular languages. We give a short account of extended w-
regular languages in terms of the extended w-regular expressions that define
them. For a detailed one, we refer the reader to [2]. Extended w-regular ex-
pressions are built on top of the corresponding extended regular ones, just as
w-regular expressions are built on top of regular ones. Let X' be a finite, nonempty
alphabet. An extended reqular ezpression over X' is defined by (a subset of) the
grammar: e = 0 | a | e-e | ete | e | e | e | €T, where a € X.

Extended regular expressions differ from regular ones as they allow construc-
tors from the set {(.)Z, (.)%, (.)T}. Their semantics is given in terms of languages
of infinite sequences of finite words, by imposing suitable constraints that capture
the intended meaning of (.)Z, (.)°, and (.)7.

Let N be the set of natural numbers and N* = N\ {0}. For an infinite
sequence u of finite words over X and 7 € N*, we denote by u; its i-th element.
The basic shuffle operation is defined as follows [2]. Let v! = (v}, vd,...) and
v?2 = (v},v3,...) be two infinite word sequences, and let g : N* — {1,2} be
a selection function. We define the g-shuffle of v and »? as the word v =

(v1,v2,...), where v; = v\g{(;)eNﬂjgi and g(j)=g())}| for all i € N*. We say that an
infinite word sequence v is a shuffle of v' and v? if there is a selection function
g such that v is the g-shuffle of them. Notice that the set of selection functions
includes those g where there exists k € N* such that g(z) =1 (resp., g(z) = 2),
for all z > k.
The semantics of extended regular expressions over X' is defined as follows:

— L(0) = 0;
for a € X, L(a) only contains the infinite sequence of the one-letter word a,
that is, L(a) = {(a,a,a,...)};
— L(eg-ez) ={w | Viw; =u; -v;, u € L(e1), v € L(e2)};
L(e1 4+ e2) = {w | w is a shuffle of u and v, for some u,v € L(e1) U L(e2)};
— L(e*) = {(upoyuz - - up)—1,Ufa) - - Up2)—1,---) | w € L(e) and f: N —

N7 is a nondecreasing function with f(0) = 1};
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— L(eP) = {(upyua .. upay—1,upy - up2y-1,---) | w € L(e) and f: N —
NT is a nondecreasing function, with f(0) = 1, such that In € N Vi €
N.(f(i+1) - £() < n);

— L(e%) = {(upyuz - .- upa)—1,Up(1) - - Up@)—1,---) | w € L(e) and f: N —
NT is a nondecreasing function, with f(0) = 1, such that Vn € N 3k €
NVi>k(f(i+1)— f(@) >n)};

— L'(eT) = {(Uf(o)UQ co Up(1) =1, UF(1) - - UF(2)—15 - - ) | u < E(e) and f N —
NT is a nondecreasing function, with f(0) = 1, such that 3¥n € N Vk €
N3>k(fi+1)— fi)=n)}.

Given a sequence v = (Ugp)Uz - Uf(1)—1,Uf(1) - - Uf(2)—1,---) € e’P, with
u € L(e) and op € {, B, S, T}, we define the sequence of exponents of e in v, de-
noted by N (v), as the sequence (f(i+1) _f(i))iEN' While the x-constructor does
not impose any constraint on N(v), the B-constructor forces it to be bounded,
the S-constructor forces it to be strongly unbounded, that is, its limit inferior is
infinite (equivalently, no exponent occurs infinitely often in the sequence), and
the T-constructor requires infinitely many exponents to occur infinitely often.

Let e be a BST-regular expression. The w-constructor turns languages of
infinite word sequences into languages of w-words (flattening) as follows:

— L(e¥) ={w | |w| = 00 and w = uyugus ... for some u € L(e)}.
wBST-expressions are defined by the following grammar, where we denote

languages of word sequences (resp., words) by lowercase (resp., uppercase) letters
e, e1,...,(resp., E, E1,..., R, Ry,...): E::= E+F | R-E | ¢¥ where R is a reg-
ular expression, e is a BST-regular expression, and + and - respectively denote
union and concatenation of word languages (formally, L(E1+Eq)=L(E1)UL(E>)
and L(E1-Eo)={uw|u€ L(E),vE€ L(F2)}).> As we did for languages of word
sequences, we will sometimes omit the operator - between word languages.

