
A Federated Fuzzy 𝑐-means Clustering Algorithm
José Luis Corcuera Bárcena1, Francesco Marcelloni1, Alessandro Renda1,
Alessio Bechini1 and Pietro Ducange1

1Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy

Abstract
Traditional clustering algorithms require data to be centralized on a single machine or in a datacenter.
Due to privacy issues and traffic limitations, in several real applications data cannot be transferred,
thus hampering the effectiveness of traditional clustering algorithms, which can operate only on locally
stored data. In the last years a new paradigm has been gaining popularity: Federated Learning (FL). FL
enables the collaborative training of data mining models and, at the same time, preserves data locally at
the data owners’ places, decoupling the ability to perform machine learning from the need to transfer
data. In this context, we propose the federated version of the popular fuzzy 𝑐-means clustering algorithm.
We first describe this version through pseudo-code and then demonstrate that the clusters obtained by
the federated approach coincide with those generated by the classical algorithm executed on the union
of all the local datasets. We also present an analysis on how privacy is preserved. Finally, we show
some experimental results on the performance of the federated version when only a number of clients
are involved in the clustering process.

Keywords
Federated Learning, Federated Clustering, Federated Fuzzy c-Means

1. Introduction

The performance of a machine learning (ML) model may benefit from the exploitation of data
from multiple sources. However, the conventional approach of collecting data and storing them
in a centralised server introduces severe communication overheads, and, most importantly,
violates the privacy and security requirements that are often paramount to data owners [1].

As an alternative paradigm to data centralization, Federated Learning (FL) [2] has recently
been proposed for the collaborative training of an ML model, and it can represent a key enabler
in the framework of computational collective intelligence. In an FL system, data owners are not
required to expose their own data to other parties; instead, they learn a shared model via the
aggregation of locally-computed updates.

Early works that introduced the concept of FL [1, 3] primarily focused on supervised learning
approaches. For example, the seminal algorithm federated averaging (FedAvg) [1] allows for the
collaborative training of deep neural networks for image classification and language modeling

WILF’21: The 13th International Workshop on Fuzzy Logic and Applications
" joseluis.corcuera@phd.unipi.it (J. Corcuera Bárcena); francesco.marcelloni@unipi.it (F. Marcelloni);
alessandro.renda@ing.unipi.it (A. Renda); alessio.bechini@unipi.it (A. Bechini); pietro.ducange@unipi.it
(P. Ducange)
� 0000-0002-9984-1904 (J. Corcuera Bárcena); 0000-0002-5895-876X (F. Marcelloni); 0000-0002-0482-5048
(A. Renda); 0000-0002-5951-1265 (A. Bechini); 0000-0003-4510-1350 (P. Ducange)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:joseluis.corcuera@phd.unipi.it
mailto:francesco.marcelloni@unipi.it
mailto:alessandro.renda@ing.unipi.it
mailto:alessio.bechini@unipi.it
mailto:pietro.ducange@unipi.it
https://orcid.org/0000-0002-9984-1904
https://orcid.org/0000-0002-5895-876X
https://orcid.org/0000-0002-0482-5048
https://orcid.org/0000-0002-5951-1265
https://orcid.org/0000-0003-4510-1350
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

by iterating over the following steps: (i) the server sends out the global model to the data
owners; (ii) each data owner updates the model using its local data and sends it back to the
server; (iii) the server takes the average of the locally updated models, weighted according to
the number of examples, to obtain a new global model.

The unprecedented performance levels achieved by deep neural networks on a variety of
supervised learning tasks likely motivates the emphasis on adapting such models to the federated
environment; conversely, much less consideration has been devoted to other ML techniques,
and specifically in the field of cluster analysis [4]. However, there exist several applications that
require to determine groups of objects without sharing local data with a central server: this
setting prevents the use of classical clustering algorithms, and asks for novel algorithms properly
designed for a federated environment. Thus, the reshaping of the most effective clustering
algorithms to reap the benefits of FL is of particular importance from a practical perspective.

