
On Counting Propositional Logic
and Wagner’s Hierarchy? ??

Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

Università di Bologna
{melissa.antonelli2,ugo.dallago,paolo.pistone2}@unibo.it

Abstract. We introduce and study counting propositional logic, an ex-
tension of propositional logic with counting quantifiers. This new kind of
quantification makes it possible to express that the argument formula is
true in a certain portion of all possible interpretations. We show that this
logic, beyond admitting a satisfactory proof-theoretical treatment, can
be related to computational complexity: the complexity of the underly-
ing decision problem perfectly matches the appropriate level of Wagner’s
counting hierarchy.

Keywords: Propositional Logic · Counting Hierarchy · Computational Com-
plexity

1 Introduction

Among the many intriguing relationships existing between logic and computer
science, we can certainly mention the ones connecting classical propositional
logic (PL, for short), on the one hand, and computational complexity, the theory
of programming languages, and several other branches of theoretical computer
science, on the other. As it is well known, PL provided the first example of a
nontrivial NP-complete problem [11]; moreover, formal systems for classical and
intuitionistic propositional logic correspond to type systems for λ-calculi and re-
lated formalisms [16, 34]. These lines of research have further evolved in various
directions, resulting in active sub-areas of computer science. In particular, vari-
ations of propositional logic have been put in relation with complexity classes
other than P and NP, as well as with type systems other than the simply typed
λ-calculus. For instance, the complexity of deciding quantified propositional for-
mulas is well known to match the appropriate level of the polynomial hierarchy
(PH, for short) [27, 28, 35, 42, 10].

Nevertheless, some aspects of the theory of computation have not found a
precise logical counterpart, at least so far. One such development concerns the

? Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mon License Attribution 4.0 International (CC BY 4.0).

?? Supported by ERC CoG “DIAPASoN”, GA 818616 and ANR PRC project “PPS”,
ANR-19-CE48-0014.

2 M. Antonelli et al.

counting classes of complexity and the related counting hierarchy (CH, for short),
as introduced by Valiant [38] and Wagner [39–41], which are deeply connected
to randomized complexity classes, such as PP. In fact, Wagner’s CH has been
treated logically by means of tools from descriptive complexity and finite model
theory [22]. However, to the best of the authors’ knowledge, there is no counter-
part of counting classes in the realm of propositional logic.

In this paper we aim at bridging the gap by introducing a new quanti-
fied propositional logic, called counting propositional logic (CPL, for short).
To present this logic in a more intuitive way, we start by defining a univari-
ate fragment of CPL, that we call CPL0, and we later describe the general,
multivariate, logic CPL. The main feature of both these logics is the presence
of counting quantifiers, which are designed to count the number of values of
the bound propositional variables satisfying the argument formula. We study
the proof theory of counting logics together with its relations to computational
complexity. Along the way, we introduce a sound and complete proof system in
the form of a single-sided sequent calculus on labelled formulas. We also establish
complexity results for both univariate CPL0, the validity of which corresponds
to P]SAT, and for multivariate CPL, whose decision problem characterizes the
whole CH. Indeed, we prove that deciding (a special kind of) prenex normal
forms is complete for the appropriate level of the hierarchy, in the spirit of the
correspondence between quantified propositional logic (QPL, for short) and PH.

The presentation is structured as follows. First, we introduce the syntax, se-
mantics, and proof theory of counting logics. Specifically, in Section 2 we present
a sound and complete proof system for CPL0, in the form of a labelled sequent
calculus. In the univariate case, the correspondence with computational com-
plexity is limited to the class P]SAT. In Section 3, we extend the calculus for
CPL0 to the multivariate counting logic CPL. Section 4 is devoted to establish-
ing the connection between counting logic and complexity theory, by relating
the decision problem for CPL with the hierarchy CH. The proof proceeds by a
careful analysis of prenex normal forms, which by construction have precisely
the shape one needs to match Wagner’s complete problems [40].

2 On Univariate Counting Propositional Logic

In this section we introduce a univariate version of counting propositional logic,
called CPL0, together with a sound and complete proof system for it. Although
this fragment has a limited expressive power, it provides an intuitive overview
over the main semantical and proof-theoretical ingredients behind the more gen-
eral logic CPL, introduced in the next section. Furthermore, the problem of
establishing the validity of a CPL0-formula is proved to be in the class P]SAT.

2.1 CPL0-Formulae and their (Quantitative) Semantics

In the semantics of standard propositional logic the interpretation of a formula
is a truth-value. The core idea from which our counting logics arise is to replace

On Counting Propositional Logic and Wagner’s Hierarchy 3

this way of interpreting formulas by a more quantitative semantics: the inter-
pretation of a formula will be the measurable set of all valuations that satisfy
it. Specifically, since propositional formulas may have an arbitrary number of
propositional values, a valuation can be taken as an element of 2ω; hence, given
a formula of CPL0, call it A, we may take as its interpretation the set JAK ⊆ 2ω

made of all maps f ∈ 2ω “making A true”. Such sets can be easily seen to belong
to the standard Borel algebra B(2ω) over 2ω, thus yielding a genuinely quanti-
tative semantics. In particular, atomic propositions are interpreted by cylinder
sets [8] of the following form:

Cyl(i) = {f ∈ 2ω | f(i) = 1}.

and non-atomic propositions are naturally interpreted by relying on the standard
σ-algebra operations of complementation, finite intersection and finite union.