Interval temporal logics AB, ABA, AB~, and ABA~. Syntax and seman-
tics of AB, ABA, AB~, and ABA~ are defined as follows. AB features modali-
ties (A) and (B), that correspond to Allen’s relations meets (denoted by A) and
begun by (B), respectively. Its satisfiability problem is EXPSPACE-complete over
both finite linear orders and N [13]. Formally, given a set Prop of proposition
letters, formulas of AB are defined as follows: ¢ :==p | ¢ V ¢ | 7 | (A)p | (B)e,
where p € Prop. We use the shorthands ¢ A ¢ for =(—p V =), [X]p for
—(X) (), with X € {4, B}, L for p A =p, and T for p V —p. Formulas of AB
are interpreted in interval temporal structures over N endowed with Allen’s rela-
tions A and B. We identify any given ordinal N < w with the prefix of length NV
of N, and we accordingly define I(IV) as the set of all closed intervals [i, j], with
i,j € N and i < j. A special role will be played by point intervals (intervals [, ],
for each i € N) and unit intervals (intervals [i,4+ 1]), which are captured by the
formulas m = [B]L and unit = (B)T A [B][B].L, respectively. Allen’s relations
A and B are defined as follows. Given two intervals [¢, j], [, j/] € I(N), we say
that: (a) [i, j]A[#', j'] if and only if j = ¢'; (b) [¢, j]B[¢', j'] if and only if i = i’ and
j > j’. AB semantics is given in terms of interval models M = (I(N), A, B, V),

5 Notice the abuse of notation with the previous definition of the operators + and -
over languages of word sequences.
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where V' : I(N) — P(Prop) is the valuation function that assigns to every in-
terval the set of proposition letters that are true on it. Truth of AB formulas
is inductively defined as follows: (i) clauses for proposition letters and Boolean
connectives are defined as usual; (ii) M, [i,j] E (X)g, for X € {A, B}, if and
only if there exists an interval [i', j'] such that [i, j]X[i’, 5] and M, [, j'] E .
Given M = (I(N), A, B,V) and ¢, M satisfies ¢ if there is [i, j| € I(N) such that
M, [i,j] = ¢, and ¢ is satisfiable if there is an interval model M that satisfies it.

ABA is obtained from AB by adding the (past) modality (A) for the Allen
relation met by (A). Unlike what happens with point-based temporal logics,
the addition of past operators to interval ones usually increases both their ex-
pressiveness and their computational complexity (see, e.g., [9]). This is the case
with ABA: its satisfiability problem is still decidable, but non-primitive recur-
sive, over finite linear orders, and undecidable over N [12]. ABA syntax extends
that of AB in the obvious way. As for its semantics, for any pair of intervals
[i,7],[i',4'] € I(N), [i,5]A[i’,5'] if and only if i = j/. ABA formulas are inter-
preted on models M = (I(N), A, B, A, V). The semantics is defined as expected.

AB~ is obtained from AB by adding an equivalence relation ~ over the
points of the model. Similarly to ABA, the satisfiability problem for AB~ re-
mains decidable over finite linear orders, but it becomes non-primitive recur-
sive, while decidability is lost over N [14]. Formally, the language of AB is ex-
tended with a new symbol ~, and formulas are built according to the syntax:
oi=p|l~|oVel|-p| (A | (B | (B)p, where p € Prop. AB~ formulas
are interpreted on models M = (I(N), A, B,~,V), where ~ is an equivalence
relation on N. Truth is defined as for AB formulas, with an additional semantic
clause for ~: M, [i, j] =~ if and only if i ~ j. Syntax and semantics of ABA~
are obtained from those of ABA and AB~ by merging them in the obvious way.

Hereafter, we use modalities [G] (globally in the future) and [init](every ini-
tial interval), which are defined as follows: (i) [G]e iff [B][AJpA[A][A]e, and
(i) [init]p iff [B](m — [A]e) A (7 — [A]p). Both of them are definable in all the
above logics. When evaluated on [z,y], [G]¢ forces ¢ to be true over all [w, ]
with w > x; in particular, when evaluated on [0, y], it forces ¢ to be true on all
intervals. When evaluated on [z,y], [init]p forces ¢ to be true on all [z, z]; in
particular, when evaluated on [0, y], it forces ¢ to be true on all initial intervals.

3 Encoding wB-, wS-, and wT-regular languages

Building on the encoding of regular and w-regular expressions in AB given
in [15] (for the convenience of the reader, they are reported in the appendix), we
provide an encoding of wB-, wS-, and wT-regular ones into suitable extensions of
AB. As already noticed, an encoding of wB-regular (resp., wS-regular) expres-
sions in ABBA (resp., ABB ~) was proposed in [15] (resp., [14]). Unfortunately,
both encodings are flawed. Let us focus on wB-regular expressions. Let E be an
expression and e; be a sub-expression of the form ef . In [15], two formulas of
ABBA are exploited to encode the B-constructor: a local one, which is basically
the same used for the Kleene star, and a global one, that constrains the size of e;
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blocks to be bounded. The latter formula says that, for any w-word belonging to
the language, it is possible to define an infinite sequence of positions (milestones)
such that (i) no milestone is properly contained in an e; block, and (ii) the win-
dow between two consecutive milestones contains a non-increasing number of
occurrences of e;. In the following, we show that such a claim is wrong.