A recent review [5] has highlighted how the mathematical representation of uncertainty
provided by fuzzy set theory has historically found considerable popularity in cluster analysis.
The Fuzzy 𝑐-means (FCM) [6] algorithm certainly is the most popular fuzzy clustering method:
it partitions data objects into 𝑐 clusters, where 𝑐 is fixed by the user.

In this paper we discuss the adaptation of FCM algorithm to the federated setting, considering
the scenario of horizontally partitioned data, where objects are spread over multiple distinct
nodes, and all of them are described by the same set of attributes.

The paper is organized as follows: Section 2 reports related works. Section 3 describes the
background related to FL and the general setting of our investigation. Section 4 introduces
our Federated FCM. Section 5 describes the experimental setup and results. Section 6 draw
concluding remarks.

2. Related Works

The FCM algorithm and its crisp counterpart 𝑐-means [7] are among the most popular and
widely used clustering algorithms. Since their introduction, a number of works have extended
and adapted the original algorithms to different application scenarios. This section can only
provide some insights by describing how some more recent works relate to our proposal.

As discussed in a survey paper [8], several works have provided contributions around privacy-
preserving 𝑐-means clustering algorithm: although complete zero-knowledge (i.e., each party
knows nothing except its input and output) cannot be achieved due to the iterative nature
of the algorithm, private implementations have been proposed both for horizontally [9] and
vertically [10] partitioned data. However, the adoption of cryptography and Secure Multi-Party
Computation primitives introduces a severe computation overhead and hinders the scalability of
the approaches [11]. In a recent remarkable proposal for privacy-preserving collaborative fuzzy
clustering [11], each data owner transforms its own data by first applying a non linear function
and then performing a random projection onto a lower dimensional space. This perturbation is
independent of the subsequent clustering algorithm (specifically, FCM is used). Furthermore, it
is assumed that the central server may collude with some of the participants and may conduct
specific attacks to violate user’s privacy. The authors show how resistance or mitigation of
these attacks is achieved at a limited cost in terms of accuracy loss.

Compared to the representative works mentioned above, we assume a semi-honest central
server: the server can try to retrieve private raw data based on the updates communicated by
the data owners, but it does so by adhering to the protocol defined for the execution of the ML
algorithm. This is a typical assumption for the horizontal partitioning [2]; however, clustering
under such weak privacy model has not been extensively investigated yet in FL literature. To
the best of our knowledge, only one recent work [12] follows an approach related to ours,
from the point of view of privacy model, data partitioning, and communication topology: in a
federated version of FCM, the author proposes to determine the cluster centers by means of a
gradient-based optimization procedure. Although it is shown that such a federated version of
FCM obtains similar results (and not equal, as in our case) compared to the traditional FCM
algorithm applied to the overall dataset, the gradient-based optimization procedure differs
from the classical, iterative, two-step minimization, in which the membership matrix and the
centroids are alternately optimized. On the contrary, our proposal is inspired by the optimization
procedure adopted in the traditional FCM algorithm: by only communicating aggregated data,
it enables federated clustering without violating the privacy of participants.

3. Background and Problem Statement

A thorough overview on FL has recently been presented in several surveys, such as [2, 4, 13]. A
general definition of FL can be found in [2]. Let {𝑃 1, 𝑃 2, . . . , 𝑃𝑀} be𝑀 parties, i.e. data owners,
who wish to train an ML model by consolidating their respective data {𝑋1, 𝑋2, . . . , 𝑋𝑀},
where 𝑋𝑚 = {x𝑚

1 ,x𝑚
2 , . . . ,x𝑚

𝑁𝑗
} and x𝑚

𝑗 is an object stored in the m-th party. In an FL process
the parties collaboratively learn a model Model fed without exposing their private data to others.
The accuracy of Model fed should be close to the one achieved by a model Model sum learned on

the union of the local datasets 𝑋sum =
𝑀⋃︀

𝑚=1
𝑋𝑚. Specifically, given a non-negative real number

𝛿, the FL algorithm is said to have 𝛿-accuracy loss if |Accfed −Accsum | < 𝛿, where Accfed and
Accsum are the accuracies of Model fed and Model sum , respectively.