Since a formula corresponds to a measurable set, it makes sense to enrich
the language of propositional logic with new formulas expressing conditions on
the measure of such sets. By adapting Wagner’s notion of counting operator [40,
41], we introduce two quantifiers, Cq,Dq, where q ranges over Q[0,1], so that the
formulas CqA and DqA express that A is satisfied by a given portion of all its
possible interpretations. For example, the formula C

1
2A expresses the fact that A

is satisfied by at least half of its valutations, namely A is true with probability at
least 1

2 . Equally, the formula D
3
4A expresses the fact that A is satisfied by strictly

less than three-fourths of its valutations, meaning that the probability for A to
be true is strictly smaller than 3

4 . Semantically, this amounts at respectively
checking that µ

(
JAK
)
≥ 1

2 and µ
(
JAK
)
< 3

4 , where µ is the standard Borel
measure on B(2ω).

Definition 1 (Formulas of CPL0). The formulas of CPL0 are defined by the
following grammar:

A ::= i | ¬A | A ∧B | A ∨B | CqA | DqA

where i ∈ N and q ∈ Q[0,1].

In the following, let σ(C) indicate the σ-algebra generated by the set of all
n-cylinders, which is the smallest σ-algebra containing C and which is Borel.
Moreover, let µ denote the standard cylinder measure over σ(C), which can be
defined as the unique measure on σ(C) such that µ

(
Cyl(i)

)
= 1

2 , see [8].

Definition 2 (Semantics of CPL0). For each formula A of CPL0 its inter-
pretation is the measurable set, JAK ∈ B(2ω), inductively defined as follows:

JiK = Cyl(i)

J¬AK = 2ω − JAK
JA ∧BK = JAK ∩ JBK
JA ∨BK = JAK ∪ JBK

JCqAK =

{
2ω if µ(JAK) ≥ q
∅ otherwise

JDqAK =

{
2ω if µ(JAK) < q

∅ otherwise.

4 M. Antonelli et al.

Two CPL0-formulas, A and B, are said logically equivalent, noted A ≡ B, when
JAK = JBK. A formula A is valid when JAK = 2ω.

The two counting quantifiers are inter-definable, as can be easily shown se-
mantically:

CqA ≡ ¬DqA DqA ≡ ¬CqA. (1)

Observe that they are not dual in the sense of standard modal operators: CqA
is not equivalent to ¬Dq¬A. Notably, using these quantifiers, it is even possible
to express that a formula A is satisfied with probability strictly greater than q
or with probability no smaller than q, as (resp.) D1−q¬A and C1−q¬A. The
example below can help clarifying the intuitive meaning of the semantics of
CPL0.

Example 1. Let us consider the counting formula C
1
2A, where A = B ∨ C,

B = 0 ∧ ¬1 and C = ¬0 ∧ 1. The two measurable sets, JBK and JCK, both have
measure 1

4 and are mutually disjoint. Hence, µ(JAK) = µ(JBK) + µ(JCK) = 1
2 ,

which means that JC
1
2AK = 2ω, and so the formula C

1
2A is valid.

2.2 The Proof Theory of CPL0

We introduce a one-sided, single-succedent sequent calculus, and prove that it
is sound and complete with respect to the semantics of CPL0. The language of
this calculus is constituted by labelled formulas of the form b � A or b � A,
where A and b are respectively a counting and a Boolean formula. Intuitively,
a labelled formula b � A (resp. b � A) is true when the set of valuations
satisfying b is included in (resp. includes) the interpretation of A.

Definition 3 (Boolean Formulas). Boolean formulas are defined by the fol-
lowing grammar:

b, c ::= xi | > | ⊥ | ¬b | b∧ c | b∨ c.

where i ∈ N. The interpretation of a Boolean formula b, JbK ∈ B(2ω), is induc-
tively defined as follows:

JxiK = Cyl(i)

J>K = 2ω

J⊥K = ∅

J¬bK = 2ω JbK
Jb∧ cK = JbK ∩ JcK
Jb∨ cK = JbK ∪ JcK.

Labelled formulas are defined as follows:

Definition 4 (Labelled Formula). A labelled formula is an expression of one
of the forms b � A, b � A, where b is Boolean formula and A is a counting
formula. A labelled sequent is a sequent of the form ` L, where L is a labelled
formula.

We also introduce a special class of formulas, that we call external hypotheses.
Such formulas express semantic properties of Boolean formulas or conditions
to be checked inside B(2ω). In the following, we use b � c as shorthand for
JbK ⊆ JcK.

On Counting Propositional Logic and Wagner’s Hierarchy 5

Definition 5 (External Hypothesis). An external hypothesis is either an
expression of the form b � c or of the form µ(JbK).q, where . ∈ {≥, >,≤, <,=},
b, c are Boolean formulas and q ∈ Q[0,1].