Let 0 = (an)nen be a sequence of natural numbers. We define a group-
ing of o as a sequence p of natural numbers (b,)nen such that b, =
Z{:(T}J(r;))_l a;, where f : N — N, with f(0) = 0, is an increasing func-

tion (that identifies the milestones). The above claim can be reformulated
as follows: every bounded sequence admits a non-increasing grouping. Since
we are dealing with N, the only sequences that satisfy such a condition are
the definitively constant ones. A counterexample is given by the sequence
oc=1,21,2,21,2,2,2,1,2,2,2,2.1,2,2,2,2.2 1,... (we would like to thank
David Barozzini for it). By contradiction, assume that there is a non-increasing
grouping p = (b, )nen of 0. Then, for every ¢ € N, it holds that f(i+1)— f(¢) < by.
We show that p is not definitively constant. Suppose that, for some 4, b; is odd.
For i large enough, we can assume that the sequence a sy, ag@)41,---5r@r1)—1
contains exactly one occurrence of 1 (as the difference between of two consecutive
terms of f is bounded, while the distance between two consecutive occurrences
of 1 is not). Moreover, if i is large enough, we can also assume that the se-
QUeNCe G f(i41), Af(i41)+1s--->Af(i+1)+b, CONtains no occurrence of 1. It follows
that b;41 is even, and thus b; 11 < b;. Suppose now that, for some i, b; is even.
For i large enough, we can assume that the sequence as (), af@)41,---,ap@r1)-1
contains no occurrence of 1. It follows that there exists ;7 > 0 such that
A f(it5)s Qf(idj)+1s - - Qf(i4+j+1)—1 contains exactly one occurrence of 1. Thus,
bi+j is odd, and bi+j < b;.

Let us consider now wB-, and wS-, and wT-regular expressions. Given an
expression F, we list its sub-expressions ej,...,e,(= E) in increasing order
of complexity. Then, for all ¢, we introduce two proposition letters expr; and
ezprf™ | and then we define inductively a formula Peapr, - Finally, we capture the
language £(E) with the formula o = A @eapr, A NiZy o A Ny cpzizpri.
The only missing ingredient is a way to recursively define formulas @y, for e; of
the forms ef , ejs , and ejT. These formulas are conjunctions of two sub-formulas,
a local one, that is the same we defined in the case e; = €, and a global one,
which guarantees the constraints imposed by the B-, S-, and T-constructors.

It is worth remarking that if, for a sub-expression e; = ef of E, there are
only finitely many occurrences of expr; intervals in the model, then we do not
need to guarantee the satisfaction of the boundedness constraint imposed by
the B-constructor (the same holds for e; = e}g and e¢; = ejT). This is the case,
for instance, with expressions like (a®b + a*b)*, which is, in fact, equivalent to
(a*b)“ due to the shuffle operator that, from a given position on, can postpone
forever the selection of occurrences of a®b. Thus, formulas we are going to build
in the next sections are assumed to be (and, in the end, will be) guarded by the

requirement that infinitely many expr; intervals occur.
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Fig.1: Example of the structure we are enforcing by means of formula @g’j ) for an
expression E = (en)“, where e,, contains the sub-expression e; = ef (dashed intervals

represent expr; intervals).

wB-regular languages in ABA. Let B(E)={(i,j) : e;=e} is a sub-expression
of E'}. To force the proper behaviour of the B-constructor, for every (i,j)€B(E),
we introduce the additional proposition letters ph;, bl;, and p;, which can be ex-
ploited to express (by means of suitable ABA formulas) the following properties:

1. ph; and bl; may only label left endpoints of ezpr; intervals which are not
left endpoints of expr; ones, but they cannot label the same points:

[G](ph; Vbl — 7N (A) expr; A—=(A) expr;) A[G]((ph; — —bl;) A(bl; — —phy));

2. there exists n € N such that every n’ > n which is the left endpoint of an
expr; interval, but not the left endpoint of an expr; interval, is labeled with
either ph; or bl;: [G]({(A)[A]((A)expr; A [A]=expr; — (A)(ph; V bl;)));

3. in between two consecutive bl; points x,y, with < y, there exists at least
one point z, with < z < y, such that z is the left endpoint of an expr;
interval: [G]((B)bl; A (A)bl; — (B)(A)expr;);

4. every ph; point is the left endpoint of exactly one p; interval: [G](ph; —
(A)pj) N Gl(pj = ~(B)pj);

5. every p; interval is begun by a ph; point and strictly contains exactly one
bl point: [G](p; — (Byph; A (B)(A)b; A [B)((A)bl; — ~(B)(A)b;)):