The above definition is quite general and covers a wide spectrum of FL applications. Indeed, FL
systems can be coarsely categorized based on two aspects: data partitioning and communication
topology [13]. Data partitioning relates to how data are distributed across the various parties
and can be categorized in horizontal and vertical FL. Let 𝐹 𝑖 be the feature space and 𝐼𝑖 the
sample ID space of the data 𝑋𝑖 held by the 𝑖-th data owner. As per horizontal FL, the dataset is
said to be sample-partitioned. Horizontal FL can be formalized as follows:

𝐹 𝑖 = 𝐹 𝑗 , 𝐼𝑖 ̸= 𝐼𝑗 , ∀𝑋𝑖, 𝑋𝑗 , 𝑖 ̸= 𝑗 (1)

As per Vertical FL, the dataset is said to be feature-partitioned. Vertical FL can be formalized
as follows:

𝐹 𝑖 ̸= 𝐹 𝑗 , 𝐼𝑖 = 𝐼𝑗 , ∀𝑋𝑖, 𝑋𝑗 , 𝑖 ̸= 𝑗 (2)

FL systems can be categorized according to their communication topology, thus discriminating
between centralized and fully-decentralized FL. The former entails a server that orchestrates

the learning process by aggregating the updates computed by different parties; most FL imple-
mentations assume this communication topology. The latter does not require the presence of a
central server: information is shared in a peer-to-peer fashion.

In this paper, we focus on the scenario of horizontal FL with a centralized communication
topology. 𝑀 parties wish to obtain a partitioning of their data, taking advantage of a clus-
tering model to be built collaboratively, but with no need to share their private raw data.
Let 𝑋1 =

{︀
x1
1,x

1
2, . . . ,x

1
𝑁1

}︀
, 𝑋2 =

{︀
x2
1,x

2
2, . . . ,x

2
𝑁2

}︀
, . . ., 𝑋𝑀 =

{︁
x𝑀
1 ,x𝑀

2 , . . . ,x𝑀
𝑁𝑀

}︁
be

the M private datasets we are considering, each of them with a variable number of objects.
Instances from all the datasets are represented in the same 𝐹 -dimensional attribute space:
x𝑚
𝑗 =

{︁
𝑥𝑚𝑗,1, 𝑥

𝑚
𝑗,2, . . . , 𝑥

𝑚
𝑗,𝐹

}︁
. We assume that both the number of clusters and the domain

of definition of the attributes are known a-priori, and, specifically, they are also known to
the server. As per the privacy model, we assume honest participants and a semi-honest, or
honest-but-curious, central server [2].

4. Federated FCM

The original FCM algorithm by Bezdek [6] has been later reworked to improve its efficiency
[14]. Our federated proposal for FCM stems from such a version [14], which adopts an efficient
reorganization of the update procedure for the cluster centers: no storing of the membership
matrix (i.e. the matrix that contains the degree of membership of each object to each cluster) is
required, thus the asymptotic runtime is significantly reduced.

Algorithm 1: Federated FCM(𝐶, 𝜆, 𝜀).
Given: 𝐶 - number of clusters
Given: 𝜆 - fuzziness factor
Given: 𝜀 - tolerance value for the stop condition

Initialization stage
Server:

1: Randomly selects 𝐶 cluster centers. 𝑉 (0) ={︁
v
(0)
1 ,v

(0)
2 , . . . ,v

(0)
𝐶

}︁
2: Transmits the fuzziness factor 𝜆 to each data

owner

Execution stage
3: At each round 𝑡, with 𝑡 starting from 0

Server:
4: Transmits 𝑉 (𝑡) to each data owner

Each data owner𝑚:
5: 𝑈 (𝑡),𝑚,WS (𝑡),𝑚 = LocalSums(𝑉 (𝑡), 𝑋𝑚, 𝜆)
6: Transmit (𝑈 (𝑡),𝑚,WS (𝑡),𝑚) to the server

