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Abstract. An iterated uniform finite-state transducer executes the same
length-preserving transduction in iterative sweeps. The first sweep occurs
on the input string, while any subsequent sweep processes the output of
the previous one. We focus on unary inputs. We show that any unary
regular language can be accepted by a deterministic iterated uniform
finite-state transducer with at most max{2%, p}+ 1 states, % and p being
the greatest primes in the factorization of the, respectively, pre-periodic
and periodic part of the language. This state cost cannot be improved
by using nondeterminism, and is definitely lower than the state costs of
equivalent classical models of finite-state automata.
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1 Introduction

The notion of an iterated uniform finite-state transducer (iufst) has been in-
troduced in [20, 21, 25]. It consists of a length-preserving finite-state transducer
that works in iterative sweeps from left to right on its input tape. In the first
sweep the input string is processed, while any further sweep operates on the
output of the previous sweep. The model is uniform in that every sweep always
starts from the same initial state on the leftmost tape symbol, and operates the
same transduction rules at each computation step. An input string is accepted
whenever the transducer halts in an accepting state at the end of a sweep.

A theoretical investigation of iufsts is motivated by the fact that iterated or
cascade transductions show up in numerous fields of computer science, e.g., in
natural language processing [17], in compiler design [1], in the celebrated Krohn-
Rhodes decomposition theorem [18]. Again, cascades of deterministic pushdown
transducers as language accepting devices have been studied in [15]. In [11, 26],
iterated finite-state transducers as language generating devices have been settled.
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Notice that only these latter contributions introduce a notion of “uniformity” on
iterated transduction, in that always the same transducer is iteratively applied.

Deterministic and nondeterministic iufsts (the nondeterministic model de-
noted by niufst) have been deeply studyied in [20, 21, 23, 25]. For a constant
number of sweeps, iufsts and niufsts characterize the class of regular lan-
guages. For a non-constant number of sweeps, non-regular languages can be
accepted as long as an at least logarithmic number of sweeps is provided, and
infinite proper language hierarchies depending on sweep complexity are shown.
Recently, in [22], iufsts and niufsts have been enhanced with the possibil-
ity of two-way motion, implying a sweep alternation from left to right and from
right to left. Indeed, iufsts and niufsts have been investigated within the realm
of descriptional complexity, where device size is under consideration (see, e.g.,
[2–10, 19]). In descriptional complexity, techniques from several areas are em-
ployed [12, 13, 28], yielding results of both theoretical and practical interest [16].

In this paper, we construct size-efficient iterated transducers for general unary
regular languages. We give our construction step by step, starting from finite
unary languages. We show that finite unary languages with words of length up
to ` can be accepted by an iufst with 2% states, % being the greatest prime in
the factorization of `. Next, we switch to unary periodic languages, and prove
that any n-periodic unary language can be accepted by an iufst with p states, p
being the greatest prime in the factorization of n. By combining these two results,
we get that any unary regular language is accepted by an iufst with at most
max{2%, p}+ 1 states. We then show that these state costs cannot be improved
by using nondeterminism, and that they are definitely lower than the state costs
of equivalent classical models of finite-state automata.

Due to the page limit, proofs and further results (some of which may be
found in [24]) have been omitted.

2 Definitions and Preliminaries

By the Fundamental Theorem of Arithmetic, any integer n > 1 univocally factor-
izes as n =

∏s
i=1 p

αi
i , for primes p1 < · · · < ps and integers αi > 0. For any n > 1,

we let Zn = {0, 1, . . . , n− 1} be the ring of the remainders modulo n. Let Σ∗ be
the set of words on a finite alphabet Σ, including the empty word. The length
of a word w is denoted by |w|. A language on Σ is any set L ⊆ Σ∗.

A nondeterministic iterated uniform finite-state transducer (niufst) is a 8-
tuple T = 〈Q,Σ,∆, q0,B,C, δ, F 〉, with Q the set of internal states, Σ the set of
input symbols, ∆ the set of output symbols, q0 ∈ Q the initial state, B ∈ ∆ \ Σ
and C ∈ ∆ \ Σ the left and right endmarkers, respectively, F ⊆ Q the set of
accepting states, and δ : Q×(Σ∪∆)→ 2Q×∆ the partial transition function. The
niufst T halts if the transition function is undefined or T enters an accepting
state at the end of a sweep. The transduction is applied in multiple sweeps, and
in any but the initial sweep it processes an output of the previous sweep. So, the
transition function depends on symbols in Σ∪∆. Let T (w) be the set of possible
outputs yielded by T in a complete sweep on the input string w ∈ (Σ ∪∆)∗.