6. every ph; point x for which there exists a bl; point y such that y < z is the
right endpoint of at least one p; interval: [G]((A)ph; A (B)bl; — (A)(A)p;).
Fig. 1 gives a graphical account of the above properties. Let us assume that

infinitely many expr; intervals occur. Properties 1-2 guarantee that, from a point
on, say it n, every point which is the left endpoint of an ezpr; interval, but not of
an expr; one, is labeled with either ph; or bl;. By properties 4-5, every ph; point
is followed by a bl; one. Thus, the suffix starting at n can be seen as a (possibly
finite or even empty) sequence of slices [ng, n1], [n1,n2] ..., where {ng,ny,...} is
the set of bl; points greater than n. Now, let [ng, nk+1]phj be the set of all and
only those ph; points x, with n;, < < ng1, that, by properties 1-2, are left
endpoints of ezpr; intervals, but not of expr; ones. By properties 4-6, p; encodes
a series of surjective functions fr : [, nry1lpn;, — [Me41, nkg2]pn;, with & >0,
linking the ph; points of pairs of consecutive slices.® It follows that |[ng, n1]pn, | >
I[n1,n2]pn,| > ..., ie., the sequence is not increasing. Finally, property 3 imposes
that, for every k, there is at least one point x, with ny < x < ngy1, which is

5 As a matter of fact, the image of one such function f, might also include elements not
belonging to [k 1, Nk y2]ph,; however, properties 4-6 guarantee that [ngy1, nk12]pn,
is included in the image, which is enough for our purposes.
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the left endpoint of an expr; interval. Then, every ezpr; interval starting after
n spans at most two adjacent slices, and thus it contains at most |[ng, 71y, | * 2
many ezpr; intervals, thus providing a bound, as required by the B-constructor.

Now, for every (i,j) € B(E), let w§7-j) be the conjunction of the above
formulas and @%J) = [GI{A)(A) expr; — @1(3%1).

Theorem 1. Let E be an wB-regular expression over X. Then, L(E) =
{w € XY : w ~ M for some model M such that M,[0,n] = ¢p A ps A

/\(i7j)eB(E) ng’j) for some n € N}.

wS-regular languages in AB~. Let S(E)={(4,j) : ei:ef is a sub-expression of

E}. To force the proper behaviour of the S-constructor, we make use of the
equivalence relation ~ and, for all (i,5) € S(FE), we introduce the proposition
letters ph; and new,, that allow us to express (by means of suitable AB~
formulas) the following properties:

1. ph; may only label left endpoints of expr; intervals which are neither left nor
right endpoints of expr; ones (this implies that a ph; point must occur inside
an expr; interval): [G](ph; — m A (A)expr; A —(A)expr; A —(A)expri™®);

2. if two ph; points z and y, with < y, belong to the same ezpr; interval,
then = 7 y, or, equivalently, if x ~ y, then they belong to two distinct expr;
intervals: [G](~ A(B)ph; — (A)ph; A (B)(A)expren?);

3. for every expr; interval [n,n’] that contains at least one ph; point, there is
an ezpr; interval [, '] with @ > n’. Moreover, if 7i is the smallest point such
that m > n’ and there is @’ > 7 for which [7, 7] is an ezpr; interval, then, for
every ph; point z, with n < x < n’, there is a ph; point y, withn <y <7/,
such that = ~ y (notice that property 2 forces such a point y to be uniquely
determined): [G](ph; — (A)(=7A ~ A[B]((A)expre™® — [B][A]—expre™)));

4. for all expr; interval [n,n], let |[n,n/]lpn, = [z @ n < 2 <
n', x is a ph; point }| be the number of ph; points inside [n, n/]. If the model
features an infinite sequence [ng, ny), [n1,n}],... of expr; intervals, then the
sequence |[n0,ng]|pn;, |[71,71]|ph;, - - - is non-decreasing and unbounded. It

follows that there are infinitely many classes of ph; points. This is expressed

by means of the auxiliary proposition letter new; as follows: (i) new; may

only appear in a labeling that already contains ph;; (ii) for a new; point x,

there is no point y, with y < x, such that y ~ x; (iii) for every ph; point z

we have that there exists a new; point y > x:

[G](new; — phj) A [G](— A ~ — [A]-new;) A [G](ph; —
(A) (-~ A (Anew,)).

A graphical account of the properties imposed by the above formulas is given
in Fig. 2. First, we observe that expr; intervals may contain a different number
of expr; intervals. From one expr; interval to the next one, such a number may
increase, decrease, or remain the same. However, according to the semantics of
the S-constructor, for every n € N, such a number is forced to be greater than n
for a suffix of the model. This is done by means of proposition letter ph;. Once
the left endpoint of an expr; interval included in an ezpr; one is labeled with
ph;, properties 2 and 3 guarantee that, in every future expr; interval, there is
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Fig. 2: Example of the structure we are enforcing by means of formula @g’j ) for an
expression F = (en)*, where e, contains the sub-expression e; = ef (dashed intervals
represent expr intervals).

exactly one ph; point belonging to the same equivalence class. Every equivalence
class can thus be seen as an infinite chain (with a starting point) of ph; points
belonging to consecutive expr; intervals. It follows that the number n of distinct
ph; points belonging to an expr; interval forces all the following ezpr; intervals
to contain at least n distinct ph; points, and thus, by property 1, at least n expr;
intervals. Now, let us observe, as shown in Fig. 2, that not all the left endpoints
of the ezpr; intervals belonging to an expr; one must be labeled with ph;. In this
way, their number may fluctuate, while ph; points ensure that such a number
does not go below a certain threshold. Finally, property 4 guarantees that the
equivalence relation of ph; points is of infinite index, and thus the behaviour of
the S-constructor is correctly captured.