Server:
7: Update cluster centers evaluating 𝑉 (𝑡+1) as per

Eq. 3.
8: if ||𝑉 (𝑡+1) − 𝑉 (𝑡)||𝐹 < 𝜀 then
9: Terminate

10: else
11: Proceed with the next round (line 4)
12: end if

Algorithm 2: LocalSums(𝑉 (𝑡), 𝑋𝑚, 𝜆)

Given: 𝑉 (𝑡) - array of C cluster centers
Given: 𝑋𝑚 - 𝑚-th dataset
Given: 𝜆 - fuzziness factor
1: WS (𝑡),𝑚 ← zeros(C × F)
2: 𝑈 (𝑡),𝑚 ← zeros(C)
3: for x𝑚

𝑗 ∈ 𝑋𝑚 do:
4: denom = 0
5: for each cluster 𝑐 do:
6: numerc = ‖x𝑚

𝑗 − v
(𝑡)
𝑐 ‖

2
𝜆−1

7: denom = denom + 1
numerc

8: end for
9: for each cluster 𝑐 do:

10: 𝜇𝑐,𝑗 = (numerc * denom)−1

11: ws
(𝑡),𝑚
𝑐 = ws

(𝑡),𝑚
𝑐 + 𝜇𝜆

𝑐,𝑗x
𝑚
𝑗

12: 𝑈
(𝑡),𝑚
𝑐 = 𝑈

(𝑡),𝑚
𝑐 + 𝜇𝜆

𝑐,𝑗

13: end for
14: end for
15: return 𝑈 (𝑡),𝑚,WS (𝑡),𝑚

The pseudocode of the Federated FCM algorithm is reported in Algorithms 1 and 2. Feder-
ated FCM is structured in successive rounds. For the sake of clarity, the communication and
synchronization details for this round-based organization is omitted.

The initialization stage of the Federated FCM algorithm is up to the server and involves the
initialization of all the cluster centers. The server transmits to each data owner the coordinates
of the centers and the fuzziness parameter 𝜆. Subsequently, during the execution stage, at
each round, each data owner computes both 𝑈 (𝑡),𝑚 and WS (𝑡),𝑚 as described in Algorithm
2. 𝑈𝑚 is an array with 𝐶 elements, and the 𝑐-th element is the sum of the membership
degrees of the objects in 𝑋𝑚 to cluster 𝑐, each raised to the 𝜆-th power. More formally,
𝑈𝑚 = {𝑈𝑚

1 , 𝑈𝑚
2 , . . . , 𝑈𝑚

𝐶 } and 𝑈𝑚
𝑐 =

∑︀𝑁𝑚
𝑗=1 𝜇

𝜆
𝑐,𝑗 . WS𝑚 is a 𝐶 × 𝐹 matrix, whose 𝑐-th row

is the sum of the data objects, weighted by the membership degree of the objects to cluster 𝑐.
More formally, 𝑊𝑆𝑚 = {ws𝑚1 ,ws𝑚2 , . . . ,ws𝑚𝐶 } and ws𝑚𝑐 =

∑︀𝑁𝑚
𝑗=1 𝜇

𝜆
𝑐,𝑗x

𝑚
𝑗 . Then, each data

owner transmits 𝑈 (𝑡),𝑚 and WS (𝑡),𝑚 to the server, so that it can update the coordinates of the
centers as follows:

v(𝑡+1)
𝑐 =

∑︀𝑀
𝑚=1ws

(𝑡),𝑚
𝑐∑︀𝑀

𝑚=1U
(t),m
c

∀𝑐 ∈ {1, . . . , 𝐶} (3)

The server evaluates the stopping condition (Algorithm 1, line 8): if the Frobenius norm of
the difference in the cluster centers between two consecutive rounds is lower than the given
threshold 𝜀, the execution terminates. In other words, we check whether the centers move less
than the imposed tolerance. Otherwise, the server transmits the new centers to the data owners,
thereby initiating the next round.