The measure of the interpretation of a Boolean formula, µ(JbK), can be related
to the number]SAT(b) of the valuations making b true as follows:

Lemma 1. For each Boolean formula b containing the propositional variables
x0, . . . ,xn−1, µ(JbK) =]SAT(b) · 2−n.

Proof. Any valuation θ : {x0, . . . ,xn−1} → 2 is associated to a measurable set

X(θ) ∈ B(2ω) by letting X(θ)={f | ∀i<nf(i) = θ(xi)} =
⋂n−1
i=0 Cyl(i)θ(xi), where

Cyl(i)θ(xi) is Cyl(i) if θ(xi) = 1 and Cyl(i) otherwise. Observe that µ(X(θ)) =
2−n. For any b, we have that JbK =

⋃
θ�bX(θ) (this is easily checked by induction

on b). Since for all distinct θ, θ′, X(θ)∩X(θ′) = ∅, we conclude that]SAT(b)·2−n
=
∑
θ�b 2−n =

∑
θ�b

(
µ(X(θ))

)
= µ

(⋃
θ�bX(θ)

)
= µ(JbK).

The calculus is defined by the rules in Figure 1. Let `CPL0 L indicate that ` L
is derivable by the given rules. In Figure 2 we provide an example of derivation in
CPL0.1 The use of external hypotheses, that is, of genuinely semantic conditions,
as premisses of syntactic rules might seem somehow unsatisfactory. However,
such premisses do make sense from a computational viewpoint: they correspond
to the idea that, when searching for a proof of a counting formula, one might
need to call for an oracle for values of the form µ(JbK)

(
in fact, by Lemma 1,

an oracle for]SAT(b)
)
. This intuition will be made clear in the next subsection,

where we discuss an algorithm for CPL0-validity.

A labelled formula b � A (resp. b � A) is valid, noted � b � A (resp. �
b� A), when JbK ⊆ JAK (resp. JAK ⊆ JbK). A sequent ` L is valid when � L. As
anticipated, the proof system just introduced is sound and complete with respect
to the semantics of CPL0: a labelled formula is valid if and only if it is provable.
Soundness can be established by a standard induction on the derivation height.
The proof of completeness is less straightforward and described in full detail in [1,
§ A.2]. The fundamental ingredient is the introduction of a decomposition relation
between finite sets of sequents, which allows one to decompose the validity of
a complex statement (for example, b � A ∨ B) into that of a finite set of less
complex statements (such as, c� A,d� B, given that b � c∨d holds). One
can show then that a complex valid sequent is decomposable into a finite set of
non-decomposable valid sequents, and, from the provability of the latter, climb
back to the validity of the original sequent using the rules of CPL0.

Proposition 1. � L holds if and only if `CPL0
L holds

1 Observe that the last four counting rules in Fig. 1 make an arbitrarily chosen label b
appear in the conclusion. Intuitively, this is coherent with the semantics of counting
formulas, which are interpreted as either 2ω or ∅, which are (resp.) superset or subset
of any given set.

6 M. Antonelli et al.

Initial Sequents

b � xn
Ax1

` b � n

xn � b
Ax2

` b � n

Set Rules

` c� A ` d� A b � c∨ d
R�
∪` b � A

` c� A ` d� A c∧ d � b
R�
∩` b � A

Logical Rules

` c� A b � ¬c
R�
¬` b � ¬A

` c� A ¬c � b
R�
¬` b � ¬A

` b � A
R1�∨` b � A ∨ B

` b � B
R1�∧` b � A ∧ B

` b � B
R2�∨` b � A ∨ B

` b � A
R2�∧` b � A ∧ B

` b � A ` b � B
R�
∨` b � A ∨ B

` b � A ` b � B
R�
∧` b � A ∧ B

Counting Rules

µ(JbK) = 0
R�
µ` b � A

µ(JbK) = 1
R�
µ` b � A

` c� A µ(JcK) ≥ q
R�
C` b � CqA

` c� A µ(JcK) < q
R�
C` b � CqA

` c� A µ(JcK) < q
R�
D` b � DqA

` c� A µ(JcK) ≥ q
R�
D` b � DqA

Fig. 1. Proof System for CPL0

x0 � x0
Ax1

` x0 � 0
R�∪` x0 ∧ ¬x1 � 0

x1 � x1
Ax2

` x1 � 1
R�¬` ¬x1 � ¬1

R�∪` x0 ∧ ¬x1 � ¬1
R�∧` x0 ∧ ¬x1 � 0 ∧ ¬1

R1�∨` x0 ∧ ¬x1 � (0 ∧ ¬1) ∨ (¬0 ∧ 1)

x0 � x0
Ax2

` x0 � 0
R�¬` ¬x0 � ¬0

R�∪` ¬x0 ∧ x1 � ¬0

x1 � x1
Ax1

` x1 � 1
R�∪` ¬x0 ∧ x1 � 1
R�∧` ¬x0 ∧ x1 � ¬0 ∧ 1

R2�∨` ¬x0 ∧ x1 � (0 ∧ ¬1) ∨ (¬0 ∧ 1)
R�∪` (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1) � (0 ∧ ¬1) ∨ (¬0 ∧ 1)

R�
C

*

` >� C
1
2
(
(0 ∧ ¬1) ∨ (¬0 ∧ 1)