To complete the encoding, we need to guarantee the presence of ph; points
and the behaviour induced by them whenever there are infinitely many expr;
intervals in the model. Indeed, if e; is matched to ¢ infinitely often, i.e., if there
are infinitely many occurrences of point intervals labeled with expr;, then there
is no need to guarantee the satisfaction of the unboundedness constraint imposed
by the S-constructor, because € can “hide” arbitrarily many repetitions of e;.

To this end, it suffices to add a formula that constrains the model to feature at
least one ph; point if it features infinitely many expr; intervals, but only finitely
many point intervals labeled with exzpr;. Last but not least, we need to prevent
the case in which there are infinitely many occurrences of point intervals labeled
with ezpr; but not expr;, which corresponds to infinitely many instantiations of
e; with zero repetitions of e;. Such a condition is encoded by the second conjunct
of the consequent of the implication: [G](A)(A)expr; A (A)[A][A](expr; —
—) — (B)(A){A)ph; A (A)[A][A](eapr; — ).

For all (¢,j) € S(E), let @g’J) be the conjunction of the above formulas.

Theorem 2. Let E be an wS-reqular expression over X. Then, L(E) =
{w € X¥ : w ~ M for some model M such that M,[0,n] = ¢rp A ps A

Na.jyese) @g’j) for some n € N}.

wT-regular languages in ABA~. Let T(E)={(i,j) : ei:eJT is a sub-expres-
sion of E}. To encode wT-regular languages in ABA~, we first show that a

particular class of models over N can be captured by ABA~ formulas @gio’j ), for
(i,§) € T(E). Then, we use such a formula to constrain the behaviour of (.)7.
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By making use of proposition letters ph;, bl;, pj, q;, and conf;, and of the

proposition letter ~, representing an equivalence relation over N, we want to

(4,)

characterize, through @5”’, the models that satisfy the following properties:

1.

the structure enforced by @é@j

phy,bl;, and conf; only appear as labels of points, ph; and bl; never occur
together in the same labeling, and conf ; only appears in a labeling containing
also bl;, that is, a configuration (an interval whose endpoints are consecutive
conf; points) features one or more blocks (intervals whose endpoints are
consecutive bl; points): [G]((bl; V phj — ) A (conf; — bl;) A (ph; — =bl}));
there are infinitely many conf; points, that is, there are infinitely many
configurations: [G](A)(A)conf ;;
between two consecutive bl; points there is at least one ph; point and all of
them belong to the same equivalence class, that is, each block is associated
with exactly one equivalence class of ph; points: [G]((B)bl; A (A)bl; —
(B)(A)ph;) A [G)((B)ph; A (A)ph; A [BI[A]-bl; —~);
let z, y, and z, with z < y < z, be three consecutive bl; points and y be not
labeled with conf;; then, there are more ph; points between = and y than
between y and z, that is, the sequence of the numbers of ph; points featured
in blocks of the same configuration is strictly decreasing:
(Gl(p; — (B)ph; A (A)ph; A [B)=p; A [B][A]~conf ;A
(B)(A}bL; A [BI({A)b; — [BI[A]-b1,)) A

[G](ph; A [A](=mA ~—= (B)(A)bl;) — [A]-p;) A

(Gl(phy A (A)(BYbL, A [B)[Al~conf;) — (A)p,);
for every pair of ph; points x and y, with & < y, if there is a bl; point but
no conf ; point between them, then x 7 y, that is, pairs of distinct blocks in
the same configuration represent distinct equivalence classes of ph; points:

Gl~ — ((Biph; < (A)phy)) A

(Gl(~ A{B)ph; A (B){A)bl; — (B)(A)conf )
for every ph; point x there is a ph; point y > x such that x ~ y and there
is exactly one conf; point between z and y, that is, an equivalence class in
a configuration is witnessed in all the following configurations:

[Gl(phy — (A)(~ A(B)(A)conf; A [B]({A)conf, — [B][A]~conf ;)));
let z, y, and z be three consecutive confj points, with x < y < z; then,
there are less bl; points between = and y than between y and z, that is, the
sequence of the numbers of blocks in configurations is strictly increasing:
[G](conf ; = (A)((A)ph; A [B](=m — [A]=conf ;) A (A)[A]= ~));
if (z,y) and (2/,y’) are two pairs of bl; points, with z < y < 2’ < ¢/,
both witnessing the same equivalence class, then the number of ph; points
between z and y is greater than or equal to the number of those between z’
and 3/, that is, the sequence of blocks of ph; points in the same equivalence
class is non-increasing in the number of ph; points in every block:
[Gl(g; — ~ A[BJ=q; A (B){A)conf, A [BJ((A)conf, — [B][A]conf,)) A

[Gl(phj A (A)(~ A(B)(A)bl;) — (A)g;)-

Let @go’j ) be the conjunction of the above formulas. A graphical account of

) is given in Fig. 3. Notice that there may be points

whose labeling do not contain any of the proposition letters phj, bl;, and conf ;.
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[=)e}

Fig. 3: Example of the type of structure we enforce by means of formula oL,
Thanks to @Sfo’j ), a model can be seen as an infinite sequence of configurations
[conf?, conf}]7 [confjl-, conf?], ... For every x € N, conf? contains a finite sequence
of n(z) + 1, with n : N — N sets Sblf’o, .. .,Sblf’n(w) of ph; points each one
associated with exactly one equivalence class, i.e., points in S bl;ﬂ’y belong to the
same equivalence class, for every y € {0,...,n(z)}. Formally, Sbl;"¥ = {n € N:
M, [n,n] = phj, {n" <n:M,[n',n'] & conf;}| =x+1,[{n' <n:M,[n,n]
blj,vn''(n" <n” <n— M,[n",n"] | conf;)}| = y}. Intuitively, n(x) + 1 is the
number of blocks in [conf , conf 1] and |SbI}*"| is the number of ph; points in
the yth block of [conf ., conf,,,]. The following properties hold:
(P1) the function n(z) is strictly increasing (property 7);
(P2) forall z,y,y € N, with 0 <y <y < n(z), |SbI;Y| > |Sbl;c’y/| (property 4);
(P3) for every ph; point w it is possible to identify an infinite sequence of pairs of
indexes (z,%0), (x +1,y1), ... such that [w]~ = Uy Sbl;?Jrk,yk (property 6)
and |SbIY| > |Sbl;+1’y1| > ... (property 8);
(P3) states that, for every equivalence class [w].. of ph; points, there is a config-
uration such that [w]. is witnessed exactly in all the successive configurations.
Moreover, it states that the blocks that witness [w]. feature a non-increasing
number of points. Let (2,%0), (x+1,91),... be such that [w]. = [J,cy Sblf+k’y’°.
Since the number of p/oints in each block is finite, there is k¥’ € N for which
|Sbl;3+k/’yk'| = |Sbl;+k +1’yk’+l| = ..., Le., the sequence of Sblerk’y‘"' cardinal-
ities converges to a single value (we call it the value of the equivalence class),
denoted by val([w]~). By (P2), it holds that for any two distinct equivalence
classes [w]~ and [w']~ of ph; points, val([w]~) # val([w']~); otherwise, it would
be possible to find a configuration featuring two distinct blocks with the same
number of ph; points, which contradicts (P2). Finally, (P1) guarantees that the
number of distinct equivalence classes is infinite. The following lemma holds.

Lemma 1. If M,[0,0] = 5D | then there exists an infinite subset N of N such
that for every n € N there is w € N with val([w].) = n.

An instantiation of an equivalence class with an ezpr, interval is a correspon-
dence between the number of ph; points in a block associated with that class
and the number of expr; intervals in the ezpr; interval. This is the case when
the set of ph; points in the block and the set of points starting an expr; interval
within the expr; interval coincide. The T-constructor forces all the equivalence
classes to be instantiated infinitely many times. Indeed, if an equivalence class is
instantiated infinitely often, the infinitely many exzpr; intervals are matched by
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repetitions of val([w].) many ezpr; intervals in an w-iteration. Since the number
of equivalence classes is infinite and all of them feature distinct values val([w].),
the behaviour of the T-constructor is correctly encoded.

However, there are cases in which we do not need to satisfy the constraint
imposed by the T-constructor or it suffices to satisfy a weaker version of it. This
is the case when (i) there are only finitely many exzpr; intervals, as for B- and
S-constructors; (ii) there are infinitely many point intervals labeled with both
expr; and expr;; this corresponds to e; being matched by occurrences of expr;
matched, in turn, by the empty string ; in this case, such an ezpr; interval can
be thought of as featuring any possible number of ezpr; intervals; (iil) there are
infinitely many ezpr; point intervals but only finitely many labeled with both
expr; and exrpr;; in this case, it suffices to impose that at least one equivalence
class of ph; points is instantiated infinitely often.