The rationale behind the LocalSums (Algorithm 2) is detailed in [14]; unlike the original
paper, we are considering the scenario of horizontal FL, where data are scattered over multiple
data owners. Notably, each data owner does not need to store the 𝐶 ×𝑁𝑚 membership matrix.

4.1. Equivalence with FCM executed on the overall dataset

In this sub-section, we show that the Federated FCM algorithm generates the same clusters
that would be produced by the classical FCM algorithm applied to the overall dataset obtained
by the union 𝑋𝑠𝑢𝑚 of the local datasets. Under the assumption that all data are stored in the
central server, in the classical FCM algorithm at each iteration the cluster centers are updated
as follows:

v(𝑡+1)
𝑐 =

∑︀𝑁
𝑗=1 𝜇

𝜆
𝑐,𝑗x

(𝑡),sum
𝑗∑︀𝑁

𝑗=1 𝜇
𝜆
𝑐,𝑗

, ∀𝑐 ∈ {1, . . . , 𝐶} (4)

The updated center of the 𝑐-th cluster is the weighted average of the objects assigned to the
cluster: the weights are the membership degree of the objects to the cluster, raised to the
𝜆-th power. With M mutually disjoint sets, as it typically occurs in real-world horizontal data
partitions, Eq. 4 (centralized setting) and Eq. 3 (federated setting) lead to the same result. In
fact, for each cluster 𝑐,

𝑁∑︁
𝑗=1

𝜇𝜆
𝑐,𝑗x

(𝑡),sum
𝑗 =

𝑀∑︁
𝑚=1

ws(𝑡),𝑚𝑐 (5)
𝑁∑︁
𝑗=1

𝜇𝜆
𝑐,𝑗 =

𝑀∑︁
𝑚=1

U (t),m
c (6)

Specifically, both terms are sums of elements. In the federated setting each sum is performed
in two steps: first, on a per-owner basis and then aggregated by the central server.

Finally, since the termination condition (Algorithm 1 line 8) depends only on the position of
the cluster centers, it can be applied equivalently in the two scenarios.

4.2. Privacy analysis

The federated approach allows the collaborative evaluation of the FCM algorithm with no need
for individual data owners to expose their data. Nevertheless, the server can infer the value of
the attributes of each single object under certain circumstances. At each round, each data owner
reveals the following information: for each 𝑐, the sum U

(𝑡),𝑚
𝑐 of the membership degrees, each

raised to the 𝜆-th power, and the array ws
(𝑡),𝑚
𝑐 of the weighted sum of the objects assigned to 𝑐.

The first information U
(𝑡),𝑚
𝑐 can be represented by the following 𝐶 equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇𝜆
1,1 + 𝜇𝜆

1,2 + · · ·+ 𝜇𝜆
1,𝑁𝑚

= 𝛼1

𝜇𝜆
2,1 + 𝜇𝜆

2,2 + · · ·+ 𝜇𝜆
2,𝑁𝑚

= 𝛼2

. . .

𝜇𝜆
𝐶,1 + 𝜇𝜆

𝐶,2 + · · ·+ 𝜇𝜆
𝐶,𝑁𝑚

= 𝛼𝐶

(7)

The second information ws
(𝑡),𝑚
𝑐 leads to the following 𝐶 equations for each attribute 𝑓 :⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1,𝑓𝜇
𝜆
1,1 + 𝑥2,𝑓𝜇

𝜆
1,2 + · · ·+ 𝑥𝑁𝑚,𝑓𝜇

𝜆
1,𝑁𝑚

= 𝛽1,𝑓

𝑥1,𝑓𝜇
𝜆
2,1 + 𝑥2,𝑓𝜇

𝜆
2,2 + · · ·+ 𝑥𝑁𝑚,𝑓𝜇

𝜆
2,𝑁𝑚

= 𝛽2,𝑓

. . .