Iterated Transduction on Unary Regular Languages 3

In a computation on input w ∈ Σ∗, the niufst T yields a sequence of words
w1, . . . , wi, wi+1, . . . ∈ (Σ∪∆)∗, with w1 ∈ T (BwC) and wi+1 ∈ T (wi) for i ≥ 1.
An iterated uniform finite-state transducer is deterministic (iufst) whenever
|δ(p, x)| ≤ 1, for all p ∈ Q and x ∈ (Σ ∪ ∆). In this case, we simply write
δ(p, x) = (q, y) instead of δ(p, x) = {(q, y)} assuming that the transition function
is a mapping δ : Q× (Σ ∪∆)→ Q×∆.

A computation is halting if there exists an r ≥ 1 such that T halts on wr, thus
performing r sweeps. The input word w ∈ Σ∗ is accepted by T if at least one com-
putation on w halts at the end of a sweep in an accepting state. Otherwise it is
rejected. Indeed, the output of the last sweep is not used. The language accepted
by T is the set L(T ) ⊆ Σ∗ defined as L(T ) = {w ∈ Σ∗ | w is accepted by T }.

For nondeterministic computations and some complexity bound, several lan-
guage acceptance modes are usually considered in the literature. Here, we deal
with the number of sweeps as complexity measure, and adopt the so-called ac-
cept mode of acceptance [27]. A language is accepted in the accept mode if
all accepting computations obey the complexity bound. More precisely, given
a function s : N → N, an iterated uniform finite-state transducer T has sweep
complexity s(n) if for all w ∈ L(T ) all accepting computations on w halt after
at most s(|w|) sweeps. In this case, we add the prefix s(n)- to the notation of
the device. It is easy to see that 1-iufsts (resp., 1-niufsts) are deterministic
(resp., nondeterministic) finite-state automata (dfas and nfas, respectively).

A language L ⊆ Σ∗ is unary whenever built on a single-letter alphabet. In
this case, we let L ⊆ 0∗. A unary language L ⊆ 0∗ is n-periodic if there exists
R ⊆ Zn such that L = { 0c·n+R | c ≥ 0 and R ∈ R}. We will always be
assuming that n is the minimal value defining L. This is usually referred to as L
being properly n-periodic. To emphasize periodicity and R ⊆ Zn, we express L
in the form Ln,R. By pumping arguments, we get that n states are necessary and
sufficient for dfas and nfas to accept Ln,R. The minimal dfa for Ln,R consists
of a single cordless cycle of n states, with an initial state and final states settled
according to R. On the other hand, for n factorizing as n = pα1

1 · p
α2
2 · · · · · pαs

s ,
we have that any two-way dfa and nfa, or isolated cut-pint probabilistic finite
automaton (pfa) for Ln,R must have at least

∑s
i=1 p

αi
i states [29, 30].

Any unary regular language is the disjoint union of a finite language and an
ultimately periodic language. So, it is defined by three parameters `, n, R ⊆ Zn:

L`,n,R = L` ∪ { 0`+c·n+R | c ≥ 0 and R ∈ R},

The set L`, called the pre-periodic part of L`,n,R, is a finite unary language with
strings of length not exceeding `. The set { 0`+c·n+R | c ≥ 0 and R ∈ R} is the
periodic part of L`,n,R. As usual, we assume that the parameters ` and n are the
smallest possible defining L`,n,R. Note that L`,n,R is accepted by a dfa whose
state digraph features an initial path of ` states joined to a cordless cycle of n
states. Clearly, the above recalled state lower bound for two-way dfas and nfas,
or isolated cut-point pfas for Ln,R carries over to L`,n,R as well. By simulation
results in [14, 31], if L`,n,R is accepted by a b-state nfa or two-way nfa, then we

can assume ` = O(b2) and n = eΘ(
√
b·log b).
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3 Iterated Transduction and Unary Regular Languages

We present our construction of state-efficient iufsts for unary regular languages
by first focusing on unary periodic languages, then considering finite unary lan-
guages, and finally getting to general unary regular languages.