When none of the cases above applies, we force all the equivalence classes
to be instantiated infinitely many times. For an expr; interval [z,y], let
points;([r,y]) = {z : z < z < y,32'(M,[2,2'] = expr;)}, and, for a ph; point
w, let Seq(Jw]~) = (z,y0),(x + 1,41),... be the sequence such that [w]. =
Uken Sbl?rk’y‘"'. In what follow, we define a formula &, which uses proposi-
tion letter in; to force that, for every equivalence class [w]~. of ph; points, there
is an infinite sub-sequence (Zo,7y), (T1,71), - - . of Seq([w]~) such that for every
h € N there is a distinct expr; interval [z}, y;,] with points;([x7,,y3,]) = [SbI;""",
i.e., each equivalence class is instantiated infinitely many times:

— in; appears only as the label of ph; points that begin ezpr; intervals:
[G](in; — ph; A (A)expr;);
— ph; points that share the same block of an in; point are labeled with in;:
[GI((BYphy A (A)ph; A [BI[A]-bL;) — ((A)ing < (B)in,));
— every block of in; labeled points encloses exactly an expr; labeled interval:
(G (eapr; A (B)(A)in; — [B)[A]-bi; A [A)([B][A]-bl; —
[BiAin;) A [A]([B[A]-bl; — [B][A]-in;));
— if an ezpr; interval contains an in; point, then the expr; intervals within it
begin with an in; point: [G](expr; A (B)(A)in; — [B]((A)expr; — (A)iny)).
For (i,7)€S(E), let ™ be the conjunction of the above formulas and 57 be
((A} [A] [A]=expr;) V ([GI(A)(A)(x A expr; A expr;))V
(@57 A @i A [GHAYA) (7 A eapr)) A (BY(A)(AYinA
A[G)(ing — (A)((B)(A)conf; A in;)))V
(@57 A @i A (A)A[A(eapr; — —m) A [G)(phy — (A)(=m A ~ A(A)iny)))

Theorem 3. Let E be a wT-reqular expression over X. Then, L(E) =
{w € X¥ : w =~ M for some model M such that M,[0,n] E o A o5 A

Na.jerm) @g’j) for some n € N}.
4 Conclusions

In this paper, we filled a gap in the study of extended w-regular languages
by providing a temporal logic characterization of wB-, wS-, and wT-regular
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languages. We showed how to turn wB-, wS-, and wT-regular expressions into
formulas of suitable interval temporal logics. As for future work, we are looking
for syntactic and/or semantic fragments of the considered interval temporal log-
ics, that preserve (un)satisfiability of the resulting formulas and behave better
from a computational point of view.
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A Encoding regular and w-regular languages in AB

In the following, we describe the encoding of regular and w-regular languages
in AB (they are basically those given in [15]).

To begin with, we show how to interpret words and w-words as interval
temporal models, and vice versa. For a word w = wow; . .. over a finite alphabet
XY and a model M = (I(N), A, B,V), we say that M and w are compatible,
denoted by w ~ M (or, equivalently, M ~ w), if N = |w| + 1, X C Prop, and
V : I(N) — P(Prop) is such that on each unit interval only the proper letter
holds, that is, V([¢,4 4+ 1]) N X' = {w;} for every i < |w|.

Let R be a regular expression on . We show how to encode R into an AB-
formula over the finite set of proposition letter Prop, which includes X. First, we
force proposition letters in X' to hold true only on unit intervals, and constrain
each unit interval to satisfy exactly one proposition letter in

vy =[G ((um't < Vaes a) A Naes (a — /\bEE\{a} —\b>> )

The regular expression R can be given a tree structure, whose leaves and
internal nodes belong to X and {+,-,*}, respectively. Each sub-tree identifies
a sub-expression of R. Let eq,...,e, be all the sub-expressions of R, includ-
ing elements in Y. For each e;, we introduce two new proposition letters expr;
and ezprf™®. Notice that two occurrences e; and e; of the same sub-expression

are associated with two different pairs of proposition letters (expr,/ezpr™® and

expr; / e:cprje”d). For each i, we force efcprf"d to hold only at point intervals,
and if there is an interval where expr; holds true, then exprf™@ holds on its
right endpoint, and on no point strictly included in the interval. Moreover, ev-
ery exprf™ is the ending point of an expr; interval. This is formalized by the
following formula:

pomr, = [Gl((expr™® — ) A (eapr; — (A)epr™ A

[B](=m — [A]=eapr{™))) A

[init]((A)expre™® — (A)(m A expr;) V (B)Y(A) (=1 A expr;)) A
[G]((AYexpre™ A (B)(=m A expr;) —

(B)(—m A (A)(-m A expr;))).

Finally, we prevent two ezpr; intervals from intersecting (except for intersec-
tions of a single point):

Plopr, = [Gl(expr; — [B](=m — [A](mezpr; A —expr™?))).

Let ey, ..., e, be ordered according to their complexity with e, = R, that is,
if e; is a sub-expression of e;, then 7 < j. We define formulas ¢esp,, by induction
on the complexity of expressions e;.