𝑥1,𝑓𝜇
𝜆
𝐶,1 + 𝑥2,𝑓𝜇

𝜆
𝐶,2 + · · ·+ 𝑥𝑁𝑚,𝑓𝜇

𝜆
𝐶,𝑁𝑚

= 𝛽𝐶,𝑓

(8)

Specifically, the server receives from each data owner 𝑚 the 𝛼𝑐 value for each cluster 𝑐, and
the 𝛽𝑐,𝑓 value for each cluster 𝑐 and for each feature 𝑓 . By definition, we have that

𝜇𝑐,𝑗 =
1∑︀𝐶

𝑙=1

(︁‖x𝑚
𝑗 −v𝑐‖

‖x𝑚
𝑗 −v𝑙‖

)︁ 2
𝜆−1

(9)

Thus, we can consider that the only unknown variables are the coordinates 𝑥𝑚𝑗,𝑓 . To derive
these coordinates for the objects stored in party 𝑚, the server must solve the overall system of
equations, composed by Eqs. 7 and 8, replacing the values of 𝜇𝑐,𝑗 by using Eq. 9. The number
of unknown variables is 𝑁𝑚 × 𝐹 and the number of equations is 𝐶 +𝐶 × 𝐹 . If the server was
aware of the number of objects 𝑁𝑚 that produced the statistics U(𝑡),𝑚

𝑐 and ws
(𝑡),𝑚
𝑐 , it could

empirically derive the solution unless the number of unknown variables was greater than the
number of equations, that is, if 𝑁𝑚 > 𝐶×(𝐹+1)

𝐹 . We highlight that the server does not know
𝑁𝑚 and therefore this is a strong restrictive condition. Nevertheless, it does not appear too
limiting since it requires that the number of objects is greater than the number of clusters
plus 𝐶/𝐹 . Therefore, we might decide to let the party transmit the locally aggregated data
(Algorithm 1, line 6) only if 𝑁𝑚 > 𝐶×(𝐹+1)

𝐹 . Although the server may be able to retrieve some
data information from the aggregated measurements submitted by each data owner, it cannot
determine the exact raw data values.

5. Experimental setup and results discussion

A preliminary evaluation of the performance of Federated FCM has been carried out. We
considered the following setting: all participants have roughly the same amount and the same
distribution of objects (IID setting). The total number of participants 𝑀 has been set to 20;
however, as in the original FedAvg algorithm [1], we introduce a parameter 𝛾 (fraction of data
owners) for random sampling among participants at the beginning of each FL round. The main
objective of our analysis is to compare the results obtained with Federated FCM (with different
values for 𝛾) and those obtained with classical FCM algorithm applied to the overall dataset
𝑋sum . Specifically, 𝑉fed (𝛾) and 𝑉sum represents the final array of cluster centers obtained with
Federated FCM and with classical FCM (centralized setting), respectively.

Overall, we employed four datasets: xclara and s-set1 from the clustering benchmark reposi-
tory1, waveform v1 and pendigits from the UCI Machine Learning Repository2. For each dataset,
the number of classes 𝐾 , objects 𝑁 and attributes 𝐹 is reported in Table 1 (first column).

We set the fuzziness factor 𝜆 = 2, the tolerance value 𝜀 = 0.005 and the maximum number
of rounds to 30, as we observed that convergence generally requires far fewer rounds. Further
the number 𝐶 of clusters was set coherently with the number of classes 𝐾 . We varied 𝛾 in
{0.25, 0.5, 0.75, 1}: notably, in the case of 𝛾 = 1 (i.e., all clients participate to FL procedure),
we aim to experimentally verify the equivalence between federated and centralized settings,
as theoretically demonstrated in Section 4.1. We performed 10 repetitions varying the seed
for random center initialization and participant sampling; for each repetition, the same center
initialization was used for the Federated FCM and the centralized FCM algorithms.