3.1 Unary Periodic Languages

For reader’s ease of mind, we start by considering unary periodic languages of
the form Ln = { 0c·n | c ≥ 0 }, for n ≥ 1.

Theorem 1. Let n ≥ 2 factorize as n =
∏s
i=1 p

αi
i , with αi > 0. The language Ln

can be accepted by a ps-state r-iufst with r =
∑s
i=1 αi sweeps.

The minimality – in terms of number of states – of the iufst for Ln designed
in Theorem 1 is provided by a pumping argument in the following theorem,
which also shows that nondeterminism cannot help in reducing state size:

Theorem 2. Let n ≥ 2 factorize as n =
∏s
i=1 p

αi
i , with αi > 0. Any iufst

and niufst accepting Ln must use at least ps states, regardless of the number of
performed sweeps.

Let us now move on to a slightly different version of Ln. Precisely, for any
n ≥ 1 and a fixed remainder R ∈ Zn \ {0}, we let Ln,R = { 0c·n+R | c ≥ 0 }.
The next theorem shows that this modification of Ln does not increase state and
sweep complexity of acceptance on iterated transducers.

Theorem 3. Let n ≥ 2 factorize as n =
∏s
i=1 p

αi
i , with αi > 0. The lan-

guage Ln,R can be accepted by a ps-state r-iufst with r =
∑s
i=1 αi sweeps.

Finally, we come to tackle the acceptance of a general unary n-periodic lan-
guage Ln,R, for a fixed set R ⊆ Zn: Ln,R = { 0c·n+R | c ≥ 0 and R ∈ R}.
Theorem 4. Let n ≥ 2 factorize as n =

∏s
i=1 p

αi
i , with αi > 0. The lan-

guage Ln,R can be accepted by a ps-state r-iufst with r =
∑s
i=1 αi sweeps.

We notice that from Theorem 2 one may obtain that any iufst and niufst
accepting Ln,R must use at least ps states, regardless the number of performed
sweeps. In addition, as recalled in Section 2, we remark that n states are neces-
sary and sufficient for dfas and nfas to accept Ln,R, while

∑s
i=1 p

αi

i states are
necessary for two-way dfas and nfas, and one-way isolated cut point pfas.

3.2 Unary Finite Languages

For any positive integer `, let L` be any unary language whose longest word
has length `. In what follows, we assume ` ≥ 2. The case ` = 1 can be trivially
managed by a 2-state dfa seen as a transducer.

Theorem 5. Let ` ≥ 2 factorize as ` =
∏r
i=1 %

βi

i , with βi > 0. The language L`
can be accepted by a (2%r)-state t-iufst with t =

∑r
i=1 βi sweeps.

Any classical finite-state automata for L` needs at least ` states. By a pump-
ing argument as in Theorem 2, iterated transduction needs at least %r states.



Iterated Transduction on Unary Regular Languages 5

3.3 General Unary Regular Languages

Finally, let us put things together. As addressed in Section 2, a general (infinite)
unary regular language consists of the disjoint union of a (possibly empty) fi-
nite pre-periodic language and a ultimately periodic language. Hence, it can be
defined by three parameters `, n, and R ⊆ Zn as

L`,n,R = L` ∪ { 0`+c·n+R | c ≥ 0 and R ∈ R},

where, with a slight abuse with respect to notation in Section 3.2, we intend L`
as a finite unary language that is accepted by an `-state dfa. So, differently
from Section 3.2, from now on L` does not necessarily contain the unary word
of length `. In the following theorem, we consider `, n ≥ 2. Otherwise, we have
languages that can be trivially dealt with by our constructions in this paper.

Theorem 6. Let `, n ≥ 2 factorize as n =
∏s
i=1 p

αi
i , ` =

∏r
i=1 %

βi

i , αi, βi > 0.
The unary language L`,n,R can be accepted by an x-state t-iufst, where x =
max {2%r, ps}+ ξ, ξ = 0 if %r < ps and 1 otherwise, and t =

∑s
i=1 αi +

∑r
i=1 βi.

By adapting the pumping argument in Theorem 2, we get that not less than
max{%r, ps} states can be used to accept L`,n,R on iterated transducers. On the
other hand, as recalled in Section 2, `+ n states are necessary and sufficient for
a dfa to accept L`,n,R, and not less than

∑s
i=1 p

αi
i states on two-way dfas and

nfas, and on isolated cut-point pfas are needed.
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