)
*as µ

(
J(x0 ∧ ¬x1) ∨ (¬x0 ∧ x1)K

)
≥ 1

2

Fig. 2. Derivation of ` >� C
1
2
(
(0 ∧ ¬1) ∨ (¬0 ∧ 1)

)
in CPL0

2.3 CPL0-Validity is in P]SAT

As suggested before, a proof that a quantified formula like CqA or DqA is
valid can be seen as obtained by invoking an oracle, which provides a suitable
measurement µ(JbK), for a Boolean formula b. As shown by Lemma 1, these

On Counting Propositional Logic and Wagner’s Hierarchy 7

measurements correspond to actually counting the number of valuations satis-
fying the corresponding formula. It is possible to make this intuition precise by
showing that, in CPL0, validity can be decided by a polytime algorithm having
access to an oracle for the problem]SAT of counting the models of a Boolean
formula.

A formula of CPL0, call it A, is said to be closed if it is either of the form
CqB or DqB or it is a negation, conjunction, or disjunction of closed formulas.
It can be easily checked by induction on the structure of closed formulas that
for any closed A, either JAK = 2ω or JAK = ∅. We define, by mutual recursion,
two polytime algorithms Bool and Val: for each formula A of CPL0, Bool(A)
computes a Boolean formula bA such that JAK = JbAK, and, for all closed formula
A, Val(A) = 1 if and only if JAK = 2ω and Val(A) = 0 if and only if JAK = ∅.
The two algorithms are defined in Figure 3. Notice that the algorithm Val makes
use of a]SAT oracle.

We recall that the class P]SAT is made of those problems which can be decided
in polytime having access to a]SAT oracle. One can easily be convinced that the
algorithms Bool and Val both belong to P]SAT, which leads to the following:

Proposition 2. CPL0-validity is in P]SAT.

Bool(n) = xn

Bool(A1 ∧ A2) = Bool(A1) ∧ Bool(A2)

Bool(A1 ∨ A2) = Bool(A1) ∨ Bool(A2)

Bool(¬A1) = ¬Bool(A1)

Bool(C
q
A1) = Val(C

q
A1)

Bool(D
q
A1) = Val(D

q
A1)

Val(A1 ∧ A2) = Val(A1) AND Val(A2)

Val(A1 ∨ A2) = Val(A1) OR Val(A2)

Val(¬A1) = NOT Val(A1)

Val(C
q
A1) = let b = Bool(A1) in

let n =]Val(b) in

]SAT(b)

2n
≥ q

Val(D
q
A1) = let b = Bool(A1) in

let n =]Val(b) in

]SAT(b)

2n
< q

where]Val(b) is the number of propositional variables in b.

Fig. 3. Bool(·) and Val(·)

3 On Multivariate Counting Propositional Logic

In this section we introduce propositional counting logic CPL, which extends
counting quantifiers to a multivariate case, as discussed below. In Section 4 it will
be shown that this logic yield a characterization of the full counting hierarchy.

As it is well-known, counting problems are not restricted to those in P]SAT.
For instance, one can consider problems concerning relations between valuations

8 M. Antonelli et al.

of different groups of variables, like MajMajSAT [7, 25, 26]. Given a formula A of
PL containing two disjoint sets x and y of variables, this problem asks whether
for at least half of the valuations of x, at least half of the valuations of y makes
A true.

To express these kinds of problems, we will consider a language in which
propositional atoms and counting quantifiers are named (we use a, b, c, . . . for
names); counting quantifications, indicated as Cq

aA or Dq
aA, now depend on the

number of valuations of propositional atoms with name a satisfying A.

Definition 6 (Formulas of CPL). The formulas of CPL are defined by the
following grammar:

A ::= ia | ¬A | A ∧B | A ∨B | Cq
aA | Dq

aA

where i ∈ N, a is a name, and q ∈ Q[0,1].

Named quantifiers, Cq
a and Dq

a, bind the occurrences of the name a in A. Given a
formula A of CPL, we let FN(A) indicate the set of names occurring free (i.e. not
bound) in A.

Names can be used to distinguish between distinct groups of propositional
variables. For example, the propositional formula F = (x1 ∨ y1)∧ (x2 ∨ y2), con-
taining two groups of variables x = {x1, x2} and y = {y1, y2}, can be expressed
in CPL using two distinct names a, b as G = (1a ∨ 1b) ∧ (2a ∨ 2b). Since the
intuitive meaning of Cq

aA is that A is true in at least q of the valuations of

the variables with name a, we can take the CPL-formula C
1
2
aC

1
2

b G as expressing
the MajMajSAT problem for F (which happens to have a positive answer, in this
case).

While the formulas Cq
aA and Dq

aA have a rather intuitive meaning, the se-
mantics of CPL-formulas is slightly subtler than in the case of CPL0. The in-
terpretation of a formula A now depends on the choice of a finite set of names
X ⊇ FN(A), and consists in a measurable set JAKX belonging to the Borel alge-
bra B

(
(2ω)X

)
. Hence, the quantifiers Cq

a and Dq
a must correspond to operations

allowing one to pass from B
(
(2ω)X∪{a}

)
to B

(
(2ω)X

)
. To define such operations

we need the following technical notion: given two disjoint finite sets of names
X,Y , for any f ∈ (2ω)X , and X ⊆ (2ω)X∪Y , the f -projection of X is the set
Πf (X) = {g ∈ (2ω)Y | f + g ∈ X} ⊆ (2ω)Y , where (f + g)(α) is f(α), if α ∈ X
and g(α) if α ∈ Y .