Due to the space limit, Fig. 1 reports only the results obtained on the xclara dataset. The
convergence of Federated FCM (Algorithm 1, line 8) is reported in Fig. 1a: the Frobenius norm
of the difference in the cluster centers between two consecutive rounds reaches a plateau after
around 7 rounds, regardless of the value of 𝛾. However, convergence w.r.t. the tolerance value 𝜀
is achieved only for high values of 𝛾 (namely, 0.75 and 1); intuitively, when fewer participants
are sampled, the centers keep slightly shifting over time, since it is less likely that the same
participants are selected in subsequent rounds.

Figure 1b shows the Frobenius norm ||𝑉𝑓𝑒𝑑(𝛾)− 𝑉sum ||𝐹 of the difference between cluster
centers computed by Federated and centralized versions of FCM; notably, we consider the
permutation of the centers in 𝑉𝑓𝑒𝑑(𝛾) that minimizes ||𝑉𝑓𝑒𝑑(𝛾)− 𝑉sum ||𝐹 . When 𝛾 = 1 (all 20
clients are involved in the procedure) the federated version of the algorithm is equivalent to the
original one executed on the overall dataset, as previously demonstrated. As 𝛾 decreases, the
distance between the centers increases. To assess whether this affects clustering performance,
we apply an external measure of clustering quality, namely the Adjusted Rand Index (ARI) [15].
Given the centers 𝑉fed (𝛾) computed by the federated version, we evaluated the fuzzy partition
matrix on the dataset 𝑋sum , assigned each object to the cluster with the highest membership
degree, and computed ARI, which measures the consistency between clustering results and
the available ground truth labels. Table 1 reports the results for all datasets, along with the
value ||𝑉𝑓𝑒𝑑(𝛾) − 𝑉sum ||𝐹 . We observe that, in the case 𝛾 < 1, the centers computed in the

1https://github.com/deric/clustering-benchmark
2https://archive.ics.uci.edu/ml/datasets.php

https://github.com/deric/clustering-benchmark
https://archive.ics.uci.edu/ml/datasets.php

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.02

0.04

0.06

0.08

0.10
||V

(t
+

1)
V

(t)
|| F

0.25
0.50
0.75
1.00

(a) Federated FCM: Frobenius norm of the difference in the cluster centers
between consecutive rounds.

0.25 0.50 0.75 1.00
Fraction of participants

0.000

0.002

0.004

0.006

0.008

0.010

||V
fe

d(
)

V s
um

|| F

(b) ||𝑉𝑓𝑒𝑑(𝛾)− 𝑉sum ||𝐹 over 𝛾.

Figure 1: Results on xclara dataset. Average values (shaded region indicates the standard deviation).

federated setting slightly deviates from those determined in the centralized case. As expected,
this deviation decreases with the increase of 𝛾. However, such deviation does not induce a
significant variation in the ARI values, thus highlighting that the clusters generated by Federated
and centralized versions are very similar even when only a fraction of participants is involved
in the FL procedure. This outcome is particularly relevant in scenarios where clients have an
unstable connection, which can prevent them to communicate with the central server at each
round, or when it is mandatory to reduce the communication overhead over the network.

Table 1
ARIs obtained with centers 𝑉fed(𝛾) on 𝑋sum and Frobenius norm of the difference between 𝑉fed(𝛾)
and 𝑉sum . Average values.