— If e; = a for some a € X, we put pegpr, = [G](expr; — a).

— If e; = €, we put Yegpr, = [G](expr; — 7).

— If e; = ej + e, We put Qeupr, = [G](eapr; < (expr; V expry)).

— If e; = ejex, we distinguish two cases, depending on whether or not the string
matched by e; is the empty string. The first conjunct of the formula below
states that every interval on which expr; holds can be split in two ordered
parts on which expr; and expr;, respectively hold. It distinguishes two cases:
either erpr; holds on the left sub-interval (possibly a point interval) and
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expr;, holds over the right one (necessarily not a point interval), or expr;
holds on the whole interval and exzpr) holds on its right endpoint (a point
interval). Notice that the latter covers the case where both e; and e; match
the empty string. The second conjunct constrains every exzpr; interval to
occur as a (not necessarily strict) prefix of an expr, interval and to be followed
by an expr;, one. Similarly, the third conjunct constrains every expr; interval
to occur as a (not necessarily strict) suffix of an expr; interval and to be
preceded by an ezpr; one. In addition, the formula guarantees that expr;
and ezpr;, do not intersect (except for intersections of a single point).
Peapr, = [Gl(expr; — (B)(expr; A (A)(ewpry A (A)expr™ A
[B][A]-expri™®)) V (expr; A (A)(m A expry))) A
(G](((A)expr; — (A)expr;) N ((A)(expr; A —-m) —
(A)(expr; A=m)) A (expr; — [Bl(-m — [A]-expr™®) A
(A)eapry)) A
[G)(expr), — (A)expre™d A
[Bl(—m — [A)(mexpri™® A —expr; A —expri™®)) A
(m & expr™) A (-m < (B)exprf™®) A
((B)expr™® — expr;)).

— Ife; = €}, we distinguish three cases, depending on the number of repetitions
of the sub-string matched by e; in the string matched by e;, namely zero,
one, or more than one. They are encoded by the three disjuncts in the first
conjunct of the formula below. The rest of the formula guarantees that every
interval on which ezpr; holds occurs inside an interval on which ezpr; holds.
Peapr, = [G](expr; — 7 V expr; V ((B)emprj A [B](<A>e:1:prf"d —

(A) (=1 A expr;)) A (A)ezprje"d)) A
[init]((A)ea:prj — (A)expr; V (B)(A)(—m A expr;)) A
[G]({(A)expr; A (B)(-m A expr;) — (B)(—m A (A)(-m A expr;)))

A [G}((A)exprj A (A)exprer® — (A)expr;)

A [GI({A) (=7 A expr;) A (A)expr, — (A)(-m A expr;))

A [G}(emprj — [Bl(=1 — [A]-exprnd)).

Let @r be the formula: expr, A [Alr A AN Peapr, A Ny gogg;f”

Ay ‘stcpri~ The following theorem holds [15].

Theorem 4. Let R be a regular expression over X. Then, L(R) = {w € X* :
w = M for some model M such that M,[0,N] = or A px}.

The encoding of regular expressions can be lifted to w-regular ones. Let F
be an w-regular expression. We can give it a finite tree structure in the same
way we did it for regular ones. As before, we list all the regular and w-regular
sub-expressions ey, ..., e, in increasing order of complexity with e, = F.

Since we are forced to work with finite intervals, the formula encoding an
w-regular expression intuitively behaves as follows. An w-regular expression F
can be seen as the alternation (+) of a finite number of expressions of the form
Re¥, ie., E = Rie{ + ... + Rpey, where, for all ¢, R; is regular. The formula
encoding the expression F; = Re“ holds true on a certain finite prefix of N, that
represents the finite word captured by R, and it uses modality (A) to describe
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properties of the infinite suffix. The encoding of E consists of the disjunction of
the formulas encoding the sub-expressions E;. Formally, the encoding of an w-
regular expression F into an AB formula is inductively defined as follows. As for
the regular sub-expressions, we proceed as above. Thus, we only need to specify
how to handle the w-constructor, and alternation and concatenation when one
of the operands is an w-regular expression.
— If e; = ej + ek, where e; and ey are w-regular expressions, then ez, =
Qoezprj \ (Pe:rprk~
— If e; = ejex, where e; is a regular expression and e, is an w-regular one, then
Pexpr, = Soezprj A <A>(Pea;prk-
— If e; = €}, where e; is a regular expression, then
Peapr, = expr; A (A) (=1 A expr;) A [A}((A)exprje"d = (A)(=m A expr;)).
Now, let g be the formula: Ay peapr, A Ay @lmt A Ny @Zhpr - The
following theorem holds [15].

Theorem 5. Let E be an w-regular expression over X. Then, L(E) = {w € X% :
w = M for some model M such that M,[0,n] = pr A px for some n € N}.