Definition 7 (Semantics of CPL). For each formula A of CPL, and finite
set of names such that X ⊇ FN(A), the interpretation of A, JAKX ⊆ (2ω)X , is
inductively defined as follows:

JiaKX = {f | f(a)(i) = 1}
JA ∧BKX = JAKX ∩ JBKX
JA ∨BKX = JAKX ∪ JBKX

J¬AKX = (2ω)X − JAKX
JCq

aAKX = {f | µ
(
Πf (JAKX∪{a})

)
≥ q}

JDq
aAKX = {f | µ

(
(Πf (JAKX∪{a})

)
< q}.

On Counting Propositional Logic and Wagner’s Hierarchy 9

That all sets JAKX are measurable, namely that JAKX ∈ B
(
(2ω)X

)
, is not an

obvious fact (as it crucially relies on some properties of f -projections), and is
proved in detail in [1, § 4]. Logical equivalence in CPL is defined relatively to
a set of names X, by letting A ≡X B if and only if FN(A),FN(B) ⊆ X and
JAKX = JBKX .

Similarly to what has been shown in the previous section, one can introduce
a sound and complete labelled calculus for CPL. In this case, labelled formulas
involve a named Boolean formula (i.e, built from named Boolean variables, such
as xai). Sequents are of the form `X L, with FN(L) ⊆ X. Most rules of CPL
are straightforward generalizations of those for CPL0, except for the counting
rules, which are understandably more complex (see the example in Figure 4),
and rely on the notion of a-decomposition for Boolean formulas.2 In spite of
this involved definition, soundness and completeness for this calculus can be still
proved generalizing the corresponding arguments for CPL0.

`X∪{a} c� A b �X
∨
i{ei | µ(JdiK{a}) ≥ q}

R�
C *

`X b � CqaA

* where
∨
i ei ∧ di is an a-decomposition of c

Fig. 4. Example of Counting Rule Schema for CPL

4 Relating CPL to the Counting Hierarchy

We have already seen that the problem MajMajSAT, which is complete for CH2 =
PPPP, is “captured” by formulas of the form Cq

aC
r
bA, where A is quantifier-

free. We will extend this result to all levels of CH by considering CPL-formulas
containing an arbitrary number of counting quantifiers. We will proceed in three
steps. First, we will show that any formula of CPL can be put in prenex normal
form, that is, that all counting quantifiers can be moved at top-level. Next, we
will prove that the D quantifier, which has no counterpart in Wagner’s problems,
can be eliminated. Finally, using Wagner’s Theorem [40], we will show that
prenex formulas with k nested C-quantifiers characterize the level k of CH.

2 Given a named Boolean formula b, with free names in X ∪{a}, an a-decomposition
of b is any Boolean formula c =

∨k−1
i=0 di ∧ ei such that: (i) JcKX∪{a} = JbKX∪{a},

(ii) FN(di) ⊆ {a} and FN(ei) ⊆ X, (iii) if i 6= j, then JeiKX ∩ JejKX = ∅. It
can be shown that any Boolean formula b, with FN(b) ⊆ X ∪ {a} admits an a-
decomposition. For further details, see [1, § 4]. The complete proof system for CPL
is presented in [1, § B.2].

10 M. Antonelli et al.

4.1 On Wagner’s Counting Hierarchy

The existence of deep and mutual interactions between classical propositional
logic and computational complexity is well-known. For instance, checking the
satisfiability of PL-formulas is the paradigmatic NP-complete problem [11], while
the subclass of all tautologies is coNP-complete. When switching to QPL, these
classes are even captured by a single logical concept: already in the early 1970s,
Meyer and Stockmeyer defined PH, and proved that each level of the hierarchy
is characterized by the validity of prenex QBF with the corresponding number
of quantifier alternations [27, 28, 35, 42, 10].

Nevertheless, if we move to a probabilistic framework, such a plain corre-
spondence seems lost, as no analogous logical counterpart has yet been found
for the counting complexity classes and hierarchy, introduced from the 1970s
on by Valiant [38] and Wagner [39–41]. Specifically, CH was presented in 1986
(actually by both Wagner and Parberry and Schnitger [33]) as the counting anal-
ogous to PH, which is inadequate to characterize problems in which counting is
involved. The hierarchy CH is defined similarly to PH, but with PP in place of
NP, i.e. by letting CH0 = P and CHn+1 = PPCHn . Actually, the original charac-
terization in [40] is in terms of alternating (counting and standard) quantifiers,
where Wagner’s counting operator is capable of expressing also standard quan-
tification. In [40], beyond introducing CH, the author also considers canonical
complete problems for each level of the hierarchy.

In the rest of this section we will relate such results to CPL, showing that
the validity of the formulas of CPL yields a new family of complete problems for
CHn, hence providing a logical characterization of CH.