ARI(𝛾) ||𝑉fed(𝛾)− 𝑉sum ||𝐹
Dataset (𝐾,𝑁,𝐹) \ 𝛾 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
xclara (3, 3000, 2) 0.99269 0.99279 0.99289 0.99289 0.00893 0.00545 0.00250 0.00000
s-set1 (15, 5000, 2) 0.90418 0.90384 0.89645 0.89728 0.11640 0.09915 0.04865 0.00000

pendigits (10, 10992, 16) 0.42051 0.42115 0.42291 0.42468 0.11147 0.08261 0.03018 0.00000
waveform v1 (3, 5000, 21) 0.24243 0.24366 0.24445 0.24359 0.03233 0.01877 0.02049 0.00000

6. Conclusion

While ML is widely employed in a great variety of application domains, there is a growing
interest in the need to protect the privacy of data during the collaborative learning of ML
models. Federated learning is emerging as one of the key paradigms to address this challenge.
In this paper we have proposed a federated version of the popular fuzzy 𝑐-means clustering
algorithm. We have focused on the scenario of horizontally partitioned data and relaxed privacy
requirements. We have shown that our version achieves the same results obtained by the
classical clustering algorithm applied to the overall merged datasets, while preserving privacy of
data owners. Further, we carried out a preliminary experimental analysis: under the assumption

of IID data over clients, the federated version of the algorithm is substantially equivalent to the
centralized one, even when only a fraction of clients participate to the FL process. Future works
will investigate the selection of the proper number of clusters in the federated setting and the
implementation of the algorithm for vertically partitioned data.

Acknowledgments

This work has been partly funded by the European Commission through the H2020 project
Hexa-X (Grant Agreement no. 101015956) and by the Italian Ministry of Education and Research
(MIUR) in the framework of the CrossLab project (Departments of Excellence).

References

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Arcas, Communication-efficient
learning of deep networks from decentralized data, in: Artificial Intelligence and Statistics,
PMLR, 2017, pp. 1273–1282.

[2] Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Concept and applications,
ACM T. Intel. Sysy. Tec. 10 (2019) 1–19.

[3] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, D. Bacon, Federated
Learning: Strategies for Improving Communication Efficiency, in: NIPS Workshop on
Private Multi-Party Machine Learning, 2016.

[4] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, et al., Advances and open
problems in federated learning, arXiv preprint arXiv:1912.04977 (2019).

[5] E. H. Ruspini, J. C. Bezdek, J. M. Keller, Fuzzy clustering: A historical perspective, IEEE
Comput. Intell. M. 14 (2019) 45–55.

[6] J. C. Bezdek, Fuzzy mathematics in pattern classification, Ph. D. Dissertation, Applied
Mathematics, Cornell University (1973).

[7] S. Lloyd, Least squares quantization in PCM, IEEE T. Inform. Theory 28 (1982) 129–137.
[8] F. Meskine, S. N. Bahloul, Privacy preserving k-means clustering: a survey research., Int.

Arab J. Inf. Technol. 9 (2012) 194–200.
[9] S. Jha, L. Kruger, P. McDaniel, Privacy preserving clustering, in: European symposium on

research in computer security, Springer, 2005, pp. 397–417.
[10] J. Vaidya, C. Clifton, Privacy-preserving k-means clustering over vertically partitioned

data, in: Proc. 9th ACM SIGKDD Int’l Conf. on KDD, 2003, pp. 206–215.
[11] L. Lyu, J. C. Bezdek, Y. W. Law, X. He, M. Palaniswami, Privacy-preserving collaborative

fuzzy clustering, Data Knowl. Eng. 116 (2018) 21–41.
[12] W. Pedrycz, Federated fcm: Clustering under privacy requirements, IEEE T. Fuzzy Syst.

(2021) 1–1.
[13] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. e. a. Dehghantanha, A survey on

security and privacy of federated learning, Future Gener. Comp. Sy. 115 (2021) 619–640.
[14] J. F. Kolen, T. Hutcheson, Reducing the time complexity of the fuzzy c-means algorithm,

IEEE T. Fuzzy Syst. 10 (2002) 263–267.
[15] L. Hubert, P. Arabie, Comparing partitions, Journal of Classification 2 (1985) 193–218.

	1 Introduction
	2 Related Works
	3 Background and Problem Statement
	4 Federated FCM
	4.1 Equivalence with FCM executed on the overall dataset
	4.2 Privacy analysis

	5 Experimental setup and results discussion
	6 Conclusion