4.2 Prenex Normal Forms

Let us introduce prenex normal forms in the language of CPL:

Definition 8 (PNF). A formula of CPL is an n-ary prenex normal form (or
simply a prenex normal form, PNF for short) if it can be written as 41 . . .4nA,
where, for every i ∈ {1, . . . , n}, 4i is either Cq

a or Dq
a (for arbitrary a and q),

and A is quantifier-free. The formula A is said to be the matrix of the PNF.

To convert a formula of CPL into an equivalent PNF, some intermediate lemmas
are needed.3 Preliminarily, notice that for every formula A of CPL, name a, and
finite set X, such that FN(A) ⊆ X and a 6∈ X, if q = 0, then JCq

aAKX = (2ω)X

and JDq
aAKX = ∅X .

The lemma below shows that counting quantifiers occurring inside any con-
junction or disjunction can be extruded from it.

Lemma 2. Let a 6∈ FN(A) and q > 0. Then, for every X such that FN(A) ∪
FN(B) ⊆ X and a 6∈ X, the following equivalences hold:

A ∧Cq
aB ≡X Cq

a(A ∧B)

A ∧Dq
aB ≡X Dq

a(¬A ∨B)

A ∨Cq
aB ≡X Cq

a(A ∨B)

A ∨Dq
aB ≡X Dq

a(¬A ∧B).

3 Their proofs can be found in [1, § C].

On Counting Propositional Logic and Wagner’s Hierarchy 11

Remarkably, a corresponding lemma does not hold for CPL0, due to the impos-
sibility of renaming variables (on which Lemma 2 relies).

We then consider negation. In this case, the inter-definability of Cq and Dq

in CPL0 (Equation 1) can be generalized to CPL, and this allows one to get rid
of negations which lie between any occurrences of a counting quantifier and the
formula’s root.

Lemma 3. For every q ∈ Q[0,1], name a, and X such that FN(A) ⊆ X ∪ {a},
and a 6∈ X, ¬Dq

aA ≡X Cq
aA and ¬Cq

aA ≡X Dq
aA hold.

Therefore, using Lemma 2 and Lemma 3, we can conclude that every formula of
CPL can be put in PNF, as desired.

Proposition 3. For every formula A of CPL there is a PNF B, such that for
every X with FN(A)∪FN(B) ⊆ X, A ≡X B holds. Moreover, B can be computed
in polynomial time from A.

4.3 Positive Prenex Normal Forms

Reducing formulas to PNF is close to what we need, but there is one last step to
make, namely getting rid of the quantifier D, which does not have any counter-
part in Wagner’s construction. In other words, we need to reduce CPL-formulas
to prenex normal forms of a special kind :

Definition 9 (PPNF). A formula of CPL is said to be a positive prenex nor-
mal form (PPNF, for short) when it is both PNF and D-free.

The gist to convert formulas into (equivalent) PPNF, consists in two main
steps: (i) converting each instance of D into one of C, using Lemma 3, and (ii)
applying the lemma below which states that C enjoys a specific, weak form of
self duality, to push the negation inside the matrix.

Lemma 4 (Epsilon Lemma). For every formula A of CPL and q ∈ Q[0,1],
there is a p ∈ Q[0,1] such that, for every X with FN(A) ⊆ X and a 6∈ X:
¬Cq

aA ≡X Cp
a¬A. Moreover, p can be computed from q in polynomial time.

Proof (Sketch4). Let bA be a Boolean formula satisfying JAKX∪{a} = JbAKX∪{a},
a-decomposable as

∨n
i di∧ei, and let k be maximum such that xak occurs in bA.

Let [0, 1]k be the set of those rational numbers r ∈ [0, 1] which can be written as

a finite sum of the form
∑k
i=0 bi · 2i. For all i ∈ {0, . . . , n}, µ(JdiK{a}) ∈ [0, 1]k,

where bi ∈ {0, 1}, and for all f : X → 2ω, also µ
(
Πf (JAKX∪{a})

)
∈ [0, 1]k. Let

now ε be 2−(k+1) if q ∈ [0, 1]k and q 6= 1, ε be 2−(k+1) if q = 1 and let ε = 0 if
q 6∈ [0, 1]k. In all cases, q + ε 6∈ [0, 1]k so, by means of some simple computation,

it is possible to conclude that J¬Cq
aAKX = JC1−(q+ε)

a ¬AKX .

Actually, the value of p is very close to 1 − q, the difference between the two
being easily computable from the formula A. So, any negation occurring in the
counting prefix of a PNF formula, can be pushed back into the matrix.

4 For full details, see [1, Lemma 13].

12 M. Antonelli et al.

Proposition 4. For every formula A of CPL there is a PPNF B such that
for every X, with FN(A) ∪ FN(B) ⊆ X, A ≡X B holds. Moreover, B can be
computed from A in polynomial time.

4.4 CPL and the Counting Hierarchy

As anticipated, in [40] Wagner not only introduced his counting operator and
hierarchy, but also defined complete problems for each level of CH. Below, we
present a slightly weaker version of Wagner’s Theorem [40, pp. 338-339], which
perfectly fits our needs.

Suppose L to be a subset of Sn, where S is a set, that 1 ≤ m < n, and that
b ∈ N. We define Cb

mL as the following subset of Sn−m:

{(an, . . . , am+1) | #({(am, . . . , a1) | (an, . . . , a1) ∈ L}) ≥ b} .

Let T and F indicate the usual true and false formulas of PL. For any natural
number n ∈ N, let T Fn be the subset of PLn+1 containing all tuples in the form
(A, t1, . . . , tn), where A is a propositional formula in CNF with at most n free
variables, and t1, . . . , tn ∈ {T,F} render A true. Finally, for every k ∈ N, we
denote as W k the language consisting of all (binary encodings of) tuples of the

form (A,m1, . . . ,mk, b1, . . . , bk) such that A ∈ Cb1
m1
· · ·Cbk

mk
T F

∑
mi .

Theorem 1 (Wagner, Th.7 [40]). For every k, the language W k is complete
for CHk.

Observe that elements ofW k can be seen as alternative representations for PPNF
formulas of CPL, once any mi is replaced by min{1, mi

2bi
}. Consequently,

Corollary 1. The closed and valid k-ary PPNFs, whose matrix is in CNF, de-
fine a complete set for CHk.

5 Related Works

The literature on logics enabling some forms of probabilistic reasoning is vast,
yet most proposals are not related to computational aspects. In the last decades,
several probabilistic logics have been developed in the realm of modal logic,
starting from the pioneering works by Nilsson [30, 31]. In particular, in the 1990s,
some noteworthy probability logics were (independently) introduced both by
Bacchus [6, 4, 5] and by Fagin, Halpern, and Megiddo [14, 18, 13, 19]. Another
class of probabilistic modal logics have been designed to model Markov chains
and similar structures, see for instance [20, 23, 24]. A notable example is Riesz
modal logic [15], which admits a sound and complete proof system. Remarkably,
this is the only sequent calculus for probability logic we are aware of, while
complete axiomatic systems have been provided for both the probability logics
quoted above [6, 14]. By the way, our calculi are actually inspired by labelled
systems, such as G3K∗ and G3P∗, as presented for example in [29, 17].

On Counting Propositional Logic and Wagner’s Hierarchy 13

As we have seen, CH was first defined by Wagner in [39, 41, 40] and, inde-
pendently, by Pareberry and Schnitger [33]. It was conceived as an extension
of Meyer and Stockmeyer’s PH [27, 28] aiming at characterizing natural prob-
lems in which counting is involved. There are two main, equivalent [37] ways to
define CH: the original characterization in terms of alternating quantifiers [40],
and the one based on oracles [36]. Notably, Wagner’s operator was not the only
“probabilistic” (class) quantifiers introduced in the 1980s (consider, for instance,
Papadimitriou’s probabilistic quantifier [32], Zachos and Heller’s random quanti-
fier [44], or Zachos’ overwhelming and majority quantifiers [43]). However, to the
best of the authors’ knowledge, all these operators are counting quantifiers on
(classes of) languages, rather than stricto sensu logical ones. One remarkable ex-
ception is represented by Kontinen’s work [22], in which second-order quantifiers
are defined in the style of descriptive complexity.

6 Conclusion

To the best of our knowledge, CPL is the first logical system extending propo-
sitional logic with counting quantifiers. Our main source of inspiration comes
from computational complexity, namely from Wagner’s counting operator on
classes. By the way, we believe that the main contribution of the paper is not
the introduction of counting logics per se, but the investigation of its connec-
tions with counting classes. Indeed, we have shown that counting quantifiers play
nicely with propositional logic in characterizing CH, and thus relate nicely with
some old and recent results in complexity theory. In our opinion, CPL naturally
appears as the probabilistic counterpart of QPL.

Due to space reasons, we left out some important applications of counting
logics to other branches of computer science, such as the theory of programming
languages. In particular, it is possible to design type systems for the randomized
λ-calculus by extending simple types with counting quantifiers,5 and to define a
probabilistic counterpart of the Curry-Howard correspondence [16, 34] relating
typing derivations with derivations in CPL.6 Moreover, the proof theory of CPL
has just been briefly delineated and the dynamics (i.e. the cut-elimination proce-
dure) of the introduced formal systems deserves further investigation. Promising
results also concern the possibility to inject “counting” quantifiers into the lan-
guage of arithmetic. In particular, in [2] we have investigated an extension of
standard Peano Arithmetics with measure quantifiers, which can be seen as a
natural generalization of the quantifiers of CPL0 to the language of arithmetic.
The extension of counting quantifiers to arithmetic looks particularly promising,
as it suggests ways of characterizing in a “logical” way explicit lower bounds for
counting problems [26], as well as the possibility of defining new logical systems
capturing probabilistic complexity classes like BPP (see [21]).

5 Notice that while several type systems for randomized λ-calculi and guaranteeing
various forms of termination properties have been introduced in the last years, [12,
9, 3], none of these systems is explicitly logic-oriented.

6 Some achievements in this direction have been presented in [1, § 6].

14 M. Antonelli et al.

References

1. Antonelli, M., Dal Lago, U., Pistone, P.: On Counting Propositional Logic (2021),
available at: https://arxiv.org/abs/2103.12862

2. Antonelli, M., Dal Lago, U., Pistone, P.: On Measure Quantifiers in First-Order
Arithmetic (2021), to appear in Proceedings of Computability in Europe 2021
(CiE2021); long version available at: https://arxiv.org/abs/2104.12124

3. Avanzini, M., Dal Lago, U., Ghyselen, A.: Type-based complexity analysis of prob-
abilistic functional programs. In: Proceedings of the 34th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS). pp. 1–13. IEEE, Vancouver, BC,
Canada, Canada (2019)

4. Bacchus, F.: Lp, a logic for representing and reasoning with statistical knowledge.
Computational Intelligence 6(4), 209–231 (1990)

5. Bacchus, F.: On probability distributions over possible worlds. Machine Intelligence
and Pattern Recognition 9, 217–226 (1990)

6. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press
(1990)

7. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS
Press (2009)

8. Billingsley, P.: Probability and Measure. Wiley (1995)
9. Breuvart, F., Dal Lago, U.: On intersection types and probabilisitic lambda calculi.

In: PPDP ’18: Proceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming. pp. 1–13. No. 8 (2018)

10. Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press
(2009)

11. Cook, S.: The complexity of theorem-proving procedures. In: STOC ’71. pp. 151–
158 (1971)

12. Dal Lago, U., Grellois, U.: Probabilistic termination by monadic affine sized typing.
ACM Trans. Program. Lang. Syst. 41(2), 10–65 (2019)

13. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. Journal of
ACM 41(2), 340–367 (1994)

14. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf.
Comput. 87(1/2), 78–128 (1990)

15. Furber, R., Mardare, R., Mio, M.: Probabilistic logics based on Riesz spaces. LMCS
16(1) (2020)

16. Girard, J.Y.: Proof and Types. Cambridge University Press (1989)
17. Girlando, M., Negri, S., Sbardolini, G.: Uniform labelled calculi for conditional and

counterfactual logics. In: WoLLIC 2019. pp. 248–263 (2019)
18. Halpern, J.: An analysis of first-order logics for probability. Artificial Intelligence

46(3), 311–350 (1990)
19. Halpern, J.: Reasoning About Uncertainty. MIT Press (2003)
20. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form.

Asp. Comput. 6(5), 512–535 (1994)
21. Jerábek, E.: Approximate counting in Bounded Arithmetic. J. Symb. Log. 72(3),

959–993 (2007)
22. Kontinen, J.: A logical characterization of the Counting Hierarchy. TOCL (2009)
23. Kozen, D.: Semantics of probabilistic programs. JCSS 53(3), 165–198 (1982)
24. Lehmann, D., Shelah, S.: Reasoning with time and chance. Inf. Control. 53(3), 165

– 198 (1982)

On Counting Propositional Logic and Wagner’s Hierarchy 15

25. van Melkebeek, D.: A survey on lower bounds for satisfiability and related prob-
lems. FnT-TCS 2, 197–303 (2007)

26. van Melkebeek, D., Watson, T.: A Quantum Time-Space Lower Bound for the
Counting Hierarchy, available at: https://minds.wisconsin.edu/handle/1793/60568

27. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with
squaring requires exponential space. In: SWAT. pp. 125–129 (1972)

28. Meyer, A., Stockmeyer, L.: Word problems requiring exponential time (preliminary
report). In: STOC’73. pp. 1–9 (1973)

29. Negri, S., von Plato, J.: Proof Analysis: A Contribution to Hilbert’s Last Problem.
Cambridge University Press (2011)

30. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)
31. Nilsson, N.: Probabilistic logic revisited. Artificial Intelligence 59(1/2), 39–42

(1993)
32. Papadimitriou, C.: Games against nature. JCSS 31(2), 288–301 (1985)
33. Parberry, I., Schnitger, G.: Parallel computation with threshold functions. JCSS

36, 278–302 (1988)
34. Sorensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, vol. 149.

Elsevier (2006)
35. Stockmeyer, L.: The Polynomial-Time Hiearchy. Theor. Comput. Sci. 3, 1–22

(1977)
36. Torán, J.: An oracle characterization of the Counting Hierarchy. In: Proceedings.

Structure in Complexity Theory Third Annual Conference. pp. 213–223 (1988)
37. Torán, J.: Complexity classes defined by counting quantifiers. Journal of the ACM

38(3), 753–774 (1991)
38. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci.

8(2), 189–201 (1979)
39. Wagner, K.: Compact descriptions and the counting polynomial-time hierarchy.

In: Frege Conference 1984: Proceedings of the International Conference held at
Schwerin. pp. 383–392 (1984)

40. Wagner, K.: The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica 23, 325–356 (1986)

41. Wagner, K.: Some observations on the connection between counting and recursion.
Theor. Comput. Sci. 47, 131–147 (1986)

42. Wrathall, C.: Complete sets and the Polynomial-Time Hierarchy. Theor. Comput.
Sci. 3(1), 23–33 (1976)

43. Zachos, S.: Probabilistic quantifiers and games. JCSS 36(3), 433–451 (1988)
44. Zachos, S., Heller, H.: A decisive characterization of BPP. Information and Control

pp. 125–135 (1986)

